
Ž .Journal of Mathematical Analysis and Applications 262, 733�748 2001

doi:10.1006�jmaa.2001.7615, available online at http:��www.idealibrary.com on

On C. Neumann’s Method for Second-Order Elliptic
Systems in Domains with Non-smooth Boundaries

O. Steinbach and W. L. Wendland

Mathematisches Institut A, Uni�ersitat Stuttgart, Pfaffenwaldring 57,¨
70569 Stuttgart, Germany

� 4E-mail: steinbach,wendland @mathematik.uni-stuttgart.de

Submitted by William F. Ames

Received April 17, 2001

DEDICATED TO GEORGE LEITMANN ON THE OCCASION

OF HIS 75TH BIRTHDAY

In this paper we investigate the convergence of Carl Neumann’s method for the
solution of Dirichlet or Neumann boundary values for second-order elliptic prob-

1lems in domains with non-smooth boundaries. We prove that I � K , where K is2
1�2Ž .the double-layer potential, is a contraction in H � when an energy norm is

used that is induced by the inverse of the single-layer potential. � 2001 Academic

Press
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1. INTRODUCTION

Carl Neumann’s famous method in potential theory goes back to C. F.
� �Gauss 10 , who proposed to solve the Dirichlet problem for the Laplacian

in a sufficiently smoothly bounded domain � by using a double-layer
potential of the form

�
u x � W� x � U* x , y � y dsŽ . Ž . Ž . Ž . Ž .H yž /� n� y
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with a double-layer charge � to be determined as the solution of the
boundary integral equation

1 �
� � I � K � � g , where K� x � U* x , y � y ds .Ž . Ž . Ž . Ž .H yž / ž /2 � n� 4�� x y

Ž .U* x, y is the full-space fundamental solution of the Laplacian, and
� �� � � �. Carl Neumann showed in his papers 26, 27 that, for a convex

domain �, the operator

1 I � KŽ .2

is on the space of continuous functions strictly contracting with respect to
the oscillation which, in fact, is equivalent to

1� �I � K � 1, 1.1Ž .2

with the operator norm generated by the norm

� � � � � �u � sup u x � u y � � sup u x , 1.2Ž . Ž . Ž . Ž .
x , y	� x	�

0Ž .with an appropriate positive constant � , on the Banach space C � of
Ž � �.continuous functions on � see 16 . In C. Neumann’s proof, completed in

Ž � �.1877 not recognized in 16, 35 , only specific piecewise plane boundaries
Ž .were excluded. For smooth including also non-convex boundaries, J.

1 0� � Ž . Ž .Plemelj 29 showed for I � K that its spectral radius on C � is less2

than 1, and this result was extended by J. Radon to two-dimensional
� �domains having boundaries of bounded rotation 30 ; J. Kral finally found

� � Ž .18 necessary and sufficient conditions on the boundary curve. On L � ,2
� �Shelepov 37 obtained a similar result under more restrictive assumptions.

For three-dimensional domains and for smooth boundaries, e.g., a
Ž .closed Lyapounov surface �, 1.1 and Plemelj’s proof remain valid, as do

Ž . Ž . � �C. Neumann’s result and 1.1 , 1.2 for convex � 16 . For non-smooth
and non-convex boundaries and the Laplacian, one finds sufficient but

Ž .rather restrictive conditions on the geometry of � for 1.1 to hold with
0Ž . Žrespect to the essential norm associated with C � i.e., K is taken

. � �modulo compact perturbations in the work by J. Kral 17 and by V.
� � Ž � �.Maz’ya et al. in 1 for the current state see Maz’ya’s survey in 22 and in

� � � �41 . J. Kral and D. Medkova showed 23 that the essential Fredholm
� �radius defined by I. Gohberg and A. Marcus 11 is here equivalent to

0Ž .finding an appropriate weighted supremum norm on C � . For arbitrary
� �polyhedral domains and the Laplacian, O. Hansen shows 13 how to

Ž . Ž .construct the appropriate weight function. If L � is used then again 1.12
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� �is valid in the spectral norm, as has been shown by J. Elschner 8 for a
restricted class of boundaries �.

