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Abstract

Benth and Karlsen [F.E. Benth, K.H. Karlsen, A note on Merton’s portfolio selection problem for the
Schwartz mean-reversion model, Stoch. Anal. Appl. 23 (2005) 687–704] treated a problem of the op-
timisation of the selection of a portfolio based upon the Schwartz mean-reversion model. The resulting
Hamilton–Jacobi–Bellman equation in 1 + 2 dimensions is quite nonlinear. The solution obtained by Benth
and Karlsen was very ingenious. We provide a solution of the problem based on the application of the Lie
theory of continuous groups to the partial differential equation and its associated boundary and terminal
conditions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The use of symmetry reductions for the partial differential equations which arise in the mod-
elling of various aspects of investment strategies in Financial Mathematics is not well developed.
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In part this could be due to the relatively recent expansion in the mathematical modelling of
various financial instruments such as options and other derivatives and in part to the general lack
of appreciation of the value and applicability of symmetry analysis in the solution of differen-
tial equations once one moves from certain, relatively specialised, areas such as gas dynamics.
Even in those areas of Physics which have been ‘traditionally’ imbued with the spirit of group
theory such as Quantum Mechanics the group theoretic approach has been based in the main
on second-order Casimir operators and applications in Financial Mathematics which flow from
physical considerations have tended to follow suit (see, for example, [18]). One of the first, if not
the first, application of the mathematical theory of Lie algebras to an evolution equation arising
in Financial Mathematics was made by Gazizov and Ibragimov [9] to that most famous equa-
tion of this field, the Black–Scholes equation [6,7,21] which is an evolution equation particularly
rich in symmetry. Some further applications are found in [4,29,35] and [36]. Recently Myeni
and Leach [26,27] extended recent investigations of Complete Symmetry Groups in the area of
ordinary differential equations [1–3,32] to some of the evolution equations of the type found in
Financial Mathematics. It would be a fair comment to remark that the symmetry analysis of the
equations obtained in the mathematical modelling of various financial instruments has only just
begun.

In this paper we present a group theoretical analysis of an evolution equation discussed in
a paper by Benth and Karlsen [5]. In their paper Benth and Karlsen consider the optimisation
problem of an investor dividing his funds between an investment which is risky and one which
is riskless. Benth and Karlsen provided the solution to the resultant terminal-boundary value
problem by what appears to be an ad hoc method which nevertheless is very sophisticated in that
an ingenious Ansatz for the structure of the solution leads to an elegant resolution of the problem.
Here we do not rely on the availability of an ingenious Ansatz. Rather we follow the algorithmic
procedure of the Lie analysis. It may come as no great surprise that the fortunate Ansatz of Benth
and Karlsen coincides with the strategy for solution dictated by the methodology of the symmetry
analysis.

The evolution equation derived by Benth and Karlsen is nonlinear and in our analysis of this
equation for its Lie point symmetries we observe some interesting properties of the group struc-
ture of the equation and what can only be described as a very fortuitous coincidence of symmetry
property and the conditions for the solution of the total problem of equation plus conditions. As
in all analyses the successful resolution of the problem at hand opens an avenue for the further
investigation of the properties of these evolution equations arising in the mathematical modelling
of scenarii in Financial Mathematics having the nature of an Hamilton–Jacobi–Bellman equation
[28,29].

2. The optimisation problem

Benth and Karlsen consider the classical problem of the optimisation of a portfolio proposed
by Merton [19,20] in which the risky asset follows an exponential Ornstein–Uhlenbeck process—
also known as the Schwartz mean-reversion dynamics. We give a flavour of the derivation of the
equation.

Suppose that we have a complete probability space, {Ω,F , {Ft }t∈[0,T ],P }, which satisfies
the usual hypotheses of a complete probability space. Let Bt be a Brownian motion defined upon
it. We take the time horizon to be finite, i.e. T < ∞. It is assumed that the dynamics of the price
of the risky asset follow the Schwartz model [33], videlicet

dSt = α(μ − logSt )St dt + σSt dBt , (2.1)
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where S0 is the price observed at time t = 0 and α and μ are constants. The speed of mean-
reversion is measured by α (> 0) and its level by μ. The volatility, σ , is taken to be a positive
constant. The logarithm of St , which we denote by Xt (:= logSt ), is an Ornstein–Uhlenbeck
process, i.e.

dXt = α

(
μ + σ 2

2α
− Xt

)
dt + σ dBt . (2.2)

The risk-free investment, for example a bond, has the usual dynamics of

dRt = rRt dt, R0 = 1, (2.3)

where r (> 0) is the continuously compounded risk-free interest rate which we take to be a
constant.

