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Abstract

In this paper we develop the monotone method in the presence of lower and upper soluti
the problem

u∆
n
(t)+

n−1∑
j=1

Mju
∆j (t)= f (t, u(t)), t ∈ [a, b],

u∆
i
(a)= u∆i (σ(b)), i = 0, . . . , n− 1.

Heref : [a, b] × R → R is such thatf (· , x) is rd-continuous inI for everyx ∈ R andf (t, ·) is
continuous inR uniformly at t ∈ I , Mj ∈ R are given constants and[a, b] = Tκ

n
for an arbitrary

bounded time scaleT. We obtain sufficient conditions inf to guarantee the existence and appro
mation of solutions lying between a pair of ordered lower and upper solutionsα andβ. To this end,
givenM > 0, we study some maximum principles related with operators

T±
n [M]u(t)≡ u∆n(t)+

n−1∑
j=1

Mju
∆j (t)±Mu(t),

in the space of periodic functions.
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1. Introduction

The theory of dynamic equations has appeared recently in the Ph.D. the
Hilger [12]. This new theory unifies difference and differential equations and give
abstract formulation that allows to the researchers to use the same notation in both
Recently, many papers devoted to the study of this kind of problems have been d
the monograph of Bohner and Peterson [2] one can find a lot of fundamental tools to
with this type of equations.

In this paper we will study the existence of solutions of nonlinear periodic boun
value problems in time scales. To this end, we study the sign of related Green’s fun
and use the classical concept of lower and upper solutions for differential equatio
and that has been used in recent years for difference [1,7,8,15] and dynamic eq
[3,10,13]. Our results are in the same direction that many other recent papers in time
in which comparison results are given, mainly for second order equations; see, for ins
the papers of Erbe and Peterson [9] and Topal [11]. Here the results obtained in
differential equations and in [7] for difference ones are unified.

In the next section we introduce the problem that we will consider along the paper
damental concepts as lower and upper solutions, extremal solutions and inverse p
and inverse negative linear operators are exposed. Section 3 is devoted to give the
sion of the Green’s function and some fundamental properties. In Section 4 we d
the method of lower and upper solutions coupled with the monotone iterative techn
to derive existence of extremal solutions of the nonlinear considered problem. Fina
Section 5 we obtain some estimations fornth order operators, which are optimal for fir
and, in some sense, for second order operators.

2. Preliminaries and hypothesis

In this paper we study the following periodic boundary value problem forn� 1 order
dynamic equation:

u∆
n

(t)+
n−1∑
j=1

Mju
∆j (t)= f (t, u(t)) for all t ∈ I = [a, b], (2.1)

u∆
i

(a)= u∆i (σ(b)), i = 0,1, . . . , n− 1, (2.2)

with f : [a, b] × R → R such thatf (· , x) ∈Crd(I)≡ {g : I → R, g is rd-continuous inI }
for everyx ∈ R, andf (t, ·) is continuous inR uniformly at t ∈ I ;Mj ∈ R given constants
for j ∈ {1, . . . , n− 1}, [a, b] = Tκ

n
andT an arbitrary bounded time scale.
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A solution of problem (2.1)–(2.2) will be a functionu :T → R, such that

u ∈ Cnrd(I)=
{
u :T → R, u∆

j ∈ C(Tκj ), j = 0, . . . , n− 1, u∆
n ∈ Crd(I)

}
,

and that satisfies both equalities.
For a pair of continuous functionsv �w in T, we denote

[v,w] = {
x ∈ C(T), v(t)� x(t)�w(t) for all t ∈ T

}
.

We say thatx ∈ V is the maximal solution of (2.1)–(2.2) in the function’s setV if any other
solution of such problemy ∈ V is such thaty � x in T. We refer to a minimal solution i
the reversed inequalities hold. We denote both functions as extremal solutions inV .

To deduce existence of extremal solutions for problem (2.1)–(2.2) we introduc
concept of lower and upper solutions.

Definition 2.1. Let α :T → R, α ∈ Cnrd(I). We say thatα is a lower solution of problem
(2.1)–(2.2) ifα satisfies

α∆
n

(t)+
n−1∑
j=1

Mjα
∆j (t)� f

(
t, α(t)

)
for all t ∈ I,

α∆
i

(a)= α∆i (σ(b)), i = 0, . . . , n− 1.

Definition 2.2. Let β :T → R, β ∈ Cnrd(I). We say thatβ is an upper solution of problem
(2.1)–(2.2) ifβ satisfies

β∆
n

(t)+
n−1∑
j=1

Mjβ
∆j (t)� f

(
t, β(t)

)
for all t ∈ I,

β∆
i

(a)= β∆i (σ(b)), i = 0, . . . , n− 1.

To deduce existence results via monotone iterative techniques, we assume tha
tion f satisfies one of the following one sided Lipschitz conditions for a suitable con
M > 0, depending on the circumstances:

(H1) ∀t ∈ I , ∀u,v ∈ [α(t), β(t)]: u� v⇒ f (t, u)+Mu� f (t, v)+Mv.
(H2) ∀t ∈ I , ∀u,v ∈ [β(t), α(t)]: u� v⇒ f (t, u)−Mu� f (t, v)−Mv.

As we will see, we translate the study of the existence of extremal solutions lyin
tweenα and β to find real parameters for which the Green’s function related with
appropriatenth order linear operator has fixed sign. Before doing this, we define the
cept of inverse positive and inverse negative operator.

Definition 2.3. LetMi ∈ R, i = 0, . . . , n − 1, be given constants. LetT u(t) = u∆n(t) +∑n−1
i=0 Miu

∆i (t) be regressive inI , i.e., 1+∑n
i=1 (−µ(t))iMn−i �= 0 for all t ∈ I , defined

in the set

Wn = {
u ∈ Cn (I), u∆i (a)= u∆i (σ(b)), i = 0, . . . , n− 1

}
.
rd
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Suppose that there existsT −1 in Wn. We say thatT is

(1) Inverse positive inWn if: u ∈Wn andT u� 0 in I impliesu� 0 in T.

