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Abstract

In this paper we develop the monotone method in the presence of lower and upper solutions for
the problem

n—1 )
w0+ Y Mju? )= f(t.u@®). tela.bl,
j=1

W @) =u? (o). i=0...n-1

Here f :[a,b] x R — R is such thatf (-, x) is rd-continuous in/ for everyx € R and f(z,-) is
continuous inR uniformly att € I, M; € R are given constants arid, b] = T<" for an arbitrary
bounded time scal&. We obtain sufficient conditions iy to guarantee the existence and approxi-
mation of solutions lying between a pair of ordered lower and upper soluti@msl 8. To this end,
given M > 0, we study some maximum principles related with operators

n—1 )
TEMu@) =u (1) + Y Mju® (0) & Mu(),
j=1

in the space of periodic functions.
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1. Introduction

The theory of dynamic equations has appeared recently in the Ph.D. thesis of
Hilger [12]. This new theory unifies difference and differential equations and gives an
abstract formulation that allows to the researchers to use the same notation in both fields.
Recently, many papers devoted to the study of this kind of problems have been done, in
the monograph of Bohner and Peterson [2] one can find a lot of fundamental tools to work
with this type of equations.

In this paper we will study the existence of solutions of nonlinear periodic boundary
value problems in time scales. To this end, we study the sign of related Green’s functions
and use the classical concept of lower and upper solutions for differential equations [4]
and that has been used in recent years for difference [1,7,8,15] and dynamic equations
[3,10,13]. Ourresults are in the same direction that many other recent papers in time scales,
in which comparison results are given, mainly for second order equations; see, for instance,
the papers of Erbe and Peterson [9] and Topal [11]. Here the results obtained in [5] for
differential equations and in [7] for difference ones are unified.

In the next section we introduce the problem that we will consider along the paper. Fun-
damental concepts as lower and upper solutions, extremal solutions and inverse positive
and inverse negative linear operators are exposed. Section 3 is devoted to give the expres-
sion of the Green’s function and some fundamental properties. In Section 4 we develop
the method of lower and upper solutions coupled with the monotone iterative techniques
to derive existence of extremal solutions of the nonlinear considered problem. Finally, in
Section 5 we obtain some estimations fwh order operators, which are optimal for first
and, in some sense, for second order operators.

2. Preliminariesand hypothesis

In this paper we study the following periodic boundary value problennfarl order
dynamic equation:

n—1 )

w () + Y Mju® (1) = f(t.u@) foralltel=la,b], (2.1)
j=1

w? @) =u? (o), i=01,....n-1 (2.2)

with f:[a,b] x R — R suchthatf(-,x) € Cig(I) ={g: I — R, g is rd-continuousir’}
for everyx e R, and f (¢, -) is continuous irR uniformly atz € I; M; € R given constants
forje{l,...,n—1},[a,b]= T+" andT an arbitrary bounded time scale.
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A solution of problem (2.1)—(2.2) will be a function: T — R, such that
weClyh={u:T—>R, u® ec(™’), j=0,....,n—1, u® € Ca(D)},
and that satisfies both equalities.
For a pair of continuous functions< w in T, we denote
[v, w]={x € C(T), v(r) <x(t) <w(r) forallt € T}.

We say that € V is the maximal solution of (2.1)—(2.2) in the function’s $&if any other
solution of such problem € V is such thaty < x in T. We refer to a minimal solution if
the reversed inequalities hold. We denote both functions as extremal solutigns in

To deduce existence of extremal solutions for problem (2.1)—(2.2) we introduce the
concept of lower and upper solutions.

Definition 2.1. Leta: T — R, a € Cyy(/). We say thatv is a lower solution of problem
(2.1)—(2.2) ifa satisfies

n—1
o () +Y Mje? (1)< f(t.a() forallrel,
j=1

aAi(a)zaAi(cr(b)), i=0,...,n—1.

Definition 2.2. Let p: T — R, B € Cy(I). We say thap is an upper solution of problem
(2.1)—(2.2) if g satisfies

n—1 )
B (1) + > MipA (1) > f(r. p(1)) forallrel,

j=1
B @) =pA (0). i=0,....n—1.

To deduce existence results via monotone iterative techniques, we assume that func-
tion f satisfies one of the following one sided Lipschitz conditions for a suitable constant
M > 0, depending on the circumstances:

(Hy) Veel,Vu,vela(),B@)]: usv= f(t,u)+ Mu < f(t,v) + Mv.
(H2) Veel,Vu,vel[B@),a®)]: u<v= f{t,u) —Mu> f(t,v) — Mv.

As we will see, we translate the study of the existence of extremal solutions lying be-
tweenwa and g8 to find real parameters for which the Green’s function related with an
appropriate:th order linear operator has fixed sign. Before doing this, we define the con-
cept of inverse positive and inverse negative operator.

Definition 23. LetM; €R,i=0,....,n—1, be given constants. L&tu(r) = u?" (t) +
Z;:& M;u? (1) be regressive i, i.e., 14+ 371 (—u(t)) M, —; # 0 forallr € I, defined
in the set

W, = {u € Cly(D), u?' (@) =u? (6 (b)), i =0,...,n—1}.
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Suppose that there existst in W,,. We say thaf is

(1) Inverse positive itW,, if: u e W, andTu >0 in I impliesu >0inT.
(2) Inverse negative iW, if: u € W, andTu >0in I impliesu <0inT.