Carl Neumann’s iteration still converges in one of the Banach spaces on
1Ž .� if the corresponding spectral radius of the operator I � K is less than2

1. This property not only holds for the double-layer potential of the
Laplacian but also for the double-layer potential of the Lame system´
governing linearized elasticity if � is sufficiently regular. For a Lyapunov
boundary � and the space of Holder continuous boundary functions these

1̈Ž .estimates for the spectrum of I � K for the Lame system go back to´2
� � � �Mikhlin 24 and have further been elaborated in 19, 28, 32 . For boundary

� �functions in L , corresponding results are due to Shelepov 37 forp
two-dimensional problems and, for three-dimensional problems, are due to

� � � �Maz’ya 21 and B. Dahlberg 6 .
� �For a Lipschitz boundary � and the Laplacian, G. Verchota in 39 and,

� �with the Lame system, B. Dahlberg, C. Kenig, and G. Verchota in 7´
1 Ž .showed that I � K has closed range and is invertible on L � . However,22

these results do not provide that the spectral radius is less than 1.
In this paper we employ coerciveness properties of the single layer and

the hypersingular boundary integral operators which are still valid on a
Lipschitz boundary � and which can be shown for the rather big class of
second-order formally positive elliptic systems of partial differential equa-

� � � �tions 25, 34, 40 , based on results by M. Costabel 3 . Then the classical
Neumann boundary integral equations of the second kind need to be

1�2Ž .considered in the appropriate boundary trace spaces H � and
�1�2Ž .H � , respectively. Since the Calderon projection holds even on a

Lipschitz boundary �, we can show the strict contraction properties for
1Ž .I � K and for the adjoint operators on appropriate subspaces of these2

trace spaces by using appropriate norms.
Consequently, Carl Neumann’s classical iteration method, originally

invented for solving the Dirichlet and Neumann problems of the Lapla-
cian, converges for an astonishingly large class of problems. The applica-
tions are numerous, e.g., in domain decomposition with boundary elements

� � � �as in 15 and for preconditioning as in 38 .
The paper is organized as follows. In Section 2 we introduce the

boundary integral operators of the first and second kind and appropriate
norms on the trace spaces on �. In Section 3 we formulate Carl Neumann’s
method and the main results of the paper concerning the strict contracting
properties. In Section 4 we comment on the so-called direct approach for
boundary integral equations and apply appropriate Neumann series. In

ŽSection 5 we present the proofs of the main results which are formulated
.in Section 3 .

The authors gratefully acknowledge the substantial support by the
collaborative research centre ‘‘Sonderforschungsbereich 404, Mehrfeld-



STEINBACH AND WENDLAND736

probleme’’ of the German Research Foundation Deutsche Forschungsge-
meinschaft at the University of Stuttgart. The second author also expresses
his sincere gratitude to the Mittag�Leffler Institute of the Royal Academy
of Sciences, Sweden, where he carried out some part of this work.

2. BOUNDARY INTEGRAL OPERATORS

n Ž .Let � 
 � n � 2, 3 be a bounded domain with Lipschitz continuous
boundary � � � �. We consider a second-order, self-adjoint, formally

� �positive elliptic partial differential operator L 25, 34, 40 given by
n n� � �

Lu x � � a x u x � b x u x � c x u xŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ý Ýji i� x � x � xj i ii , j�1 i�1

2.1Ž .

and the corresponding conormal derivative operator T defined asx

n �
T u x � n x a x u x , 2.2Ž . Ž . Ž . Ž . Ž .Ýx j ji � xii , j�1

Ž .where n x is the outer normal vector defined for almost every x 	 �.
Ž .Then there exists a fundamental solution U* x, y of L. The single-layer

potential in the domain � and �c, respectively, is defined by

Vw x � U* x , y w y ds for x 	 � � �c . 2.3Ž . Ž . Ž . Ž . Ž .H y
�

For x 	 � we define the standard boundary integral operators, in particu-
lar, the single-layer potential,