Initially the investor starts at a time t � T with wealth Wt = w. The spot-price level is St = s.
The investor allocates a fraction, πu, u ∈ [t, T ], where πu is a progressively measurable process,
of the total wealth, Wu, in the risky asset. We assume that the investor has a risk preference
described by the power utility function, U(w) = γ −1wγ , where γ ∈ (0,1). For the investor the
optimisation problem is to find an admissible trading strategy, πt , such that the utility derived
from the wealth is maximised at the final time, T . The value function is defined as

v(s, t,w) = sup
π∈At

Es,t,w
[
U

(
Wπ

T

)]
, (2.4)

where the supremum is taken over all admissible strategies, At . The operator, Es,t,w , represents
the expectation conditioned on Wπ

t = w and St = s. Benth and Karlsen use the classical dynamic
programming principle to derive the corresponding Hamilton–Jacobi–Bellman equation for the
value function (2.4) to be

vt + rwvw + α(μ − log s)svs + 1

2
σ 2s2vss − 1

2
σ 2s2 v2

ws

vww

− [α(μ − log s) − r]2

2σ 2

v2
w

vww

− [
α(μ − log s) − r

]
s
vwvws

vww

= 0, (2.5)

which is a nonlinear 2 + 1 partial differential evolution equation.
The full problem to be solved is Eq. (2.5) subject to the terminal and boundary conditions

v(s, T ,w) = γ −1wγ and v(s, T ,0) = 0. (2.6)

Before we commence our analysis we provide a brief summary of the method of analysis
used by Benth and Karlsen. Firstly they reduce the Hamilton–Jacobi–Bellman equation, (2.5), to
a 1 + 1 evolution equation and remove the nonlinearities by means of a transformation of Hopf–
Cole type recently introduced into the theory of portfolio optimisation by Zariphopoulou [37].
Following this transformation and inspired by the solution of Merton [19] Benth and Karlsen
make an Ansatz for the solution of (2.5) of the form

v(s, t,w) = γ −1wγ g(s, t)1−γ , (2.7)

where g(s, t) is to be determined from the solution of the 1 + 1 evolution equation

gt + 1

1 − γ

[
α(μ − log s) − γ r

]
sgs + 1

2
σ 2s2gss

+
{

rγ + γ [α(μ − log s) − r]2

2 2

}
g = 0 (2.8)
1 − γ 2σ (1 − γ )
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subject to the terminal condition

g(s, T ) = 1. (2.9)

Benth and Karlsen make the further Ansatz that

g(s, t) = exp
[
f0(t) + f1(t) log s + f2(t) log2 s

]
(2.10)

and determine the three functions fi(t), i = 0,2, by substitution into (2.8) and then specification
of the constants of integration through satisfaction of (2.9).

One can only marvel at the ingenuity of the process of solution devised by the apparently
ad hoc considerations which Benth and Karlsen used.

3. Symmetry analysis of (2.5)

In terms of the variable, s, (2.5) has the structure of an equation of Euler type. We introduce
the change of variables and notation v(s, t,w) → w(t, x, y), where t remains unchanged, w is
replaced by x and y = μ − log s. Equation (2.5) is now

wt + rxwx − αywy + 1

2
σ 2(wyy + wy)

− 1

2
σ 2 w2

xy

wxx

− (αy − r)2

2σ 2

w2
x

wxx

+ (αy − r)
wxwxy

wxx

= 0. (3.1)

We make use of Program LIE [10,34] to calculate the Lie point symmetries of (3.1).1 We
obtain the symmetries

Γ1 = ∂t , (3.2)

Γ2 = x∂x, (3.3)

Γ3 = w∂w, (3.4)

Γ4 = f (t, y)∂w, (3.5)