Remark 2.1. In this paper we define the concept of lower and upper solutions assuming the
equalities in all the derivatives of and g in the boundary ofl'. This was the case in [7]
for nth order discrete problems. However, in [8] for difference equations and in [5] for
differential ones, some adequate inequalities in(the 1)th order derivatives are allowed.

One can see that the abstract formulation of the monotone iterative methods is the same
in both situations, it is enough to study the inverse positive and inverse negative character
of the linear operatof in the set

20 = {ueClyD), u* (@ =u?(6(b)), i=0,....,n—2,
n—1 n—1
u? (@) = u? (o)},
instead ofw,,.
However, on the contrary to differential equations [5], where the valugs é6r which
operatorT is inverse positive or inverse negativeW, are the same that if2,,, in differ-
ence equations the values are worse in this new situation (see [8]).

Since the aim of this paper is to explain the validity of the monotone iterative technique
for dynamic equations, we have preferred this definition to do the paper more readable.

3. Expression of the Green’sfunction

In this section we present a formula to obtain the expression of the Green’s function
associated t@ ~1, whereT is a generahth order linear operator invertible iw, .

Theorem 3.1. LetM; € R, i =0, ...,n — 1, be given constants, and I&u () = u2" (r) +
S M (1), t € I, such thatl + Y7 (— (1)) M,—; # Ofor all ¢ € 1. Then, if there
is T~ in W,, the associated Green’s functiah: T x I — R is given by the following
expression

Gt.s)= {u(t,s)+v(t,s) ?fo(s)gt, (3.1)
u(t,s) if t <o(s),

where, for every € [a, b] fixed,v(-, s) is the unique solution of problem
Txs(t)=0, telo(s),b],
x2(0(s)=0, i=0,....,n—2, (3.2)
2 o) =1,
and for every € [a, b] fixed,u(-, s) is given as the unique solution of problem
Tys(t)=0, te€la,b],

y& @) = yX @) =x2 (b)), i=0,....n-1 53
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Proof. First, we note that functioi is well defined, i.e., problems (3.2) and (3.3) are
uniquely solvable. Since 4+ Z?zl(—u(t))"M,,,,» # 0 for all t € I we have, see Corol-
lary 5.90 and Theorem 5.91 in [2], that the initial value problem (3.2) has a unique solution.

To verify that the periodic boundary value problem (3.3) has a unique solutions, we
have that for any: € Crq(7) andi; € R, i =0,...,n — 1, w € C}y(I) is a solution of the
periodic boundary problem

wA" (1) + YA MiwA (1) =h(), el

Py } :
w2 @) —w? () =xr, i=0,...,n—1,
if and only if W (1) = (w(t), w3 (@), ..., w?" )7, is a solution of the matrix equation
WA@)=AW(t) + H(1), te€la,bl, W(a) — W(o (b)) =1, (3.4)
whereH(#) = (0, ...,0, ht)T, A= (ro, ..., y—1)] and
0 1 0o ... 0
0 0 1 ... 0
A= : : : : : (3.5)
0 0 0o ... 1
—My —-M1 —Mp ... —M,_1

Since operatol is regressive if and only if matrid is regressive (see Definition 5.89
in [2]) we know that every solution of (3.4) is given by the expression

t
W (1) =eA(t,a)W(0)+/eA(t,cr(7:))H(t)Ar,
with W (0) satisfying
o(b)
(In —ea(o(b),a))W(0) = / ea(o(),0(1))H(t) AT+ 1,

where byl, we denote the x n identity matrix. ThusT is invertible in W, if and only
if matrix 1, — es (o (b), a) is invertible. As consequence, under the assumptions of the
enunciate, we have that problem (3.3) has a unique solution.

Now, letz: T — R be defined as

o (b)
z(t) = / G(t,s)h(s) As

a

t o (b)
=/(u(t,s)+v(t,s))h(s) As + / u(t,s)h(s) As, teT.
a t

As consequence,
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t

220 = /(MA([,S) +v2(t,9))h(s) As

o (b)
+/uA(t,s)h(s)As+v(a(t),t)h(t), reTx.

t

If n =1 thenv(o(¢),t) =1 and we have finished. Otherwisgp (¢), 1) = 0 and we can
differentiatez® once again. By recurrence, we have thatifar{1, ..., n — 1}, the follow-
ing equality holds:

t o(b)

z,A"(t)=/(uA’(t,s)+UA’(t,s))h(s) As + / u? (1, 5)h(s) As, teT~ .
a t
Finally,
t o(b)
22" (1) :/(uAn(t,S) + 02" (1,5))h(s) As + / u? (t,9)h(s) As + h(t), tel.
a t

Now, it is clear, from the linearity of the integral and the definitions:adnd v, that
Tz(t)=h@)forallrel.
On the other hand, from the conditions imposed tandv, we deduce

o (b)
zAi (cr(b)) = / (uAi (cr(b), s) + vAi (cr(b), s))h(s) As
= / uAl(a,s)h(s)As=zA'(a), i=0,....,n—1

a

In consequence, is the unique solution of problel®y). O
Now, we prove the following properties of the Green'’s function.