(2) Inverse negative inWn if: u ∈Wn andT u� 0 in I impliesu� 0 in T.

Remark 2.1. In this paper we define the concept of lower and upper solutions assumi
equalities in all the derivatives ofα andβ in the boundary ofT. This was the case in [7
for nth order discrete problems. However, in [8] for difference equations and in [5
differential ones, some adequate inequalities in the(n− 1)th order derivatives are allowe

One can see that the abstract formulation of the monotone iterative methods is th
in both situations, it is enough to study the inverse positive and inverse negative ch
of the linear operatorT in the set

Ωn = {
u ∈ Cnrd(I), u∆

i

(a)= u∆i (σ(b)), i = 0, . . . , n− 2,

u∆
n−1
(a)� u∆n−1(

σ(b)
)}
,

instead ofWn.
However, on the contrary to differential equations [5], where the values ofMi for which

operatorT is inverse positive or inverse negative inWn are the same that inΩn, in differ-
ence equations the values are worse in this new situation (see [8]).

Since the aim of this paper is to explain the validity of the monotone iterative tech
for dynamic equations, we have preferred this definition to do the paper more reada

3. Expression of the Green’s function

In this section we present a formula to obtain the expression of the Green’s fu
associated toT −1, whereT is a generalnth order linear operator invertible inWn.

Theorem 3.1. LetMi ∈ R, i = 0, . . . , n− 1, be given constants, and letT u(t)= u∆n(t)+∑n−1
i=0 Miu

∆i (t), t ∈ I , such that1+∑n
i=1 (−µ(t))iMn−i �= 0 for all t ∈ I . Then, if there

is T −1 in Wn, the associated Green’s functionG :T × I → R is given by the following
expression:

G(t, s)=
{
u(t, s)+ v(t, s) if σ(s)� t ,
u(t, s) if t < σ(s),

(3.1)

where, for everys ∈ [a, b] fixed,v(· , s) is the unique solution of problem

T xs(t)= 0, t ∈ [σ(s), b],
x∆

i

s (σ (s))= 0, i = 0, . . . , n− 2,

x∆
n−1

s (σ (s))= 1,

(3.2)

and for everys ∈ [a, b] fixed,u(· , s) is given as the unique solution of problem{
Tys(t)= 0, t ∈ [a, b],
y∆

i

s (a)− y∆is (σ (b))= x∆is (σ (b)), i = 0, . . . , n− 1.
(3.3)
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Proof. First, we note that functionG is well defined, i.e., problems (3.2) and (3.3) a
uniquely solvable. Since 1+∑n

i=1 (−µ(t))iMn−i �= 0 for all t ∈ I we have, see Coro
lary 5.90 and Theorem 5.91 in [2], that the initial value problem (3.2) has a unique sol

To verify that the periodic boundary value problem (3.3) has a unique solution
have that for anyh ∈ Crd(I) andλi ∈ R, i = 0, . . . , n− 1,w ∈ Cnrd(I) is a solution of the
periodic boundary problem

(Pλ)

{
w∆

n
(t)+∑n−1

i=0 Miw
∆i (t)= h(t), t ∈ I,

w∆
i
(a)−w∆i (σ (b))= λi, i = 0, . . . , n− 1,

if and only ifW(t)= (w(t),w∆(t), . . . ,w∆n−1
(t))T , is a solution of the matrix equation

W∆(t)=AW(t)+H(t), t ∈ [a, b], W(a)−W(σ(b))= λ, (3.4)

whereH(t)= (0, . . . ,0, h(t))T , λ= (λ0, . . . , λn−1)
T and

A≡




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−M0 −M1 −M2 . . . −Mn−1


 . (3.5)

Since operatorT is regressive if and only if matrixA is regressive (see Definition 5.8
in [2]) we know that every solution of (3.4) is given by the expression

W(t)= eA(t, a)W(0)+
t∫
a

eA
(
t, σ (τ )

)
H(τ)∆τ,

with W(0) satisfying

(
In − eA

(
σ(b), a

))
W(0)=

σ(b)∫
a

eA
(
σ(b), σ (τ )

)
H(τ)∆τ + λ,

where byIn we denote then× n identity matrix. Thus,T is invertible inWn if and only
if matrix In − eA(σ(b), a) is invertible. As consequence, under the assumptions o
enunciate, we have that problem (3.3) has a unique solution.

Now, letz :T → R be defined as

z(t)=
σ(b)∫
a

G(t, s)h(s)∆s

=
t∫
a

(
u(t, s)+ v(t, s))h(s)∆s +

σ(b)∫
t

u(t, s)h(s)∆s, t ∈ T.

As consequence,
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z∆(t)=
t∫
a

(
u∆(t, s)+ v∆(t, s))h(s)∆s

+
σ(b)∫
t

u∆(t, s)h(s)∆s + v(σ(t), t)h(t), t ∈ Tκ .

If n = 1 thenv(σ (t), t) = 1 and we have finished. Otherwise,v(σ (t), t) = 0 and we can
differentiatez∆ once again. By recurrence, we have that fori ∈ {1, . . . , n− 1}, the follow-
ing equality holds:

z∆
i

(t)=
t∫
a

(
u∆

i

(t, s)+ v∆i (t, s))h(s)∆s +
σ(b)∫
t

u∆
i

(t, s)h(s)∆s, t ∈ Tκ
i

.

Finally,

z∆
n

(t)=
t∫
a

(
u∆

n

(t, s)+ v∆n(t, s))h(s)∆s +
σ(b)∫
t

u∆
n

(t, s)h(s)∆s + h(t), t ∈ I.

Now, it is clear, from the linearity of the integral and the definitions ofu andv, that
T z(t)= h(t) for all t ∈ I .

On the other hand, from the conditions imposed tou andv, we deduce

z∆
i (
σ(b)

)=
σ(b)∫
a

(
u∆

i (
σ(b), s

)+ v∆i (σ(b), s))h(s)∆s

=
σ(b)∫
a

u∆
i

(a, s)h(s)∆s = z∆i (a), i = 0, . . . , n− 1.