Γ5 = g(t, y)∂x, (3.6)

where f (t, y) and g(t, y) are solutions of the linear parabolic equations

∂f

∂t
+ 1

2
σ 2 ∂2f

∂y2
+

(
1

2
σ 2 − αy

)
∂f

∂y
= 0 (3.7)

and

∂g

∂t
+ 1

2
σ 2 ∂2g

∂y2
+

(
1

2
σ 2 − r

)
∂g

∂y
− rg = 0, (3.8)

respectively.
This result is rather unexpected for an evolution equation in that usually one finds at most a

single family of an infinite class of symmetries. Furthermore this infinite class is normally asso-
ciated with a linear equation although for an exception see Leach et al. [16]. The interesting point
for (3.1) is that the two infinite families are based upon different variables. The infinite class of

1 Equally one could use the very effective code of Nucci [30,31]. Other packages are available and the reader is referred
to the review papers of Hereman [11,12] for an assessment of their capabilities and characteristics.
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symmetries associated with the dependent variable w, videlicet Γ4, is moderately normal and
one could ascribe its existence to the homogeneity of the equation in w. On the other hand the
infinite class of symmetries associated with the independent variable x, videlicet Γ5, is most un-
expected although we note that (3.1) is also homogeneous in x. When one looks at the remaining
symmetries, the impression of an equivalence between x and w is deepened. It is almost as if we
have a joining of two 1 + 1 evolution equations with the only nongeneric symmetry being due to
their autonomy.

For the present sake of completeness we list the Lie point symmetries of (3.7) and (3.8). They
are in turn

Δ1 = exp[αt]
{

1

2
σ 2∂y −

(
1

2
σ 2 − αy

)
f ∂f

}
, (3.9)

Δ2 = exp[−αt]∂y, (3.10)

Δ3 = ∂t , (3.11)

Δ4 = exp[2αt]
{

1

2
σ 2∂t + 1

2
σ 2

(
1

2
σ 2 − αy

)
∂y +

[
1

2
σ 2α −

(
1

2
σ 2 − αy

)2]
f ∂f

}
,

(3.12)

Δ5 = exp[−2αt]
{
∂t +

(
1

2
σ 2 − αy

)
∂y

}
, (3.13)

Δ6 = f ∂f , (3.14)

Δ7 = p(t, y)∂f , (3.15)

where p(t, y) is a solution of (3.7), and

Σ1 = ∂y, (3.16)

Σ2 = σ 2t∂y −
[(

1

2
σ 2 − r

)
t − y

]
g∂g, (3.17)

Σ3 = ∂t , (3.18)

Σ4 = 2t∂t +
[(

1

2
σ 2 − r

)
t + y

]
∂y + 2rtg∂g, (3.19)

Σ5 = 2σ 2t2∂t + 2σ 2ty∂y +
{[(

1

2
σ 2 − r

)
t − y

]2

− σ 2t

}
g∂g, (3.20)

Σ6 = g∂g, (3.21)

Σ7 = q(t, y)∂g, (3.22)

where q(t, y) is a solution of (3.8), respectively.
It is obvious from the symmetries that each of (3.7) and (3.8) is related to the classical heat

equation by means of a point transformation just as is the case with the Black–Scholes equation.
The algebra of the symmetries in each case is {sl(2,R) ⊕s W } ⊕s ∞A1, where W is the Weyl–
Heisenberg algebra comprising the symmetries 1, 2 and 6, which is also denoted as A3,1 in the
Mubarakzyanov classification scheme [22–25], and ∞A1 is the infinite-dimensional algebra of
solution symmetries represented by symmetry 7.
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4. The first similarity reduction

In terms of the variables of Section 3 the problem under consideration, (2.5) subject to (2.6),
is

wt + rxwx − αywy + 1

2
σ 2(wyy + wy)

− 1

2
σ 2 w2

xy

wxx

− (αy − r)2

2σ 2

w2
x

wxx

+ (αy − r)
wxwxy

wxx

= 0 (4.1)

subject to

w(T ,x, y) = γ −1xγ and w(T ,0, y) = 0. (4.2)