Vw x � lim U* x�, y w y ds for almost every x 	 � , 2.4Ž . Ž . Ž . Ž . Ž .H y
x��x �

Ž . Ž .where x� 	 C � and where C � 
 � denotes any cone with vertexx x
x 	 � associated with the Lipschitz boundary � since it has the uniform

Ž � �. Ž .cone property see, e.g., 12, Theorem 1.2.2.2 . In 2.4 we also let
Ž c.x� 	 C � . We will also consider the double-layer potential,x

� cW� x � T U* x , y � y ds for x 	 � � � .Ž . Ž . Ž . Ž .Ž .H y y
�

For appropriate � , the corresponding double-layer boundary integral oper-
ator is defined in terms of its boundary values, namely by

1Ku x � lim Wu x� � u x for x 	 � and x� 	 C � .Ž . Ž . Ž . Ž . Ž . Ž .x2
x��x

2.5Ž .
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Correspondingly,

1 cKu x � lim Wu x� � u x if x� 	 C � .Ž . Ž . Ž . Ž . Ž . Ž .x2
x� �x

If � is locally Lyapunov in the vicinity of x 	 � then

�
Ku x � T U* x , y u y ds , 2.6Ž . Ž . Ž . Ž . Ž .Ž .H y y

� 4�� x

Žwhere the integral is defined as a Cauchy principal value integral. If the
principal part of � is the Laplacian then the kernel function of the

Ž . .integral operator in 2.6 is only weakly singular. If x is a vertex point of
� and the tangential cone to � at x approximates � in the vicinity of x
‘‘well enough,’’ then, for continuous u,

�1Ku x � � x � u x � T U* x , y u y ds ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .H y y2
� 4�� x

Ž . Ž � � � �and � x is given explicitly see, e.g., 41 for the Laplacian and 9 for the
. Ž .Lame system . For a Lipschitz boundary, 2.6 holds for almost every x 	 �´

only. The operator adjoint to K with respect to the duality

² :� , w � � y 	 w y ds ,Ž . Ž .L Ž� . H y2
�

on appropriate pairs of function spaces on �, is given in terms of the
boundary values of the conormal derivative of the single-layer potential
Ž .2.3 , namely by

n �
1K �w x � lim n x a x Vw x� � w x , 2.7Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ý �j ji 2� xx��x ii , j�1

Ž .where x� 	 C � . Again, if � is locally Lyapunov in the vicinity of x 	 �,x
then

K �w x � T U* x , y w y ds , 2.8Ž . Ž . Ž . Ž . Ž .H x y
� 4�� x

and the integral is defined as a Cauchy principal value integral. For a
Ž .Lipschitz boundary, 2.8 holds for almost every x 	 �.

The hypersingular operator is defined by

n �
Du x � �T Wu x � � lim n x a x Wu x�Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ý �x j ji � xx��x ii , j�1

2.9Ž .
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Ž . Ž c.for x 	 �, where x� 	 C � or x� 	 C � . If � is locally Lyapunov inx x
the vicinity of x 	 � and u is smooth enough, then

�
Du x � �p.f. T T U* x , y u y ds 2.10Ž . Ž . Ž . Ž . Ž .Ž .H x y y

� 4�� x

for x 	 �, where now the integral is defined as Hadamard’s finite part
� � Ž � �.integral with respect to the Euclidean distance x � y see 36 .

All of these operators as defined above will be considered here on the
sŽ . � �Sobolev spaces H � on � for s 
 1. The mapping properties of these

Ž � �.boundary integral operators are well known see, for example, 3, 5 , in
particular, the boundary integral operators

V : H�1�2�s � � H 1�2�s � ,Ž . Ž .
K : H 1�2�s � � H 1�2�s � ,Ž . Ž .