In consequence,z is the unique solution of problem(P0). ✷
Now, we prove the following properties of the Green’s function.

Lemma 3.1. Assume that1+∑n
i=1 (−µ(t))iMn−i �= 0 for all t ∈ I . LetG :T× I → R be

the Green’s function of operatorT −1 defined in(3.1). Then the following conditions ar
satisfied:

(1) There existsK > 0 such that|G(t, s)| �K for all (t, s) ∈ T × I .
(2) If n= 1, for everyt ∈ T, functionG(t, ·) is rd-continuous ats �= t .
(3) If n > 1, for everyt ∈ T, functionG(t, ·) is rd-continuous inI .
(4) If b is left dense andb= σ(b) thenG(t, ·) is continuous atb for all t ∈ T.
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Proof. As we have seen in the proof of Theorem 3.1, we know that the Green’s functG
related with operatorT −1 in Wn is given as the 1× n term of the matrix Green’s function

F(t, s)=



eA(t, σ (s))+ eA(t, a)(I − eA(σ(b), a))−1eA(σ(b), σ (s)),

σ (s)� t,
eA(t, a)(I − eA(σ(b), a))−1eA(σ(b), σ (s)), t < σ(s),

(3.6)

whereA is given in (3.5).
Using, this expression, from the continuity of the exponential matrix function in

variables, see Theorems 5.18 and 5.23 in [2], we conclude that functionG is bounded in
the compact setT × I .

Due to the fact thateA(t, t) = In, from Eq. (3.6) we have that whent = σ(s) = s,
the matrix functionF is not continuous in the diagonal terms. In consequence, from
continuity of the exponential matrix again, we have that for anyt0 ∈ T ands0 �= t0 fixed,
when s → s0 andσ(s)→ σ(s0) thenF(t0, s)→ F(t0, s0). SinceG(t, s) (≡ F1,n(t, s))

belongs to the diagonal only whenn= 1, we deduce assertions (2)–(4) of the lemma.✷
Lemma 3.2. OperatorT is inverse positive onWn if and only if the associated Green
functionG given in(3.1) is nonnegative inT × I .

Proof. Assume that operatorT is inverse positive onWn. Letu ∈Wn be such thatT u� 0
on I . In consequence there is a rd-continuous functionh : I → [0,+∞) satisfying

T u(t)= h(t)� 0, t ∈ I, u∆
i

(a)= u∆i (σ(b)), i = 0, . . . , n− 1, (3.7)

and such that

0 � u(t)= T −1h(t)≡
σ(b)∫
a

G(t, s)h(s)∆s for all t ∈ T. (3.8)

Obviously, from the uniqueness of the solutions of problem (3.7), the relationship be
h ∈ Crd(I) andu ∈Wn satisfying such properties is one-to-one.

Suppose that there is(t0, s0) ∈ T× I such thatG(t0, s0) < 0. We have four possibilities
(1) If s0 is an isolated point. Defineh(s0)= 1 andh(t) = 0 otherwise, then the uniqu

solution of (3.7) satisfies

u(t0)=
σ(s0)∫
s0

G(t0, s)h(s)∆s = µ(s0)G(t0, s0)h(s0) < 0,

which contradicts (3.8).
(2) If s0 is left dense and right scattered. Givenε ∈ (0,µ(s0)), let h ≡ 0 outside of

(s0 − ε, s0] and, in other case, define

h(s)= exp

(
1− 1

2

)
. (3.9)
1− [(s − s0)/ε]
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It is clear thath ∈ C(I). Moreover, using part (1) of Lemma 3.1, the unique solutiou
of (3.7) satisfies

u(t0)=
σ(s0)∫
s0−ε

G(t0, s)h(s)∆s �Kε +µ(s0)G(t0, s0)h(s0),

which is strictly negative forε small enough and contradicts (3.8) again.
(3) If s0< b is right dense, from the rd-continuity ofG(t0, ·) at s0 proved in Lemma 3.1

whenn > 1 or n = 1 and t0 �= s0, and using expression (3.6) ifn = 1 and t0 = s0, we
know that there isε > 0 small enough such thatG(t0, s) < 0 for s ∈ [s0, s0 + ε)⊂ [a, b].
Definingh as in (3.9) in the interval[s0, s0 + ε) by replacing in this cases0 by s0 + ε/2
andε by ε/2 and as the trivial function otherwise, we get a contradiction in a similar

(4) If s0 = b = σ(b) (the caseb < σ(b) has been considered in (1) and (2)) and i
left scattered, since[a, b] = Tκ

n
we deduce thatb = σn(b) and, as consequence,Tκ =

[a,ρ(b)] � [a, b], which contradicts the assumptions. If it is left dense, from the left c
tinuity of G(t0, ·) at b proved in part (4) of Lemma 3.1, we attain a contradiction as in
previous case.

The other implication is trivial. ✷
In the same way, one can verify that the following result holds.

Lemma 3.3. OperatorT is inverse negative onWn if and only if the associated Green
functionG given in(3.1) is nonpositive inT × I .

4. Lower and upper solutions

In this section, we prove the existence of extremal solutions lying between a p
ordered lower and upper solutions. This existence result is derived from the comp
principles exposed in the previous section. As we will see, such existence results
some sense, optimal. First, givenMj ∈ R, j = 1, . . . , n− 1, for everyM > 0, we define
the following operators in the setWn:

T ±
n [M]u(t)= u∆n(t)+

n−1∑
j=1

Mju
∆j (t)±Mu(t), t ∈ I. (4.1)

Theorem 4.1. Suppose that there existα � β lower and upper solutions of proble
(2.1)–(2.2) and thatf is such thatf (· , x) is rd-continuous inI for everyx ∈ R and
f (t, ·) is continuous inR uniformly att ∈ I , and satisfies condition(H1) for someM > 0
such that operatorT +

n [M] is inverse positive onWn. Then there exist two monotone s
quences inT, {αm} and {βm} with α0 = α andβ0 = β , which converge uniformly to th
extremal solutions of problem(2.1)–(2.2) in [α,β].
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Proof. Fix M > 0 such that operatorT +
n [M] is inverse positive onWn andf satisfies

condition(H1). For eachη ∈ [α,β], consider the following linear problem:

(Pη)

{
T +
n [M]u(t)= f (t, η(t))+Mη(t)≡ hη(t), t ∈ I,
u∆

i
(a)= u∆i (σ (b)), i = 0, . . . , n− 1.