Lemma3.1. Assume that + Y ", (—u(t))'M,—; #0forallt e I.LetG:T x I — R be
the Green’s function of operatdf—1 defined in(3.1). Then the following conditions are
satisfied

(1) There existK > OsuchthatG(t,s)| < K forall (¢,s) €T x I.

(2) If n =1, foreveryr € T, functionG(t, -) is rd-continuous at # ¢.

(3) If n > 1, for everyr € T, functionG(t, -) is rd-continuous ir/ .

(4) If bis left dense anét = o (b) thenG (¢, -) is continuous ab forall 7 € T.
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Proof. Aswe have seen in the proof of Theorem 3.1, we know that the Green'’s furigtion
related with operatof —1 in W, is given as the k n term of the matrix Green’s function:

ealt,o(s)) +ealt,a)I —ea(o(b),a))tea(o(h),o(s)),
F(t,s)=1 o(s)<t, (3.6)

eat,a)(I —ea(o(b),a)) tea(o(b),0(s)), t<ol(s),

whereA is given in (3.5).

Using, this expression, from the continuity of the exponential matrix function in both
variables, see Theorems 5.18 and 5.23 in [2], we conclude that fur@tierbounded in
the compact sef x 1.

Due to the fact that, (¢, t) = I,,, from Eq. (3.6) we have that when= o (s) = s,
the matrix functionF is not continuous in the diagonal terms. In consequence, from the
continuity of the exponential matrix again, we have that for gny T andsg # 1o fixed,
whens — so ando (s) — o (sg) then F(fo, s) — F(tg, s0). SinceG(t,s) (= F1,(t,5))
belongs to the diagonal only when= 1, we deduce assertions (2)—(4) of the lemma.

Lemma 3.2. OperatorT is inverse positive oV, if and only if the associated Green’s
functionG given in(3.1) is nonnegative ifT x 1.

Proof. Assume that operatdr is inverse positive on,,. Letu € W,, be such thaf'z > 0
on . In consequence there is a rd-continuous functioh— [0, +00) satisfying

Tu(®)=ht) >0, rel, uw*@=u®(c®), i=0,...,n—1 (3.7)
and such that
o (b)
0<ut)=T"th(t) = / G(t,s)h(s) As forallz eT. (3.8)

a

Obviously, from the uniqueness of the solutions of problem (3.7), the relationship between
h € Cig(I) andu € W,, satisfying such properties is one-to-one.

Suppose that there (%, so) € T x I such thatG (o, so) < 0. We have four possibilities.

(1) If 5o is an isolated point. Defink(sg) = 1 andh(t) = O otherwise, then the unique
solution of (3.7) satisfies

o (s0)
u(to) = / G(to, s)h(s) As = 1u(s0) G (t0, so)h(s0) < O,
50
which contradicts (3.8).

(2) If so is left dense and right scattered. Giver (0, i (s0)), let = = 0 outside of
(so — €, so] and, in other case, define

1



42 A. Cabada / J. Math. Anal. Appl. 290 (2004) 35-54

It is clear thath € C(I). Moreover, using part (1) of Lemma 3.1, the unique solution
of (3.7) satisfies

o (s0)
u(fo) = / G (to, s)h(s) As < Ke + u(s0) G (to, s0)h(s0),

S0—€

which is strictly negative foe small enough and contradicts (3.8) again.

(3) If so < b is right dense, from the rd-continuity 6f(zo, -) atsp proved in Lemma 3.1
whenn > 1 orn =1 andr # so, and using expression (3.6)7if= 1 and = sg, we
know that there i > 0 small enough such tha&i(zg, s) < 0 for s € [sg, so + €) C [a, b].
Defining s as in (3.9) in the intervdlso, so + €) by replacing in this case by so + €¢/2
ande by €/2 and as the trivial function otherwise, we get a contradiction in a similar way.

(4) If so =b =0(b) (the caseb < o(b) has been considered in (1) and (2)) and it is
left scattered, sincez, b] = T<" we deduce thab = " (b) and, as consequencls =
[a, p(D)] € [a, b], which contradicts the assumptions. If it is left dense, from the left con-
tinuity of G(ro, -) atb proved in part (4) of Lemma 3.1, we attain a contradiction as in the
previous case.

The other implication is trivial. O

In the same way, one can verify that the following result holds.

Lemma 3.3. OperatorT is inverse negative o, if and only if the associated Green’s
functionG given in(3.1) is nonpositive ifl" x 1.