K �: H�1�2�s � � H�1�2�s � ,Ž . Ž .
D : H 1�2�s � � H�1�2�s �Ž . Ž .

1� � Ž � �.are bounded for s � see 3 . For the Laplacian and for the Lamé2
Ž .system, one still has continuity of K and K � even in L � due to the2

� � � �results in 39 and 6 . Furthermore, we assume that the single-layer
Ž . �1�2Ž . Vpotential in 2.4 is H � elliptic, i.e., there exists a constant c � 01

such that

² : V � � 2
�1 �2 �1�2Vw , w � c 	 w for all w 	 H � . 2.11Ž . Ž .L Ž� . H Ž� .12

Ž .Remark 2.1. Assumption 2.11 is known for a wide class of partial
Ž � �.differential operators L see 5 . However, in the case n � 2, appropriate

Ž � � � �scaling conditions are needed see 14 for the Laplacian and 4 for the
Bilaplacian; then Airy’s stress function yields corresponding scaling in 2D

.elasticity .

We denote by

RR � � 	 H 1�2 � : � � � , � 	 H 1 � : L� � 0 in � , T� � 0 on �Ž . Ž .� 4˜ ˜ ˜ ˜� �

2.12Ž .

the finite-dimensional solution space of the homogeneous Neumann
boundary value problem. Note that

1D� � I � K � � 0 for all � 	 RR. 2.13Ž .Ž .2

Let
�1�2 �1�2 ² :H � � w 	 H � : w , � � 0 for all � 	 RR ,Ž . Ž .� 4L Ž� .0 2

1�2 1�2 ² :H � � u 	 H � : u , � � 0 for all � 	 RR .Ž . Ž .� 4L Ž� .0 2
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Ž .As for V, we assume that the hypersingular integral operator D in 2.9 is
1�2Ž . DH � -elliptic, i.e., there exists a constant c � 0 such that0 1

² : D � � 2
1�2 1�2Du , u � c 	 u for all u 	 H � . 2.14Ž . Ž .L Ž� . H Ž� .1 02

�1�2Ž . 1�2Ž .Since the single-layer potential V: H � � H � is positive defi-
�1�2Ž .nite and bounded, we may define on H � an equivalent Sobolev

norm induced by V, i.e.,

�1�2� � ² :w � Vw , w for all w 	 H � . 2.15Ž . Ž .'V L Ž� .2

1�2Ž .Correspondingly, we may equip H � with an equivalent norm induced
by the inverse of the single-layer potential V�1 :

�1 1�2�1� � ² :u � V u , u for all u 	 H � . 2.16' Ž . Ž .V L Ž� .2

These norms will be used to investigate the convergence of the Neumann
series to be introduced in the next section.

3. CARL NEUMANN’S CLASSICAL METHOD

� �Due to C. F. Gauss 10 , for the solution of the Dirichlet boundary value
problem

Lu x � 0 for x 	 � , u x � g x for x 	 � , 3.1Ž . Ž . Ž . Ž .
� �C. Neumann investigated in 26, 27 the double-layer potential ansatz

u x � W� x for x 	 � 3.2Ž . Ž . Ž . Ž .˜ ˜ ˜
1�2Ž .with an unknown density � 	 H � for its solution. With the boundary

Ž . Ž .values of the double-layer potential W, given by 2.5 , we get from 3.2 the
boundary integral equation of the second kind,

1� x � K� x � �g x for all x 	 � , 3.3Ž . Ž . Ž . Ž . Ž .2

for the yet unknown dipole boundary charge � . To solve this equation, C.
� �Neumann in 26, 27 showed for continuous g and L the Laplacian that

the series



l1� x � � I � K g x 3.4Ž . Ž . Ž .Ž .Ý ž /2
l�0

Žconverges uniformly on � provided � is convex. This was also the birth of
. Ž .the well-known Neumann series. We consider now 3.4 on the trace space

1�2Ž . Ž .H � instead and can show the convergence of 3.4 under very weak
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conditions on � and for a rather large class of equations due to the
following main result of our paper.