Clearly,hη ∈ Crd(I). Thus, since operatorT +
n [M] is inverse positive onWn, we know

that (Pη) admits a unique solutionuη for eachη given. Such solution is given by th
expression

uη(t)=
(
T +
n [M])−1

hη(t)≡
σ(b)∫
a

G+
M(t, s)hη(s)∆s, t ∈ T,

with G+
M the associated Green’s function of operatorT +

n [M].
From the definition ofα and condition(H1), we know thatuη − α ∈ Wn and

T +
n [M](uη − α) � 0 on I . Now, from the fact that operatorT +

n [M] is inverse positive
onWn, we deduce thatuη � α on T.

On the other hand, letui , i = 1,2, be the unique solutions of problem(Pηi )with η1 � η2
onI . Clearly,u2 − u1 ∈Wn andT +

n [M](u2 − u1)� 0 onI . The inverse positive charact
of operatorT +

n [M] in Wn says us thatu2 � u1 onT.
From these two properties, definingα0 = α, β0 = β , αm = (T +

n [M])−1hαm−1 and
βm = (T +

n [M])−1hβm−1, we construct two monotone sequences which, as a conseq
of the Ascoli–Arzelá’s theorem, converge uniformly to a continuous functions inT. Us-
ing the integral representation of both sequences, we verify that such limits are so
of problem (2.1)–(2.2). Obviouslyφ(t)= limm→∞ αm(t)� limm→∞ βm(t)=Φ(t) for all
t ∈ T and belong to the sector[α,β].

Now, using that every solutionu of problem (2.1)–(2.2) satisfiesu = (T +
n [M])−1hu

together with the fact that by condition(H1) if u1 � u2 in I thenhu1 � hu2 in I , and that
G+
M � 0 in T × I , we conclude that ifu ∈ [α,β] thenu ∈ [φ,Φ], that is,φ andΦ are the

extremal solutions of problem (2.1)–(2.2) in[α,β]. ✷
In an analogous way, we can prove the following result.

Theorem 4.2. Suppose that there existα � β lower and upper solutions of proble
(2.1)–(2.2) andf is such thatf (· , x) is rd-continuous inI for everyx ∈ R andf (t, ·)
is continuous inR uniformly at t ∈ I , and satisfies condition(H2) for someM > 0 such
that operatorT −

n [M] is inverse negative onWn. Then there exist two monotone sequen
in T, {αm} and {βm} with α0 = α andβ0 = β , which converge uniformly to the extrem
solutions of problem(2.1)–(2.2) in [β,α].

Remark 4.1. Note thatT +
n [M] cannot be inverse negative inWn for any value ofM > 0.

It is enough to consider problem

T +
n [M]u(t)= 1, u ∈Wn,

for which,u≡ 1/M is a positive solution.
Analogous assertion holds forT −

n [M].
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Since conditions(H1) and(H2) can be true only for values ofM > 0 very small, one can
think that the sufficient conditions imposed in the two previous results are very restr
however, they are optimal in some sense, as we can see in the next result.

Theorem 4.3. The assertions proved in Theorems4.1 and4.2 are optimal in the sense tha

(1) For all M > 0, for whichT +
n [M] is regressive inI and there is(T +

n [M])−1 onWn,
but T +

n [M] is not inverse positive onWn, there are functionsf , α andβ satisfying
the assumptions of Theorem4.1 and for which problem(2.1)–(2.2) has no solution
in [α,β].

(2) For all M > 0, for whichT −
n [M] is regressive inI and there exists(T −

n [M])−1 onWn,
but T −

n [M] is not inverse negative onWn, there are functionsf , α andβ satisfying
the assumptions of Theorem4.2 and for which problem(2.1)–(2.2) has no solution
in [β,α].

Proof. We only proof the first assertion, the second one is analogous.
Let M > 0 satisfying the conditions exposed in the enunciate. Fixs0 ∈ I andε > 0,

definef : (t, x) ∈ I × R → f (t, x) = −Mx +Mh(t) ∈ R with h given in the proof of
Lemma 3.2 depending on the circumstances of the choice ofs0. Clearly,f satisfies con-
dition (H1) for suchM > 0 and, sinceh(t) ∈ [0,1] for all t ∈ I , α ≡ 0 andβ ≡ 1 are a
pair of lower and upper solutions for problem (2.1)–(2.2) such thatα � β . However, as it
is proved in Lemma 3.2, forε small enough the unique solution of such problem tak
negative value in at least one point and, in consequence, this problem has no solutio
between the lower and the upper solution.✷

5. Estimates for comparison principles

As it is stated in the two previous sections, the existence of extremal solutions
nonlinearnth order problem (2.1)–(2.2) lying between a pair of lower and upper solu
is equivalent to the fact that functionf satisfies condition(H1) or (H2) for some adequat
values ofM > 0. To look for such values is not an easy problem, in [5] and [7,8] some
mates are obtained fornth order when differential (µ≡ 0) and difference (µ≡ 1) problems
are considered.

To do the study for arbitrary time scales, we obtain the following result, where
structure of theM values set for which operatorsT ±

n [M] satisfy comparison principles i
Wn is given. Such result is a continuation of Theorem 3.1 in [6] for differential equa
and Theorem 4.1 in [7] for difference ones. Here we unify both results. The result
following

Theorem 5.1. The following assertions hold:

(1) Suppose that there exists̄M > 0 such thatT +
n [M̄] is regressive inI but not inverse

positive onWn. ThenT +
n [M] is not inverse positive onWn for all M � M̄.
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(2) Suppose that there exists̄M > 0 such thatT −
n [M̄] is regressive inI but not inverse

negative onWn. ThenT −
n [M] is not inverse negative onWn for all M � M̄ .