4. Lower and upper solutions

In this section, we prove the existence of extremal solutions lying between a pair of
ordered lower and upper solutions. This existence result is derived from the comparison
principles exposed in the previous section. As we will see, such existence results are, in
some sense, optimal. First, givéfi; e R, j =1,...,n — 1, for everyM > 0, we define
the following operators in the sét,:

n—1 )
TEMu() =u® (t)+ Y Mju® (1) £ Mu(t), tel. (4.1)
j=1

Theorem 4.1. Suppose that there exist < g lower and upper solutions of problem
(2.1)—(2.2) and that f is such thatf (-, x) is rd-continuous in/ for everyx € R and
f(,-) is continuous irR uniformly atr € I, and satisfies conditio(H;) for someM > 0
such that operatofT,j[M] is inverse positive onW,,. Then there exist two monotone se-
quences ifl, {«,,} and {B,,} with ap = @ and Bo = B, which converge uniformly to the
extremal solutions of probleti2.1)—(2.2) in [«, B].
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Proof. Fix M > 0 such that operatdf,'[M] is inverse positive oW, and f satisfies
condition(Hz1). For eachy € [«, B], consider the following linear problem:

®) T IMIu(t) = f(t, n() + My(t) =hy (1), tel,
! u? (@) =u?® (o)), i=0,....n—1.

Clearly, , € Crq(I). Thus, since operatdf,"[M] is inverse positive oV, we know
that (P,) admits a unique solution,, for eachn given. Such solution is given by the
expression

o (b)
wy(0) = (T M) "y (1) = / G (t,)hy(s) As, 1€,

a

with GJA; the associated Green’s function of operaﬂ[p“r[M].

From the definition ofe and condition(Hy), we know thatu, — « € W, and
T,"[M](uy, — «) > 0 on I. Now, from the fact that operatdf,"[M] is inverse positive
on W,, we deduce thai, > « onT.

On the other hand, let;, i = 1, 2, be the unique solutions of problei®,;) with n1 < 2
onl. Clearly,up —uy e W, andTn+[M](u2 —u1) > 0onl. The inverse positive character
of operator7,'[M] in W, says us thaty > u1 onT.

From these two properties, defining = «, Bo = B, oy = (T,jF[M])—lham_1 and
B = (T,,*[M])*lh,gmfl, we construct two monotone sequences which, as a consequence
of the Ascoli—Arzelad’s theorem, converge uniformly to a continuous functiori’ ids-
ing the integral representation of both sequences, we verify that such limits are solutions
of problem (2.1)—(2.2). Obviousky(¢) = lim,,— 0o @ (1) < liM s 00 B (1) = @ (¢) for all
t € T and belong to the sectw, 8].

Now, using that every solution of problem (2.1)—(2.2) satisfies = (7" [M1)~*h,
together with the fact that by conditiaify) if u1 < uz in I thenh,, < hy, in I, and that
Gj{d >0inT x I, we conclude that ift € [«, 8] thenu € [¢, @], thatis,¢ and® are the
extremal solutions of problem (2.1)—(2.2)[w, 8]. O

In an analogous way, we can prove the following result.

Theorem 4.2. Suppose that there exist > g lower and upper solutions of problem
(2.1)—(2.2) and f is such thatf (-, x) is rd-continuous in/ for everyx € R and f(z, )

is continuous inR uniformly atr € I, and satisfies conditiofHz) for someM > 0 such
that operator7, [M] is inverse negative oW,. Then there exist two monotone sequences
in T, {a;,} and {B,,} with ag = « and Bp = B, which converge uniformly to the extremal
solutions of probleni2.1)—(2.2) in [8, «].

Remark 4.1. Note that7,"[M] cannot be inverse negative W, for any value of\ > 0.
Itis enough to consider problem
THMu(t) =1, ueW,

for which,u = 1/M is a positive solution.
Analogous assertion holds f@}[M].
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Since conditiongH1) and(Hz) can be true only for values &f > 0 very small, one can
think that the sufficient conditions imposed in the two previous results are very restrictive,
however, they are optimal in some sense, as we can see in the next result.

Theorem 4.3. The assertions proved in Theoreth$ and4.2 are optimal in the sense that

(1) For all M > 0, for which T, [M] is regressive in/ and there is(T,j“[M])*l on W,,
but 7,F[M] is not inverse positive o, there are functionsf, « and 8 satisfying
the assumptions of Theorefril and for which problem(2.1)—(2.2) has no solution
in [a, B].

(2) Forall M > 0, for whichT, [M]is regressive irf and there exist(;T,;[M])*l onw,,
but 7,-[M] is not inverse negative oW,, there are functions’, « and 8 satisfying
the assumptions of Theoreft? and for which problem(2.1)—(2.2) has no solution

in (B8, a].

Proof. We only proof the first assertion, the second one is analogous.

Let M > 0 satisfying the conditions exposed in the enunciate.skig I ande > 0,
definef:(t,x) e I x R — f(¢t,x) = —Mx + Mh(t) € R with i given in the proof of
Lemma 3.2 depending on the circumstances of the choicg. @learly, f satisfies con-
dition (H1) for suchM > 0 and, sincei(t) € [0,1] forallt e I,a =0 andB =1 are a
pair of lower and upper solutions for problem (2.1)—(2.2) suchdhdts. However, as it
is proved in Lemma 3.2, for small enough the unique solution of such problem takes a
negative value in at least one point and, in consequence, this problem has no solution lying
between the lower and the upper solutiom

5. Estimatesfor comparison principles

As it is stated in the two previous sections, the existence of extremal solutions of the
nonlineamth order problem (2.1)—(2.2) lying between a pair of lower and upper solutions
is equivalent to the fact that functighsatisfies conditioriH;) or (H2) for some adequate
values ofM > 0. To look for such values is not an easy problem, in [5] and [7,8] some esti-
mates are obtained fath order when differentialf = 0) and differencey = 1) problems
are considered.