The symmetries listed in (3.2)–(3.6) are symmetries for Eq. (4.1). They are not necessarily com-
patible with the conditions (4.2). Indeed singly they are not. We recall that the derivation of
the Lie point symmetries of a differential equation results in the presentation of a (hopefully!)
multiparameter differential operator, the symmetry, which leaves an equation invariant when the
equation is taken into account.2 The practice of breaking the single multiparameter symmetry
into many single-parameter symmetries is dictated by the desire to elucidate the different types
of infinitesimal transformation under which the partial differential equation is invariant and to
understand the classification of the equation through the algebra represented by the several one-
parameter transformation groups. The decomposition is not unique and can even be subject to
the personal preferences of the writer, for example a preference for sl(2,R) over so(2,1). When
it comes to the consideration of the admissibility of the boundary/terminal conditions, as in (4.2),
it is better to take the original form of the symmetry, i.e. the generator of a multiparameter infin-
itesimal transformation.

We write

Λ =
5∑

i=1

aiΓi = a1∂t + (a2x + a5g)∂x + (a3w + a4f )∂w (4.3)

and apply Λ to the conditions (4.2) expressed as

t − T = 0, w − γ −1xγ = 0 (4.4)

and

x = 0, w = 0. (4.5)

For (4.4) we have a1 = 0 and

a3w + a4f (T , y) − γ −1(γ a2x
γ + γ a5g(T , y)xγ−1) = 0

so that

(a3 − γ a2)γ
−1xγ + a4f (T , y) − a5g(T , y)xγ−1 = 0 (4.6)

from which it is evident that

a3 = γ a2, a4 = 0 and a5 = 0, (4.7)

2 Here we do not enter into a discussion of the different types of symmetry or the object of which they are symmetries.
Rather we confine our attention to the matter at hand which is the existence of symmetry in a given partial differential
equation.
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since (4.6) is an identity for all x and y, in addition to a1 = 0. The requirement (4.5) makes no
additional demands. Hence we have that the symmetry consistent with both (4.1) and (4.2) is the
one-parameter generator

Λa = x∂x + γw∂w, (4.8)

where we drop the single parameter, a2, as being inessential since it is a common multiplier.3

We have a single Lie point symmetry, (4.8), consistent with both the partial differential equa-
tion (4.1) and the associated conditions (4.2). We determine the invariants for the reduction from
a 2 + 1 equation to a 1 + 1 equation from the associated Lagrange’s system

dt

0
= dx

x
= dy

0
= dw

γw
. (4.9)

The invariants are t , y and wx−γ so that the reduction is achieved by writing

w(t, x, y) = γ −1xγ u(t, y) (4.10)

in which we immediately recognise a theoretical basis for the Ansatz, (2.7), of Benth and
Karlsen.4

Under the transformation (4.10) the system (4.1), (4.2) becomes

∂u

∂t
+ 1

2
σ 2 ∂2u

∂y2
− 1

2
σ 2 γ

γ − 1

1

u

(
∂u

∂y

)2

+
[

1

2
σ 2 − αy + γ

γ − 1
(αy − r)

]
∂u

∂y

+
[
γ r − (αy − r)2

2σ 2

γ

γ − 1

]
u = 0 (4.11)

and

u(T , y) = 1 (4.12)

as the sole remaining condition since the transformation (4.10) automatically provided satisfac-
tion of (4.2).5 Equation (4.11) is still nonlinear, but of a form which can be rendered linear by
means of a simple transformation of the type introduced by Zariphopoulou [37]. We derive the
linearisation transformation via an algorithm of Lie symmetry analysis. With the help of Program
LIE and/or other packages one can easily show that Eq. (4.11) admits seven Lie point symmetries
including the generator of an infinite-parameter Lie group of point transformations,

Υζ = uγ/(γ−1)ζ(t, y)∂u, (4.13)

where ζ(t, y) is any solution of the linear equation

∂ζ

∂t
+ 1

2
σ 2

(
∂2ζ

∂y2
+ ∂ζ

∂y

)
− 1

1 − γ
(αy − γ r)

∂ζ

∂y
+ γ

1 − γ

[
r + (αy − r)2

2σ 2(1 − γ )

]
ζ = 0.

(4.14)

3 Given that the ‘solution’ symmetries are virtually doomed to make no contribution the existence of even a one-
parameter group is remarkable since the partial differential equation (4.1) is not generously endowed with nongeneric
Lie point symmetries. The possibility of a richer result could occur if the ‘solution symmetries’ were simply functions
of t for then (4.6) would not contain terms with an independent dependence upon y.