THEOREM 3.1. Let L be a formally positi�e elliptic partial differential
Ž .operator of second order with a fundamental solution U* 	, 	 generating all

Ž . Ž .of the boundary integral operators 2.4 � 2.9 . Let the operators V and D
Ž . Ž .satisfy the coerci�eness estimates 2.11 and 2.14 . Then,

1 1�2�1 �1� � � �I � K u 
 c 	 u for all u 	 H � 3.5Ž . Ž .Ž . V VK2

and

1 �1�2� � � �� K � w 
 c 	 w for all w 	 H � 3.6Ž . Ž .Ž . V VK2

with the positi�e constant

1 1 V Dc � � � c c � 1. 3.7' Ž .K 1 12 4

V Ž .Here, c is the ellipticity constant of the single-layer potential V in 2.11 and1
D Ž .c is the ellipticity constant of the hypersingular integral operator D in 2.14 .1

For the Neumann boundary value problem, i.e., to find the solution u of

Lu x � 0 for x 	 � , T u x � f x for x 	 � , 3.8Ž . Ž . Ž . Ž .x

�1�2Ž .with given f 	 H � , where u is unique only modulo RR, C. Neumann0
employed the single-layer potential ansatz

u x � Vw x for x 	 � . 3.9Ž . Ž . Ž . Ž .˜ ˜ ˜

Ž .Due to 2.7 , here the boundary condition implies the boundary integral
equation

1 w x � K �w x � f x for x 	 � , 3.10Ž . Ž . Ž . Ž . Ž .2

now for the yet unknown boundary charge w. Since K � is the operator
� Ž .�adjoint to K , J. Radon investigated in 30, Eq. 3.10 , for the Laplacian in

the space of bounded variation C*, the space dual to the continuous
Ž . �1�2Ž .functions on �. Here, we now consider 3.10 in H � , which is dual to0

1�2Ž . ² : 2H � with respect to 	 , 	 . Now, we may find the solution again inL Ž� .0
the form of the Neumann series



l1w x � I � K � f x 3.11Ž . Ž . Ž .Ž .Ý ž /2

l�0

�1�2Ž .in H � .0
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1 �1�2Ž .LEMMA 3.1. The operator I � K � maps H � into itself boundedly.02

1�1�2 �1�2Ž . Ž . ŽProof. Let w 	 H � 
 H � . Then the image z � I �0 2
. �1�2Ž .K � w belongs to H � and satisfies

1² : ² : ² :z , � � w , � � z , I � K � � 0 for all � 	 RRŽ .L Ž� . L Ž� . L Ž� .22 2 2

�1�2 �1�2Ž . Ž . Ž .due to w 	 H � and because of 2.13 . Hence, z 	 H � .0 0

Ž . �1�2Ž .The following theorem ensures the convergence of 3.11 in H � .0

Ž .THEOREM 3.2. Let L and U* 	, 	 be as in Theorem 3.1. Then,

1 �1�2� � � �I � K � w 
 c 	 w for all w 	 H � 3.12Ž . Ž .Ž . V VK 02

Ž .with the positi�e constant c gi�en by 3.7 andK

1
�1 �1 �1� � � � � �1 � c 	 u 
 I � K u 
 c 	 uŽ . Ž .V V VK K2

for all u 	 H 1�2 � . 3.13Ž . Ž .0

Hence, this theorem guarantees the convergence of the Neumann series
Ž . �1�2Ž .3.11 in H � . The proof of Theorem 3.2 will be given in Section 5.0

4. BOUNDARY INTEGRAL EQUATIONS OF THE
DIRECT APPROACH

In the previous section we considered boundary integral equations
resulting from the classical single- or double-layer potential ansatz, respec-
tively. Now, we consider corresponding boundary integral equations of the
second kind arising from the so-called direct approach based on Green’s
representation formula. In general, the solution of our second-order
boundary value problems in the interior is given by

�
u x � U* x , y t y ds � T U* x , y u y ds for x 	 � .Ž . Ž . Ž . Ž . Ž .˜ ˜ ˜ ˜Ž .H Hy y y

� �

4.1Ž .