To do the study for arbitrary time scales, we obtain the following result, where the
structure of theM values set for which operatof§=[M] satisfy comparison principles in
W, is given. Such result is a continuation of Theorem 3.1 in [6] for differential equations
and Theorem 4.1 in [7] for difference ones. Here we unify both results. The result is the
following

Theorem 5.1. The following assertions hold

(1) Suppose that there existé > 0 such that7,"[M] is regressive i/ but not inverse
positive onW,,. ThenT,jf[M] is not inverse positive oW, forall M > M.
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(2) Suppose that there exisdé > 0 such that7, [M] is regressive i/ but not inverse
negative orW¥,,. Then7, [M] is not inverse negative oW, forall M > M.

Proof. First, we suppose thall is a positive constant such that there exigtg [M])~*
on W,. Define f:(t,x) € I x R — f(t,x) = —Mx + Mh(t) € R, with i given in the
proof of Lemma 3.2. Clearlyf satisfies conditioriH1) for all M > M and, sincéi(r) €
[0,1] forallt e I, « =0 andg = 1 are a pair of lower and upper solutions for problem
(2.1)—(2.2) such that < 8. However, as it is proved in Lemma 3.2, the unique solution of
such problem takes a negative value in at least one point and, in consequence, this problem
has no solution lying between the lower and the upper solution. Thus, if there efxista/
for which Tn+[M] is inverse positive of,,, we conclude, applying Theorem 4.1, that this
problem has a solution betweerandg, which is not true. Therefore the operafr [M]
is not inverse positive oW, for all M > M.

Now, we suppose the other case, thaffj$[M] is inverse positive oW, for all M
(0, M) with M > 0 such that there is n@,"[M])~! on W,,, i.e., problem(Pp) with Mo =
M does not have a unique solution. As we have seen in the proof of Theorem 3.1, if
a solution of that problem theW (1) = (w(r), wA (1), ..., w?" ()7 is a solution of the
matrix equation

WA =AW+ H(1), tela,bl, W)= W(o(®)),
whereH (1) = (0,...,0,h(t))T and A is given in (3.5). Since matri¥ is regressive, we
have that the initial value problem
WA =AW +H(@), tela.bl, W)=y
has a unique solution given by
t
W(t) =es(t,a)yo+ / eA (t, O’(T))H(l’) At.
a
On the other hand, due to the fact that the periodic problem has not a unique solution,
we have that déf,, — es (o (b),a)) =0.
Denote byl,, —ea(o(b), a) = (bi j)i, je(1,...n}; WE have two possibilities:

(1) There existsp € {2, ...,n} such that;, ; = Z}}’:’ll)»kbk,j, j=1...,n, with some
M #£0; or
(2) Thereexistgge {1,...,n} suchthab;, ; =0,j=1,...,n.

In the first case, le€(s) = ea(o (D), s) = (ci ;(5))i, je(s,...n}- Thus, a necessary condi-
tion to assure the existence of solution of the periodic prolilegnis given by
o (b)

io—1
/ <c,»o,n(a(s)) -3 )\kck,,,(a(s))>h(s) As =0. (5.1)

p k=1

Now, using Theorem 5.23 and Corollary 5.26 in [2], we arrive at
C4(s) = —AC(0(s)), se€la,bl, C(o(b)) =1y (5.2)
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If cig.n(s) = ;{0;11 Akck.n(s) for all s € [a, D], thend(s) = (c1.n(s), ..., c,-O,l,,,(s))T
satisfies the equatiaff* (s) = —Bd (o (s)), d(o (b)) = 0, where

0| liy—2
B= 0 ,
<)»1 )\2...)»,'0_1>

and I;,—» is theig — 2 x ig — 2 identity matrix. In consequence, from Theorem 5.27
in [2], we have thati(s) = egp(s, o (b))d(c (b)) = 0. Thus, using (5.2), we conclude
by recurrence that; ,(s) =0 in I, for all i € {1, ..., n}, which contradicts the fact that
C(o (b)) = I,.

If the second situation holds, then a necessary condition to assure that prd@alem
with Mo = M, is solvable is that

o(b)
/ Cig,n($)h(s) As =0.

a

Now, if ¢;,»(s) =0 in I, as in the previous case we arrivecaf,(s) = 0 in I for all
i=io+1,...,n. In particularC, , (o (b)) = 0 which contradicts the fact tha (o (b),
o(b)=1I,. o

In consequence, there existE Cyq(1), h € [—M, M] such that (5.1) is not true and,
therefore, probleniPy) with Mo = M has no solution for such.

However, takingr = —1 andg = 1, if there exists¥ > M such that?,"[M] is inverse
positive onW,,, we are in the hypothesis of Theorem 4.1, which is not possible. Then
T,"[M] is not inverse positive oW, for all M > M.