Proof. First, we suppose that̄M is a positive constant such that there exists(T +
n [M̄])−1

onWn. Definef : (t, x) ∈ I × R → f (t, x) = −M̄x + M̄h(t) ∈ R, with h given in the
proof of Lemma 3.2. Clearly,f satisfies condition(H1) for all M � M̄ and, sinceh(t) ∈
[0,1] for all t ∈ I , α ≡ 0 andβ ≡ 1 are a pair of lower and upper solutions for probl
(2.1)–(2.2) such thatα � β . However, as it is proved in Lemma 3.2, the unique solutio
such problem takes a negative value in at least one point and, in consequence, this p
has no solution lying between the lower and the upper solution. Thus, if there existsM > M̄

for whichT +
n [M] is inverse positive onWn, we conclude, applying Theorem 4.1, that t

problem has a solution betweenα andβ , which is not true. Therefore the operatorT +
n [M]

is not inverse positive onWn for allM � M̄.
Now, we suppose the other case, that is,T +

n [M] is inverse positive onWn for all M ∈
(0, M̄) with M̄ > 0 such that there is no(T +

n [M̄])−1 onWn, i.e., problem(P0) withM0 =
M̄ does not have a unique solution. As we have seen in the proof of Theorem 3.1,w is
a solution of that problem thenW(t) = (w(t),w∆(t), . . . ,w∆n−1

(t))T is a solution of the
matrix equation

W∆(t)=AW(t)+H(t), t ∈ [a, b], W(a)=W(σ(b)),
whereH(t)= (0, . . . ,0, h(t))T andA is given in (3.5). Since matrixA is regressive, we
have that the initial value problem

W∆(t)=AW(t)+H(t), t ∈ [a, b], W(a)= y0,

has a unique solution given by

W(t)= eA(t, a)y0 +
t∫
a

eA
(
t, σ (τ )

)
H(τ)∆τ.

On the other hand, due to the fact that the periodic problem has not a unique so
we have that det(In − eA(σ(b), a))= 0.

Denote byIn − eA(σ(b), a)≡ (bi,j )i,j∈{1,...,n}; we have two possibilities:

(1) There existsi0 ∈ {2, . . . , n} such thatbi0,j =∑i0−1
k=1 λkbk,j , j = 1, . . . , n, with some

λk �= 0; or
(2) There existsi0 ∈ {1, . . . , n} such thatbi0,j = 0, j = 1, . . . , n.

In the first case, letC(s)= eA(σ(b), s)≡ (ci,j (s))i,j∈{1,...,n}. Thus, a necessary cond
tion to assure the existence of solution of the periodic problem(P0) is given by

σ(b)∫
a

(
ci0,n

(
σ(s)

)−
i0−1∑
k=1

λkck,n
(
σ(s)

))
h(s)∆s = 0. (5.1)

Now, using Theorem 5.23 and Corollary 5.26 in [2], we arrive at

C∆(s)= −AC(σ(s)), s ∈ [a, b], C(σ(b))= In. (5.2)
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If ci0,n(s) = ∑i0−1
k=1 λkck,n(s) for all s ∈ [a, b], thend(s) = (c1,n(s), . . . , ci0−1,n(s))

T

satisfies the equationd∆(s)= −Bd(σ(s)), d(σ(b))= 0, where

B ≡
(

0 Ii0−2

λ1 λ2 . . .λi0−1

)
,

and Ii0−2 is the i0 − 2 × i0 − 2 identity matrix. In consequence, from Theorem 5
in [2], we have thatd(s) = e�B(s, σ (b)) d(σ (b)) = 0. Thus, using (5.2), we conclud
by recurrence thatci,n(s) = 0 in I , for all i ∈ {1, . . . , n}, which contradicts the fact tha
C(σ(b))= In.

If the second situation holds, then a necessary condition to assure that proble(P0)

withM0 = M̄ , is solvable is that

σ(b)∫
a

ci0,n(s)h(s)∆s = 0.

Now, if ci0,n(s) = 0 in I , as in the previous case we arrive atci,n(s) = 0 in I for all
i = i0 + 1, . . . , n. In particularCn,n(σ (b)) = 0 which contradicts the fact thateA(σ(b),
σ (b))= In.

In consequence, there existsh ∈ Crd(I), h ∈ [−M̄, M̄] such that (5.1) is not true an
therefore, problem(P0) withM0 = M̄ has no solution for suchh.

However, takingα = −1 andβ = 1, if there existsM > M̄ such thatT +
n [M] is inverse

positive onWn, we are in the hypothesis of Theorem 4.1, which is not possible. T
T +
n [M] is not inverse positive onWn for allM � M̄ .

For operatorT −
n [M] the same arguments hold.✷

Now we study, in a first step first and second order operators.

5.1. First and second order operators

In this section, we give the optimal estimates on the values ofM > 0 for which operators
T +

1 [M] andT −
1 [M] are inverse positive and inverse negative, respectively, inW1. First we

study operatorT −
1 [M], to do this, we construct the Green’s functionG−

M of such operator
Using the characterization given in Theorem 3.1 and since 1+ µ(t)M �= 0 for all t ∈ I , it
is not difficult to verify thatG−

M(t, s) is given by the expression

G−
M(t, s)=




eM(t,σ (s))
1−eM(σ(b),a), σ (s)� t ,
eM(t,σ (s))
eM(a,σ (b))−1, t < σ(s).

In consequence, from the fact that 1+ µ(t)M > 0 for allM > 0 andt ∈ I , we conclude
thatG−

M(t, s)� 0 for all (t, s) ∈ T × I. Now, from Lemma 3.3 we arrive at the followin
result.

Lemma 5.1. OperatorT −[M] is inverse negative inW1 for all M > 0.
1
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If we refer to operatorT +
1 [M], such that 1− µ(t)M �= 0 for all t ∈ I , we have that its

Green’s functionG+
M satisfies

G+
M(t, s)=G−

−M(t, s)=



e−M(t,σ (s))
1−e−M(σ(b),a), σ (s)� t ,
e−M(t,σ (s))
e−M(a,σ (b))−1, t < σ(s).