Ž . Ž .Here, t x � T u x for x 	 �; and u � and t are the Cauchy data of Lx �

Ž .in �. When the Dirichlet boundary value problem 3.1 is considered, then
Ž .the Neumann datum t x on � is unknown. Hence, for finding t we may

Žconsider either a boundary integral equation of the first kind see, e.g.,
� �.14 , or a boundary integral equation of the second kind, i.e.,

1 I � K � t x � Dg x for x 	 �. 4.2Ž . Ž . Ž . Ž .Ž .2
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Ž .Again, we may use a Neumann series to compute t, the solution of 4.2 ,
i.e.,



l1t x � I � K � Dg x for x 	 �. 4.3Ž . Ž . Ž .Ž .Ý ž /2

l�0

Ž .The second assertion 3.6 of Theorem 3.1 now ensures the convergence of
Ž . �1�2Ž .the Neumann series 4.3 in the space H � .

Ž .In the case of the Neumann boundary value problem 3.8 , the Dirichlet
Ž .datum u x on � is unknown. Hence, the solution of the boundary integral

equation
1 I � K u x � Vg x for x 	 � 4.4Ž . Ž . Ž . Ž .Ž .2

will provide us with the desired boundary values of u.
1�2Ž . Ž .Note that u 	 H � is unique only modulo RR since 4.1 implies that
1 I � K u � 0 for every u 	 RR. 4.5Ž .Ž . 0 02

1�2Ž . 1�2Ž .We therefore define the projection operator P : H � � H � byRR 0
the mapping u � P u viaRR

² :P u , � � 0 for all � 	 RR. 4.6Ž .L Ž� .RR 2

Ž .Instead of 4.4 , now we consider the uniquely solvable boundary integral
equation

1I � P I � K u � P Vg , 4.7Ž .Ž .RR RR2

1�2Ž . Ž .to find u 	 H � . The Neumann series for the solution of 4.7 is given0
by



l1u x � P I � K P Vg x for x 	 �. 4.8Ž . Ž . Ž . Ž .Ž .Ý RR RR2

l�0

Ž . 1�2Ž .Because of Assertion 3.13 , this Neumann series converges in H � .0

5. PROOFS

The proofs are based on the properties of the Calderon projection
operator associated with L in �. We write both boundary integral equa-
tions as a system resulting from the direct approach in the form of the
Calderon projection, i.e.,

1 I � K Vu u2� . 5.1Ž .1T u T už / ž /ž /x xD I � K �2
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Ž .From 5.1 we derive the Dirichlet�Neumann map

Tu x � Su x for x 	 � 5.2Ž . Ž . Ž . Ž . Ž .
in the form of the Steklov�Poincare operator S given by´

1 1 1�1 �1S � V I � K � D � I � K � V I � K . 5.3Ž .Ž . Ž . Ž .2 2 2

Now we are in a position to formulate some results based on the projec-
Ž .tion property of the Calderon projection 5.1 as well as on the mapping

Ž . Ž .properties of all of the boundary integral operators in 2.4 � 2.10 :

PROPOSITION 5.1. The double-layer potential operator K as defined in
Ž . Ž .2.5 , 2.6 can be symmetrized; in particular,

1 12 2KV � VK �, DK � K �D and VD � I � K , DV � I � K � .4 4

5.4Ž .
Ž .Proof. The relations in 5.4 are a direct consequence of the projection

Ž .property of 5.1 . In the special case of the Laplacian in a smoothly
bounded two-dimensional domain, this result was already given by J.