For operatofl, [M] the same arguments holdO

Now we study, in a first step first and second order operators.
5.1. First and second order operators

In this section, we give the optimal estimates on the valu@# of O for which operators
Tfr [M]andT; [M] are inverse positive and inverse negative, respectivelinFirst we
study operatof; [M], to do this, we construct the Green’s functi@i, of such operator.
Using the characterization given in Theorem 3.1 and sinegudz)M £ 0 forallr € I, it
is not difficult to verify thatG (¢, s) is given by the expression
ulatls o (s) <1,

ep(t,0(s))
em(a,o(b)-1’

Gt = t<o(s)

In consequence, from the fact thatrlu ()M > O for all M > 0 andr € I, we conclude
thatG,(z,s) <0 for all (¢, 5) € T x I. Now, from Lemma 3.3 we arrive at the following
result.

Lemma5.1. Operator7; [M] is inverse negative iy for all M > 0.
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If we refer to operatoﬂ"f[M], such that - u(r)M # 0 for all t € I, we have that its
Green’s functiorGL satisfies
e—m(t,0(s))
lief/lM(U(b),a)’ G(s) g tv

ey (1,0(5))

Ght,s)=G—,,(t, s)=
@)1 t <o(s).

From the definition of the exponential functian y; [2] we know that there is
(T IM)~Yin Wy if and only if M # 1/p(2) forall t € 1.

In this case, due to the fact that, (¢, s) is decreasing with respect tpwe conclude
that functionGL is nonpositive orl x I wheneverO< M < 1/u(t) forallz e 1.

Now, if there is someg € I such thatM > 1/u (), choosingsg such thatr (so) = 1o
we have that

1— Mp(t)
< L.

(1—e_m(o(b),a))?
In consequence, we have the following result.

G110, 50)G 1 (0 (10), 50) =

Lemmab5.2. OperatorTf[M] is inverse positive iWy if and only if0 < M < 1/u(¢) for
allrel.

Remark 5.1. As we have seen, the optimal estimates given in this section for operator
T,"[M] are valid for any arbitrary time scale. For it, we can give, in some particular situa-
tions, the optimal values a¥f > 0 for which operatoITl*[M] is inverse positive irWvy:

(1) T=R and everyM > 0.

(2) T=7ZandM € (0, 1).

(3) T=hZ andM € (0,1/h).

(4) T =C the ternary Cantor set, ard < (0, 3).
(5) T=¢"N,g>1,andM € (0,1/((g — 1)b)).
(6) T=N3andM € (0,1/(2Vb + 1)).

Now, givenA € R andB > 0, we study of the following second order operator defined
in the setWs:

To[A, Blu(t) = uA(t) — 2Au®(t) + (A2 + B)u(r). (5.3)

In this situation we have that& 2Au () + (A2 + B?)(u(t))># 0 for allr € I, that is,
operatorT>[A, B] is regressive i forall A € R andB > 0. Thus, using the formula given
in Theorem 3.1, we conclude that the Green’s functionp associated with this operator
follows the expression

ua,p(t,s)+vap(t,s), o(s)<t,
Ga,p(t,s)=
ua p(t,s), 1<ol(s),
where

va,B(t,s) = %ﬁ(m sin, (t, a(s))
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and
ea(o(b),a)ea(t, o (s))
uaB(t,s) = 1B
x [ea(o(b), a)e,2(0(b),a)e,,2(t,0(s))sin, (o (s), 1)
+ (sin, (o (b), 0 (5)) €0S, (1, a) 4 €OS, (0 (b), 5 (s)) SN, (7, a)) ]
Here
p(t) = m
and

L= (1 — CO0s, (cr (b), a)eA (cr (b), a))2 + (sinp (cr (b), a)eA (cr (b), a))z.

Of course, this expression has sense and in consequence ttefetisB]) 1 in Wy, if
and only ife4, sin, and cog are well defined and moreovér# 0. One can verify that it
is not true if and only if one of the following situations holds:

(1) There exists somee I such that - u(r)A =0.
(2) n=0,A=0andB = 2kx /(b — a) for somek € Np.
(3) —B<A<0,u=-2A4/(A%+ B?) and

B 2k
e =tan TR for somek € Np.
1+ uA o) —a

As we have seen in Lemma 3.2, the valuesdo¢ R and B > 0 for which operator
T>[ A, B] is inverse positive ofi», are the same parameters forwh@h g >0inT x 1.
To this end, define

arctaBu(s)/(1+u(s)A)) 0
Fap(s)= ws) - HO=0, (5.4)
B, /’L(S)ZO!

where, by arctam we denote the angke € [0, ) such that tafd = x. It is not difficult to
verify that functionF4_g is continuous i/ and also respect to the parametarand B.
Note that [2] in this situation

r 2 r
sin, (r, 1) :exp(/ logy1+ p*()n(x) At) sin(/FA,B(r)Ar>
1 !

u(t)

and

u(t)

r > r
cos, (r, l):exp(/ logV1+ p*(@)R(®) At) cos(/FA,B(r)Ar).
I l

As consequence, we have that
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sin, (o (b), 0 (s)) €0S,(t, @) + €0s, (0 (b), o (5)) Sin, (1, a)

t o (b)
2 2
=exp( /Iog¢1+p Or@ , / logy/T+ P2 () ,

n(t) w(r)
a o(s)
t o(b)
xsin(/FA)B(t)Ar—i— / FA,B(t)Ar>.
a o (s)