4 The two expressions are not precisely identical. The reduction of Benth and Karlsen has greater internal structure
than the form the symmetry (4.8) conveys. For the moment it suffices that Ansatz and algorithm—if not precisely Satz—
move in parallel. However, we have included the numerical factor, γ −1, somewhat gratuitously simply to keep as close
a parallel with the reduction of Benth and Karlsen and yet at the same time to avoid asymmetric assumptions.

5 The given domain of γ is particularly convenient in this respect!
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By appealing to Theorems 6.4.4-1, 6.4.4-2 of [8] we see that there exists an invertible transfor-
mation that maps (4.11) into (4.14) of the form

ζ = ϕ(t, y,u), (4.15)

where ϕ is governed by the first-order partial differential equation

uγ/(γ−1) ∂ϕ

∂u
= 1. (4.16)

A particular solution of (4.16) is

ϕ(t, y,u) = (1 − γ )u1/(1−γ ). (4.17)

From (4.15) and (4.17), and after scaling away the unnecessary constant (1 − γ )γ−1, we have
that the invertible transformation that maps the nonlinear equation (4.11) into the linear equa-
tion (4.14) is

u(t, y) = ζ 1−γ (t, y). (4.18)

The terminal condition, (4.12), is essentially unaltered under the transformation (4.18) since
now ζ(T , y) = 1.

We note that (4.14) becomes (3.7) when we set γ = 0. However, we recall that the model is
proposed for γ ∈ (0,1) and so γ = 0 is outside the range of the model.6

In the reduction of the 2 + 1 equation, (3.1), to the 1 + 1 equation, (4.14), by means of the Lie
point symmetries of (3.1) we have recovered the transformation (2.7) employed by Benth and
Karlsen. One can only marvel at the prescience of their Ansatz!

5. Solution of the reduced system

The mathematical model for the problem of the optimisation of a portfolio with the utility
function assumed has been reduced to the 1 + 1 linear evolution equation

∂ζ

∂t
+ 1

2
σ 2 ∂2ζ

∂y2
+

[
1

2
σ 2 − 1

1 − γ
(αy − γ r)

]
∂ζ

∂y
+ γ

1 − γ

[
r + (αy − r)2

2σ 2(1 − γ )

]
ζ = 0 (5.1)

subject to the terminal condition

ζ(T , y) = 1. (5.2)

Equation (5.1) is a linear 1 + 1 evolution equation and as such has n + 1 + ∞, n = 0,1,3,5,
Lie point symmetries where the precise value of n depends upon the coefficients in the equation
[4,29]. Since (5.1) is autonomous, n is at least one. The potential reduction of symmetry from
the maximal value comes from the term in ∂ζ/∂y. To identify the subset to which (5.1) belongs
we may perform a standard change of variables by writing

ζ(t, y) = φ(t, y) exp
[
at + by + cy2], (5.3)

where a, b and c are parameters to be determined. When we make this substitution, (5.1) becomes

6 This does not mean that (3.7) is irrelevant to the solution of (4.14). A similar situation has been reported in the analysis
of the Riemann formulation of the isentropic, unsteady, flow of a compressible gas in which the critical parameter is a
function of the ratio of specific heats. When the ratio is a very nonphysical infinity, the resulting value of the parameter
gives an equation from which other solutions follow [15].
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∂φ

∂t
+ 1

2
σ 2 ∂2φ

∂y2
+

{(
1

2
+ b + 2cy

)
σ 2 − αy − γ r

1 − γ

}
∂φ

∂y

+
{
a + cσ 2 + (b + 2cy)

[
1

2
(1 + b + 2cy)σ 2 − αy − γ r

1 − γ

]

+ γ r

1 − γ
+ γ

(1 − γ )2

(αy − r)2

2σ 2

}
φ = 0. (5.4)

We remove the term in ∂φ/∂y by setting

c = α

2σ 2(1 − γ )
and b = −1

2
− γ r

σ 2(1 − γ )
. (5.5)

The coefficient of φ is rendered reasonably compact if we set

a = − α

2(1 − α)
− γ

2σ 2(1 − γ )