From the definition of the exponential functione−M [2] we know that there is
(T +

1 [M])−1 in W1 if and only ifM �= 1/µ(t) for all t ∈ I .
In this case, due to the fact thate−M(t, s) is decreasing with respect tot , we conclude

that functionG+
M is nonpositive onT × I whenever 0<M < 1/µ(t) for all t ∈ I .

Now, if there is somet0 ∈ I such thatM > 1/µ(t0), choosings0 such thatσ(s0) = t0
we have that

G+
M(t0, s0)G

+
M

(
σ(t0), s0

)= 1−Mµ(t0)
(1− e−M(σ(b), a))2 < 0.

In consequence, we have the following result.

Lemma 5.2. OperatorT +
1 [M] is inverse positive inW1 if and only if0<M < 1/µ(t) for

all t ∈ I.

Remark 5.1. As we have seen, the optimal estimates given in this section for ope
T +

1 [M] are valid for any arbitrary time scale. For it, we can give, in some particular s
tions, the optimal values ofM > 0 for which operatorT +

1 [M] is inverse positive inW1:

(1) T = R and everyM > 0.
(2) T = Z andM ∈ (0,1).
(3) T = hZ andM ∈ (0,1/h).
(4) T = C the ternary Cantor set, andM ∈ (0,3).
(5) T = qN, q > 1, andM ∈ (0,1/((q − 1)b)).
(6) T = N2

0 andM ∈ (0,1/(2√
b+ 1)).

Now, givenA ∈ R andB > 0, we study of the following second order operator defi
in the setW2:

T2[A,B]u(t)= u∆∆(t)− 2Au∆(t)+ (A2 +B2)u(t). (5.3)

In this situation we have that 1+ 2Aµ(t)+ (A2 + B2)(µ(t))2 �= 0 for all t ∈ I , that is,
operatorT2[A,B] is regressive inI for all A ∈ R andB > 0. Thus, using the formula give
in Theorem 3.1, we conclude that the Green’s functionGA,B associated with this operato
follows the expression

GA,B(t, s)=
{
uA,B(t, s)+ vA,B(t, s), σ (s)� t ,
uA,B(t, s), t < σ(s),

where

vA,B(t, s)= eA(t, σ (s)) sinp
(
t, σ (s)

)

B
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and

uA,B(t, s)= eA(σ(b), a)eA(t, σ (s))

LB

× [
eA
(
σ(b), a

)
eµp2

(
σ(b), a

)
eµp2

(
t, σ (s)

)
sinp

(
σ(s), t

)
+ (

sinp
(
σ(b), σ (s)

)
cosp(t, a)+ cosp

(
σ(b), σ (s)

)
sinp(t, a)

)]
.

Here

p(t)= B

1+µ(t)A
and

L= (
1− cosp

(
σ(b), a

)
eA
(
σ(b), a

))2 + (
sinp

(
σ(b), a

)
eA
(
σ(b), a

))2
.

Of course, this expression has sense and in consequence there is(T2[A,B])−1 inW2, if
and only ifeA, sinp and cosp are well defined and moreoverL �= 0. One can verify that i
is not true if and only if one of the following situations holds:

(1) There exists somet ∈ I such that 1+µ(t)A= 0.
(2) µ≡ 0,A= 0 andB = 2kπ/(b− a) for somek ∈ N0.
(3) −B <A< 0,µ≡ −2A/(A2 +B2) and

Bµ

1+µA = tan

(
2kπµ

σ(b)− a
)

for somek ∈ N0.

As we have seen in Lemma 3.2, the values ofA ∈ R andB > 0 for which operator
T2[A,B] is inverse positive onW2, are the same parameters for whichGA,B � 0 in T × I .

To this end, define

FA,B(s)=
{

arctan(Bµ(s)/(1+µ(s)A))
µ(s)

, µ(s) > 0,

B, µ(s)= 0,
(5.4)

where, by arctanx we denote the angleθ ∈ [0,π) such that tanθ = x. It is not difficult to
verify that functionFA,B is continuous inI and also respect to the parametersA andB.

Note that [2] in this situation

sinp (r, l)= exp

( r∫
l

log
√

1+ p2(τ )µ(τ)

µ(τ)
∆τ

)
sin

( r∫
l

FA,B(τ )∆τ

)

and

cosp (r, l)= exp

( r∫
l

log
√

1+ p2(τ )µ(τ)

µ(τ)
∆τ

)
cos

( r∫
l

FA,B(τ )∆τ

)
.

As consequence, we have that
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sinp
(
σ(b), σ (s)

)
cosp(t, a)+ cosp

(
σ(b), σ (s)

)
sinp(t, a)

= exp

( t∫
a

log
√

1+ p2(τ )µ(τ)

µ(τ)
∆τ +

σ(b)∫
σ(s)

log
√

1+ p2(τ )µ(τ)

µ(τ)
∆τ

)

× sin

( t∫
a

FA,B(τ )∆τ +
σ(b)∫
σ(s)

FA,B(τ )∆τ

)
.

Thus, whent < σ(s), sinceFA,B � 0 in [a,σ (b)], we have that

t∫
a

FA,B(τ )∆τ +
σ(b)∫
σ(s)

FA,B(τ )∆τ �
σ(b)∫
a

FA,B(τ )∆τ.

In consequence, if 1+µ(t)A > 0 for all t ∈ I we have thateA(r, l) > 0 in T × I .
Thus, we can assure that whent < σ(s) and 1+µ(t)A> 0 for all t ∈ I thenuA,B(t, s)

� 0 whenever
σ(b)∫
a

FA,B(τ )∆τ ∈ [0,π].

Whent � σ(s) we have that

LB
(
uA,B(t, s)+ vA,B(t, s)

)
= −eA

(
t, σ (s)

)
eµp2

(
t, σ (s)

)
sinp

(
σ(s), t

)
+ eA

(
t, σ (s)

)
eµp2

(
t, σ (s)

)
eA
(
σ(b), a

)
× (

sinp
(
σ(s), t

)
cosp

(
σ(b), a

)+ cosp
(
σ(s), t

)
sinp

(
σ(b), a

))
.