Thus, wherr < o (s), sinceF4 g > 0in [a, o (b)], we have that

t o(b) o(b)
/FA,B(T)AT+ / Fa p(t) At < / Fa (1) AT,
a o(s) a

In consequence, if + u(1)A > O forallt € I we have that4(r,1) >0inT x I.
Thus, we can assure that wher o (s) and 14 u(t)A > O for all t € I thenuy4 g(¢, s)
> 0 whenever

o (b)
/ Fa p(t) ATt € [0, 7].
Whenr > o (s) we have that
LB(ua.B(t,s)+va B(1,5))
= —ey (t, O’(S))eupz (t, O’(S)) sin, ((7 (s), t)
+eA(t,a(s))eﬂpz(t,a(s))eA(a(b),a)
x (sin, (o (s), 1) cos, (o (b), a) 4 €0s, (0 (5), 1) sin, (o (b), a)).
One can verify, see [2], that

sin, (o (s), 1) cos, (o (b), a) 4 €os, (o (), ) sin, (o (b), a))

U(S)l 5 o (b) 5
:exp(/ og\/mAH/ logmm)
wu(r) u(t)
o(b) o (s)
xsin(/ FA,B(I)At+/FA,B(r)At).
a t
In this case, since(s) <t andF4 g > 0in I we know that

o (b) a(s) a(b)

/FA,B(f)AT+ / Fap(t) At < / Fa,B(7) At.

a t a

In consequence, as in the previous case we conclude thatavghetts), 1+ n(1)A > 0
forallr el andfa"(b) Fa p(t) At € [0, ], thenua p(t,s) +va p(t,s) > 0.
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Thus, operatof»[A, B] is inverse positive irW, when
o (b)
1+u(@)A>0 foralltel and / Fa p(s)As <.
a

Now, assume that4+ u(r)A > Oforallr € I andfa”(b) F4 p(s) As € (r, 21); then for
o(s) =t we haveG4 p(t,s) =ea(o(b),a)sin,(o(d),a)/(LB) <O0.

Suppose now that 4+ u(r)A > O forallt € 1 andfa"(b) Fa p(s) As > 27. Due to the
fact thatF: B € [0, +00) — fa"(b) F4 p(s) As € [0, +00) is a continuous function such
that 7(0) = 0, we have that there isQ B1 < B satisfyingfa"(b) Fa B, (s) As € (m, 2m)
and, in consequence, operaf®f A, B1] is not inverse positive ofiV>. Now, from Theo-
rem 5.1, we conclude thd@b[A, B] cannot be inverse positive d.

As consequence of all this results we arrive at the following one.

Lemma55.3. Let A € R such thatl + u(r)A > O for all + € I. Then operatoff»[A, B] is
inverse positive irW, if and only if

o (b)

/ Fa p(s) As €0, 7].

a

Remark 5.2. Note that whernu is a constant, functiois g is also a constant, which is
independent ofA when . = 0. Thus, assuming that4 wA > 0 (which is always true
whenu = 0), we have that operat@p[A, B] is inverse positive oV, if and only if

(1) u=0andB < /(b —a).
(2) u>0and 0< B/(1+ uA) <tanmu/(o(b) — a)).

The first estimate, for differential equations, has been obtained in [14], the second one, for
difference equationg«(= 1), has been givenin [7].

5.2. Higher order equations

In this section we obtain some estimates in the valued of 0 for which operators
LE[Mu(r) = u®" (t) £ Mu(r) (5.5)

are inverse positive or inverse negativelg.
These estimates will be used to deduce extremal solutions etltherder problem

u? (t) = f(r,u@r)) foralltel=la,bl,
w? @) =u? (b)), i=0,...,n-1,

as a particular case of Theorems 4.1 and 4.2 for problem (2.1)—(2.2).
First, we enunciate the following result which gives us a property of the composition of
two inverse positive operators. The proof follows from the fact that the composition of two



A. Cabada / J. Math. Anal. Appl. 290 (2004) 35-54 51

regressive operators is a regressive operator too and from similar arguments to the ones
used in Lemma 2.3 in [5] and in Lemma 2.1 in [7].

Lemma 5.4. Let §; and S,, be twol/th andmth order linear operators, inverse positive
in W; and inverse positivéinverse negativeon W,,, respectively. Then the compaosition
operatorsS; o S, is inverse positivéinverse negativeon Wy, .

Now, we are in a position to prove the following result in which estimates for operator
L [M] are given.

Lemma5.5. If m € (0, m")N (0, m"] then operatot.;"[M] is inverse positive o#,,. Here
m = —+oo if P(m) < forall m > 0and P~1(x) otherwise, where? :m € [0, +00) —
P(m) = [7? F,(s) As €0, +00), and

(D) fn=4p,pef{l,2,..},m=1/maxe;{u()cogr/n)} and

msin( (n+2) /(2n)) i (s)
arctan 7 oy cosr =11/ 1) )

Fns) = : w) Tils) >0
msin(r(n+2)/(2n)) if u(s)=0.

2 fn=2+4p,pe{l, 2,...},m=1/maxc;{u(t)cos(/n)} and

arctan b oym)
Fm (S) — mo) if [L(S) > 0,
m if (s)=0.
(3) If nisodd,m =1/ maxc; {u ()} and

arota 5 s g )
Fm(S)Z me) if [L(S) >0,

msin(r(n+1)/@n))  if u(s) =0.