(
r + 1

2
σ 2

)2

(5.6)

and we obtain

∂φ

∂t
+ 1

2
σ 2 ∂2φ

∂y2
− α2

2σ 2(1 − γ )

(
y − σ 2

2α

)2

φ = 0. (5.7)

The form of (5.7) is made more obvious by the cosmetic changes of variables

t = τ

σ 2
, y − σ 2

2α
= ρ and φ(t, y) = ψ(τ,ρ) (5.8)

so that we now have

∂ψ

∂τ
+ 1

2
σ 2 ∂2ψ

∂ρ2
− 1

2
Ωρ2ψ = 0, Ω2 = α2

σ 4(1 − γ )
�= 0 (5.9)

and this is a form for which the value of n is manifestly 5. Consequently we have the reasonable
expectation that at least one symmetry compatible with the terminal condition, (5.2), exists.

We use LIE 51 to compute the symmetries (5.9). They are

Σ1 = exp[Ωτ ][∂ρ + Ωρψ∂ψ ],
Σ2 = exp[−Ωτ ][∂ρ − Ωρψ∂ψ ],
Σ3 = ∂τ ,

Σ4 = exp[2Ωτ ]
[
∂τ + Ωρ∂ρ +

(
Ω2ρ2 − 1

2
Ωτ

)
ψ∂ψ

]
,

Σ5 = exp[−2Ωτ ]
[
∂τ − Ωρ∂ρ +

(
Ω2ρ2 + 1

2
Ωτ

)
ψ∂ψ

]
,

Σ6 = ψ∂ψ,

Σ7 = f (τ,ρ)∂ψ, (5.10)

where f (τ,ρ) is a solution of (5.9) and provides the infinite subalgebra of solution symmetries.
We rewrite the symmetries listed in (5.10) in a form appropriate for (5.7) as

Δ1 = exp
[
σ 2Ωt

](
∂y + Ω

(
y − σ 2 )

φ∂φ

)
,

2α
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Δ2 = exp
[−σ 2Ωt

](
∂y − Ω

(
y − σ 2

2α

)
φ∂φ

)
,

Δ3 = ∂t ,

Δ4 = exp
[
2σ 2Ωt

][
∂t + σ 2Ω

(
y − σ 2

2α

)
∂y +

(
σ 2Ω2

(
y − σ 2

2α

)2

− 1

2
σ 4Ωt

)
φ∂φ

]
,

Δ5 = exp
[−2σ 2Ωt

][
∂t − σ 2Ω

(
y − σ 2

2α

)
∂y +

(
σ 2Ω2

(
y − σ 2

2α

)2

+ 1

2
σ 2Ωt

)
φ∂φ

]
,

Δ6 = φ∂φ,

Δ7 = f

(
σ 2t, y − σ 2

2α

)
∂φ (5.11)

in which there has been a certain amount of cosmetic rearrangement of constants.
Our task is now to find such linear combinations of the symmetries Δ1 to Δ6 which are

consistent with the terminal condition

t = T and φ(T , y) = exp
[−aT − by − cy2]. (5.12)

To determine the combinations we write a general symmetry as

Δ =
6∑

i=1

kiΔi (5.13)

and apply it to the conditions in (5.12) as an identity. To maintain a modicum of compactness in
the notation we write

k1 exp
[
σ 2ΩT

] = K1, k2 exp
[−σ 2ΩT

] = K2,

k4 exp
[
2σ 2ΩT

] = K4, k5 exp
[−2σ 2ΩT

] = K5. (5.14)

Although the value of T is fixed, that of y is not. Thus we obtain four linear equations for the
six parameters, ki , i = 1,6. Commencing with the condition on the time the equations are

k3 + K4 + K5 = 0, (5.15)

K4

[
σ 2Ω2 + Ωα

1 − γ

]
+ K5

[
σ 2Ω2 − Ωα

1 − γ

]
= 0, (5.16)

K1

[
α

σ 2(1 − γ )
+ Ω

]
+ K2

[
α

σ 2(1 − γ )
− Ω

]

+ K4
Ωγ (σ 2 − 2r)

2(1 − γ )
− K5

Ωγ (σ 2 − 2r)

2(1 − γ )
= 0, (5.17)