� � � �Plemelj 29 and for boundaries of bounded rotation by J. Radon 30 . For
the Laplacian and boundaries with bounded cyclic variations, the first

Ž . Ž � �.relation in 5.4 was shown by J. Kral see 17 .
�1�2Ž . 1�2Ž . Ž .PROPOSITION 5.2. Let V: H � � H � satisfy 2.11 . Then there

holds
V ² �1 : � � 2

1�2 1�2c 	 V u , u 
 u for all u 	 H � 5.5Ž . Ž .L Ž� . H Ž� .1 2

V Ž .with the same positi�e constant c as in 2.11 .1

�1�2Ž .Proof. For w 	 H � , w � 0, by duality,
�² : 	 � �² : �Vw , � Vw , wL Ž� . L Ž� .2 2

1�2� �Vw � sup �H Ž� .
�1 �2 �1�2� � � �� w�1�2 H Ž� . H Ž� .Ž .�	H �

V � � �1 �2� c 	 w .H Ž� .1

�1�2Ž . 1�2Ž . �1Ž .Since V: H � � H � is bijective, for every chosen � 	 H �
�1�2Ž .there exists a unique w 	 H � such that � � Vw. Then,

�² �1 : �V u , � L Ž� .2�1 �1 �2� �V u � supH Ž� .
1�2� ��1�2 H Ž� .Ž .0��	H �

�² : �u , w L Ž� .2� sup
1�2� �Vw1�2 H Ž� .Ž .0�Vw	H �

1
1�2� �
 	 u .H Ž� .Vc1
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Therefore,

1 2�1 �1 �1 �2 1�2 1�2² : � � � � � �V u , u 
 V u u 
 	 u .L Ž� . H Ž� . H Ž� . H Ž� .2 Vc1

Ž .This is the proposed inequality 5.5 .
1�2Ž .PROPOSITION 5.3. The Steklo� �Poincare operator S: H � �´

�1�2Ž . Ž . 1�2Ž .H � as defined in 5.3 is H � -elliptic, i.e.,0

² : D � � 2
1�2 1�2Su , u � c 	 u for all u 	 H � , 5.6Ž . Ž .L Ž� . H Ž� .1 02

D Ž .where c is the same positi�e constant as in 2.14 .1

�1 1�2Ž . �1�2Ž .Proof. Since V : H � � H � is positive definite, we find

1 1�1² : ² : ² :Su , u � Du , u � V I � K u , I � K uŽ . Ž .L Ž� . L Ž� . L Ž� .2 22 2 2

² :� Du , u L Ž� .2

1�2Ž . Ž .for all u 	 H � . Then the assertion follows from 2.14 .

PROPOSITION 5.4. Since the operator V is self-adjoint, there exists the
1�2 1�2 1�2 Ž 1�2 . 1�2self-adjoint square root V satisfying V � V V , V � � V , and

�1�2 Ž 1�2 .�1 �1�2 1�2 �1V � V with V � V V . Moreo�er,

� �1�2 � � � �1V u � u . 5.7Ž .L Ž� . V2

These properties are consequences of a well-known theorem in Hilbert spaces,
Ž � �.see, e. g., 33, Theorem 12.33 .

1�2Ž .THEOREM 5.1. For e�ery u 	 H � , there holds0

1
�1 �1 �1� � � � � �1 � c 	 u 
 I � K u 
 c 	 u 5.8Ž . Ž .Ž .V V VK K2

with

1 1 V Dc � � � c and c � c c .'K 0 0 1 12 4

Ž .Proof. With relation 5.4 , we obtain

1 2 1 1�1�1� � ² :I � K u � V I � K u , I � K uŽ . Ž . Ž .V L Ž� .2 2 2 2

1 1�1² :� I � K � V I � K u , uŽ . Ž . L Ž� .2 2 2

² : ² :� Su , u � Du , u 5.9Ž .L Ž� . L Ž� .2 2
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Ž .due to the symmetric representation in 5.3 . Using Proposition 5.4 and the
Cauchy�Schwarz inequality, we get