Proof. Letn =4p, for somep € {1, 2, ...}, and denote by: > 0 such thatn” = M. In
this case, it is clear that

L[M]=NooNio-- 0 Nu_2))2,

whereNju(t) = u®’(t) — 24 (t) + (A2 + B?)u(1), k € I, and

21 +1 (21 +1
A1=mCOS< + 71) and B;:msm( + 71).
n n

It is easy to verify thatB; < B4 = msin(r(n+2)/(2n)) and A; > Ap—2)2 =m x
cos(n — 1)/n). Then, if 14+ () Aw—22 > 0 and 77 Fa,, 5 .5,4(5) As < 7, as
a consequence of Lemmas 5.3 and 5.4 and the fact/that(s) is increasing inB and
decreasing im, we conclude that operatdnj[M] is inverse positive oiv,,.

Clearly, functionF,, is strictly increasing inz, and, as consequence, functiBim) =
[a"(") Fu(s) As is strictly increasing too. Thus we have thagn) < & if and only if m €
(0, m], m given in the enunciate.
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If n =2+ 4p for somep € {1, 2, ...} (casep = 0 is proved in Lemma 5.3), the same
decomposition of operatdrf{[M] holds.

In this situation one can verify that; > A(,—2),2 andB; < B,—2 s =m forall l €
{0,1,....,(n—2)/2}. ThuS Fa; B, < FA(,_52.B_2,4- REASONING as in the previous case
we conclude this part.

If n is odd, we have that

Lf[M]=NooNio---oNgu_320 Ty [m].

In this caseB; < msin(w(n 4 1)/(2n)) which is equal toB(,_1y,4 whenn =4p 4 1 and
B(n—3)/4 Whenn =4p — 1. MoreoverA; > A,z 2 foralll € {0,1,..., (n — 3)/2}.

Thus, ifm < 1/u(r) forallr € I andfa"(b) FA,_3,2.B,(s) As < 7w we have that operator
L;F[M] is inverse positive orW,. Here byly we denote(n — 1)/4 if n =4p + 1 and
(n—3)/4whenn=4p—-1. O

In the same way one can prove the following result for operajdiM/].

Lemma5.6. If m € (0, m") N (0, m"] then operatorL, [M] is inverse negative oW, with
m given in the enunciate of Lemrdab, and

D) fn=4p,pefl,2,..},m=1/maxc {u()} and

arctan o cestra—zym)
ooy = | ) 400,
m if (s)=0.

(@ fn=2+4p,pe{l,2,..},m=1/maxc {un()} and

Fm (S) = = ;,L(sc)os |f l,l,(s) > 0,
msin(r(n+2)/(2n))  if u(s) =0.
(3) If n is odd,m = 1/ mavke; {1(r) coir/n)} and

F(s) = ENTOR if 14(s) > O,

msin(m(n+1)/(2n)) if u(s)=0.

As we have noted in Remark 5.2, whgnis a constantFy p is also a constant. This
fact permits us to calculate the exact value of the integratds,adnd give explicitly the
valuesiin andm. In fact the following estimates are given in [5, Lemmas 2.4 and 2.5] and
in [7, Lemmas 2.3 and 2.4], here they are obtained as corollary of the two previous results.

Corollary 5.1. OperatorLj{[M] is inverse positive oW, if one of the following situations
hold:

QD) n=4p,pe{l,2,..},n=1,a=0,b=N—1and

[ tan(w/N) }"
M < .
(1+tan(z/N))cos(z/n)
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) n=2+4p,pe{0,1,..},u=1a=0,b=N—1and
< i tan(r/N) }".
| 1+ tan(w/N) cos(rr/n)
B) nodd,u=1,a=0,b=N—-1and
i tan(r/N) }"
| tan(x/N) cos2r /n) + cos(/(2n)) |
(4) n=4p,pe{l,2,..},n=0and
_ - 0
M < - .
L (b—a)sin(m(n+ 2)/(2n)):|
B) fn=2+4p,pe{l,2,...},u=0and

M<

r T n
M < .
=
(6) n odd,u =0and
m<| 7 T.
L (b —a)sin(m(n+1)/(2n))

53

Corollary5.2. OperatorL, [ M]is inverse negative oW, if one of the following situations

hold:

QD) n=4p,pe{l,2,..},u=1,a=0,b=N —1and
M< [ tan(mw/N) }”.

| 1+ tan(zw/N) cos(2r /n)

) n=2+4p,pe{0,1,..},u=1a=0,b=N—1and
[ tan(z/N) "

| cos(r/n) +tan(z/N) COS(2n/n)i| '

@) rnodd,u=1,a=0,b=N—-1and
[ tan(z/N) "

| tan(r/N) cos(r/n) + COS(JT/(ZI’Z)):| ’

4 n=4p,pe{l,2,..},n=0and

M <

M <

r T n
M < .
=
B)n=2+4p,pe{l,2,..},u=0and
m<| i T
Sl —a)sinn+2)/2n) ]

(6) n odd,u =0and

M < - i i|".
| (b —a)sin(x(n+ 1)/ (2n)
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