One can verify, see [2], that

sinp
(
σ(s), t

)
cosp

(
σ(b), a

)+ cosp
(
σ(s), t

)
sinp

(
σ(b), a

))

= exp

( σ(s)∫
t

log
√

1+ p2(τ )µ(τ)

µ(τ)
∆τ +

σ(b)∫
a

log
√

1+ p2(τ )µ(τ)

µ(τ)
∆τ

)

× sin

( σ(b)∫
a

FA,B(τ )∆τ +
σ(s)∫
t

FA,B(τ )∆τ

)
.

In this case, sinceσ(s)� t andFA,B � 0 in I we know that

σ(b)∫
a

FA,B(τ )∆τ +
σ(s)∫
t

FA,B(τ )∆τ �
σ(b)∫
a

FA,B(τ )∆τ.

In consequence, as in the previous case we conclude that whent � σ(s), 1+µ(t)A> 0
for all t ∈ I and

∫ σ(b)
FA,B(τ )∆τ ∈ [0,π], thenuA,B(t, s)+ vA,B(t, s)� 0.
a
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Thus, operatorT2[A,B] is inverse positive inW2 when

1+µ(t)A > 0 for all t ∈ I and

σ(b)∫
a

FA,B(s)∆s � π.

Now, assume that 1+µ(t)A > 0 for all t ∈ I and
∫ σ(b)
a

FA,B(s)∆s ∈ (π,2π); then for
σ(s)= t we haveGA,B(t, s)= eA(σ(b), a)sinp(σ (b), a)/(LB) < 0.

Suppose now that 1+ µ(t)A > 0 for all t ∈ I and
∫ σ(b)
a

FA,B(s)∆s > 2π . Due to the

fact thatF :B ∈ [0,+∞)→ ∫ σ(b)
a FA,B(s)∆s ∈ [0,+∞) is a continuous function suc

thatF(0) = 0, we have that there is 0< B1 < B satisfying
∫ σ(b)
a

FA,B1(s)∆s ∈ (π,2π)
and, in consequence, operatorT2[A,B1] is not inverse positive onW2. Now, from Theo-
rem 5.1, we conclude thatT2[A,B] cannot be inverse positive onW2.

As consequence of all this results we arrive at the following one.

Lemma 5.3. LetA ∈ R such that1 + µ(t)A > 0 for all t ∈ I . Then operatorT2[A,B] is
inverse positive inW2 if and only if

σ(b)∫
a

FA,B(s)∆s ∈ [0,π].

Remark 5.2. Note that whenµ is a constant, functionFA,B is also a constant, which
independent ofA whenµ ≡ 0. Thus, assuming that 1+ µA > 0 (which is always true
whenµ≡ 0), we have that operatorT2[A,B] is inverse positive onW2 if and only if

(1) µ≡ 0 andB � π/(b− a).
(2) µ> 0 and 0<B/(1+µA)� tan(πµ/(σ(b)− a)).

The first estimate, for differential equations, has been obtained in [14], the second o
difference equations (µ≡ 1), has been given in [7].

5.2. Higher order equations

In this section we obtain some estimates in the values ofM > 0 for which operators

L±
n [M]u(t)= u∆n(t)±Mu(t) (5.5)

are inverse positive or inverse negative onWn.
These estimates will be used to deduce extremal solutions of thenth order problem

u∆
n

(t)= f (t, u(t)) for all t ∈ I = [a, b],
u∆

i

(a)= u∆i (σ(b)), i = 0, . . . , n− 1,

as a particular case of Theorems 4.1 and 4.2 for problem (2.1)–(2.2).
First, we enunciate the following result which gives us a property of the compositi

two inverse positive operators. The proof follows from the fact that the composition o
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regressive operators is a regressive operator too and from similar arguments to th
used in Lemma 2.3 in [5] and in Lemma 2.1 in [7].

Lemma 5.4. Let Sl and Sm be twolth andmth order linear operators, inverse positiv
in Wl and inverse positive(inverse negative) onWm, respectively. Then the compositi
operatorSl ◦ Sm is inverse positive(inverse negative) onWl+m.

Now, we are in a position to prove the following result in which estimates for ope
L±
n [M] are given.

Lemma 5.5. If m ∈ (0,mn)∩ (0, m̄n] then operatorL+
n [M] is inverse positive onWn. Here

m̄ = +∞ if P(m) < π for all m > 0 andP−1(π) otherwise, whereP :m ∈ [0,+∞)→
P(m)= ∫ σ(b)

a Fm(s)∆s ∈ [0,+∞), and

(1) If n= 4p, p ∈ {1,2, . . .},m= 1/maxt∈I {µ(t)cos(π/n)} and

Fm(s)=
{

arctan
( msin(π(n+2)/(2n))µ(s)

1+µ(s)mcos(π(n−1)/n)
)

µ(s)
if µ(s) > 0,

msin(π(n+ 2)/(2n)) if µ(s)= 0.

(2) If n= 2+ 4p, p ∈ {1,2, . . .},m= 1/maxt∈I {µ(t)cos(π/n)} and

Fm(s)=
{

arctan
( mµ(s)

1+µ(s)mcos(π(n−1)/n)
)

µ(s)
if µ(s) > 0,

m if µ(s)= 0.

(3) If n is odd,m= 1/maxt∈I {µ(t)} and

Fm(s)=
{

arctan
( msin(π(n+1)/(2n))µ(s)

1+µ(s)mcos(π(n−2)/n)
)

µ(s)
if µ(s) > 0,

msin(π(n+ 1)/(2n)) if µ(s)= 0.

Proof. Let n = 4p, for somep ∈ {1,2, . . .}, and denote bym> 0 such thatmn =M. In
this case, it is clear that

L+
n [M] ≡N0 ◦N1 ◦ · · · ◦N(n−2)/2,

whereNlu(t)= u∆2
(t)− 2Alu∆(t)+ (A2

l +B2
l )u(t), k ∈ I, and

Al =mcos

(
2l + 1

n
π

)
and Bl =msin

(
2l + 1

n
π

)
.