² : ² �1�2 �1�2 :Su , u � V VSu , V uL Ž� . L Ž� .2 2

� �1�2 � � �1�2 �
 V VSu V uL Ž� . L Ž� .2 2

� � �1 � � �1� VSu uV V

1
�1 �1� � � �� I � K u u . 5.10Ž .Ž . V V2

Ž .due to the first identity in 5.3 .
Ž .On the other hand, from 2.14 together with Proposition 5.2, we have

² : D � � 2
1�2Du , u � c 	 uL Ž� . H Ž� .12

D V ² �1 : � � 2
�1� c c 	 V u , u � c 	 u . 5.11Ž .L Ž� . V1 1 02

Ž . Ž . Ž .Hence, combining 5.9 , 5.10 , and 5.11 gives

1 2 1 2
�1 �1 �1 �1� � � � � � � �I � K u 
 I � K u u � c 	 u .Ž . Ž .V V V V02 2

1 1�2�Ž . � Ž Ž . Ž ..Now, set a � I � K u � 0 since u 	 H � ; see also 2.13 andV 02
� �b � u � 0 and require, as above, the inequalityV

a2 
 a 	 b � c 	 b2 ,0

which is equivalent to

2a a
� � c 
 0.0ž /b b

Then,

1 1 a 1 1� � c 
 
 � � c ;' '0 02 4 b 2 4

and the theorem is proved.

Ž . Ž . Ž .Note that with 4.5 , the upper estimate in 5.8 is 3.5 . The estimate
Ž .3.6 , however, follows from the following corollary, which will complete
the proof of Theorem 3.1.

1�2Ž .COROLLARY 5.1. Let u 	 H � . Then,0

1
�1 �1 �1� � � � � �1 � c 	 u 
 I � K u 
 c 	 u . 5.12Ž . Ž .Ž .V V VK K2

For u 	 RR, there holds

1
�1 �1� � � �I � K u � u . 5.13Ž .Ž . V V2
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Ž .Proof. By the triangle inequality and by using 5.8 , we get

1 1
�1� �u � I � K � I � K uŽ . Ž . �1V 2 2 V

1 1
�1 �1� � � �
 I � K u � I � K uŽ . Ž .V V2 2

1
�1 �1� � � �
 I � K u � c 	 uŽ . V VK2

Ž .and, hence, the lower inequality in 5.12 . Using both representations of
Ž . Ž . Ž .the Steklov�Poincare operator in 5.3 , and 5.8 and 5.11 , as well as the´

definition of c , we getK

21 I � K u �12 V

21� I � I � K uŽ . �12 V

2 1 2 1�1�1 �1� � � � ² :� u � I � K u � 2 V I � K u , uŽ . Ž .V V L Ž� .2 2 2

2 1 2
�1 �1� � � � ² :� u � I � K u � 2 Su , uŽ .V V L Ž� .2 2

2 1 2
�1 �1� � � �� u � I � K uŽ .V V2

1 1�1� 2 D � I � K � V I � K u , u² :Ž . Ž . Ž .2 2 L �2

2 1 2
�1 �1� � � � ² :� u � I � K u � 2 Du , uŽ .V V L Ž� .2 2

2 2 22�1 �1� � � �
 1 � 1 � c � 2c 	 u � c 	 u .Ž . V VK 0 K

Ž . Ž .This is the upper inequality in 5.12 . The relation 5.13 follows immedi-
Ž .ately from 4.5 .

Ž . Ž .Note that 5.12 in Corollary 5.1 is just 3.13 of Theorem 3.2. Then, with
Ž . Ž .5.4 and 5.12 , we have

1 2 1 2 2 22 2�1 �1� � � � � � � �I � K � w � I � K � Vw 
 c Vw � c w ,Ž . Ž .V V V VK K2 2

Ž .which is the proposed estimate 3.12 , and Theorem 3.2 is proved com-
pletely.
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