It is easy to verify thatBl � Bn/4 = msin(π(n+ 2)/(2n)) andAl � A(n−2)/2 = m×
cos(π(n− 1)/n). Then, if 1+ µ(t)A(n−2)/2 > 0 and

∫ σ(b)
a FA(n−2)/2,Bn/4(s)∆s � π , as

a consequence of Lemmas 5.3 and 5.4 and the fact thatFA,B(s) is increasing inB and
decreasing inA, we conclude that operatorL+

n [M] is inverse positive onWn.
Clearly, functionFm is strictly increasing inm, and, as consequence, functionP(m)=∫ σ(b)

a Fm(s)∆s is strictly increasing too. Thus we have thatP(m)� π if and only ifm ∈
(0, m̄], m̄ given in the enunciate.
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If n = 2 + 4p for somep ∈ {1,2, . . .} (casep = 0 is proved in Lemma 5.3), the sam
decomposition of operatorL+

n [M] holds.
In this situation one can verify thatAl � A(n−2)/2 andBl � B(n−2)/4 = m for all l ∈

{0,1, . . . , (n− 2)/2}. ThusFAl,Bl � FA(n−2)/2,B(n−2)/4. Reasoning as in the previous ca
we conclude this part.

If n is odd, we have that

L+
n [M] ≡N0 ◦N1 ◦ · · · ◦N(n−3)/2 ◦ T +

1 [m].
In this caseBl �msin(π(n+ 1)/(2n)) which is equal toB(n−1)/4 whenn = 4p + 1 and
B(n−3)/4 whenn= 4p− 1. MoreoverAl �A(n−3)/2 for all l ∈ {0,1, . . . , (n− 3)/2}.

Thus, ifm< 1/µ(t) for all t ∈ I and
∫ σ(b)
a

FA(n−3)/2,Bl0
(s)∆s � π we have that operato

L+
n [M] is inverse positive onWn. Here byl0 we denote(n− 1)/4 if n = 4p + 1 and
(n− 3)/4 whenn= 4p− 1. ✷

In the same way one can prove the following result for operatorL−
n [M].

Lemma 5.6. If m ∈ (0,mn)∩ (0, m̄n] then operatorL−
n [M] is inverse negative onWn with

m̄ given in the enunciate of Lemma5.5, and

(1) If n= 4p, p ∈ {1,2, . . .},m= 1/maxt∈I {µ(t)} and

Fm(s)=
{

arctan
( mµ(s)

1+µ(s)mcos(π(n−2)/n)
)

µ(s)
if µ(s) > 0,

m if µ(s)= 0.

(2) If n= 2+ 4p, p ∈ {1,2, . . .},m= 1/maxt∈I {µ(t)} and

Fm(s)=
{

arctan
( msin(π(n+2)/(2n))µ(s)

1+µ(s)mcos(π(n−2)/n)
)

µ(s)
if µ(s) > 0,

msin(π(n+ 2)/(2n)) if µ(s)= 0.

(3) If n is odd,m= 1/maxt∈I {µ(t)cos(π/n)} and

Fm(s)=
{

arctan
( msin(π(n+1)/(2n))µ(s)

1+µ(s)mcos(π(n−1)/n)
)

µ(s)
if µ(s) > 0,

msin(π(n+ 1)/(2n)) if µ(s)= 0.

As we have noted in Remark 5.2, whenµ is a constant,FA,B is also a constant. Thi
fact permits us to calculate the exact value of the integrates ofFm and give explicitly the
valuesm̄ andm. In fact the following estimates are given in [5, Lemmas 2.4 and 2.5]
in [7, Lemmas 2.3 and 2.4], here they are obtained as corollary of the two previous r

Corollary 5.1. OperatorL+
n [M] is inverse positive onWn if one of the following situation

hold:

(1) n= 4p, p ∈ {1,2, . . .}, µ≡ 1, a = 0, b=N − 1 and

M �
[

tan(π/N)

(1+ tan(π/N))cos(π/n)

]n
.
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s

(2) n= 2+ 4p, p ∈ {0,1, . . .}, µ≡ 1, a = 0, b =N − 1 and

M �
[

tan(π/N)

1+ tan(π/N)cos(π/n)

]n
.

(3) n odd,µ≡ 1, a = 0, b=N − 1 and

M �
[

tan(π/N)

tan(π/N)cos(2π/n)+ cos(π/(2n))

]n
.

(4) n= 4p, p ∈ {1,2, . . .}, µ≡ 0 and

M �
[

π

(b− a)sin(π(n+ 2)/(2n))

]n
.

(5) If n= 2+ 4p, p ∈ {1,2, . . .}, µ≡ 0 and

M �
[
π

b− a
]n
.

(6) n odd,µ≡ 0 and

M �
[

π

(b− a)sin(π(n+ 1)/(2n))

]n
.

Corollary 5.2. OperatorL−
n [M] is inverse negative onWn if one of the following situation

hold:

(1) n= 4p, p ∈ {1,2, . . .}, µ≡ 1, a = 0, b=N − 1 and

M �
[

tan(π/N)

1+ tan(π/N)cos(2π/n)

]n
.

(2) n= 2+ 4p, p ∈ {0,1, . . .}, µ≡ 1, a = 0, b =N − 1 and

M �
[

tan(π/N)

cos(π/n)+ tan(π/N) cos(2π/n)

]n
.

(3) n odd,µ≡ 1, a = 0, b=N − 1 and

M �
[

tan(π/N)

tan(π/N) cos(π/n)+ cos(π/(2n))

]n
.

(4) n= 4p, p ∈ {1,2, . . .}, µ≡ 0 and

M �
[
π

b− a
]n
.

(5) n= 2+ 4p, p ∈ {1,2, . . .}, µ≡ 0 and

M �
[

π

(b− a)sin(π(n+ 2)/(2n))

]n
.

(6) n odd,µ≡ 0 and

M �
[

π

(b− a)sin(π(n+ 1)/(2n))

]n
.
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