K1
γ (σ 2 − 2r)

2σ 2(1 − γ )
+ K2

γ (σ 2 − 2r)

2σ 2(1 − γ )
− 1

4
K4σ

4ΩT − 1

4
K5σ

4ΩT + k6 = 0. (5.18)

It should be quite apparent that k3 and k6 are suitable to be taken as the independent para-
meters. Consequently there are two symmetries compatible with the terminal condition. One is
dependent upon the parameter k3 and the other upon k6. We need use only one of them since
the uniqueness of the solution of (5.7) subject to the terminal condition (5.12) follows from
the Fokker–Planck Theorem. From (5.15) and (5.16) it is evident that k4 and k5 are zero if
one takes k3 = 0. This makes the equations for k1 and k2 simpler and the resulting symmetry
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does not contain ∂t . The symmetries listed in (5.11), apart from Δ7, divide naturally into two
three-dimensional subalgebras. One subalgebra is sl(2,R) and the other is the Weyl–Heisenberg
algebra denoted by A3,1 in the Mubarakzyanov classification scheme. The elements of the for-
mer combine to make the symmetry based on a nonzero value of k3 whereas the elements of the
latter are found in the symmetry based on a nonzero value of k6. Since the combined algebra is
sl(2,R) ⊕s A3,1, not only is the symmetry based upon k6 simpler in form it is also the normal
subgroup for the reduction of partial differential equation to an ordinary differential equation.
Even though we do not use the symmetry based on k3, its persistence in the reduction facilitates
the solution of the resulting ordinary differential equation. The greater ease of finding a solution
due to its presence against the situation in which there is only one symmetry has been noted [29].

We now use the symmetry,

ΔW = {
α sinh

[
σ 2Ω(t − T )

] − σ 2(1 − γ ) cosh
[
σ 2Ω(t − T )

]}
∂y

+
{
Ω

(
y − σ 2

2α

)[
α cosh

[
σ 2Ω(t − T )

] − Σ2(1 − γ ) sinh
[
σ 2Ω(t − T )

]]

+ 1

2
γ
(
σ 2 − 2r

)}
φ∂φ + A(t)∂y +

[
B + Ω

(
y − σ 2

2α

)
C(t)

]
φ∂φ, (5.19)

in which we have introduced the constant B and functions A(t) and C(t) to maintain some com-
pactness of expression, to calculate the similarity solution of (5.7). The associated Lagrange’s
system of ΔW is

dt

0
= dy

A
= dφ

[B + Ω(y − σ 2

2α
)C]φ

. (5.20)

The first term gives the obvious similarity variable t and the second and third terms give the
second characteristic as

η = φ exp

{
−

[
B

A

(
y − σ 2

2α

)
+ 1

2
Ω

(
y − σ 2

2α

)2
C

A

]}
. (5.21)

When we set

φ = F(t) exp

{[
B

A

(
y − σ 2

2α

)
+ 1

2
Ω

(
y − σ 2

2α

)2
C

A

]}
, (5.22)

Eq. (5.7) reduces to

Ḟ

F
= α2

2σ 2(1 − γ )
− 1

2

Ȧ

A
− 1

2

(
1

2
γ
(
σ 2 − 2r

))2
σ 2

A2
. (5.23)

The performance of the quadrature is trivial. After we substitute the terminal condition to evaluate
the constant of integration, we obtain

φ(t, y) =
[

cosh
[
σ 2Ω(t − T )

] − α

σ 2(1 − γ )

]− 1
2

× exp

[
α2(t − T )

2σ 2(1 − γ )
− αγ 2(σ 2 − 2r)2 tanh[σ 2Ω(t − T )]

σ 2Ω(1 − γ )[σ 2(1 − γ ) − α tanh[σ 2Ω(t − T )]]
]

−
1
2γ (σ 2 − 2r)

2 2 2

(
y − σ 2 )
σ (1 − γ ) cosh[σ Ω(t − T )] − α sinh[σ Ω(t − T )] 2α
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− 1

2
Ω

α cosh[σ 2Ω(t − T )] − σ 2(1 − γ ) sinh[σ 2Ω(t − T )]
σ 2(1 − γ ) cosh[σ 2Ω(t − T )] − α sinh[σ 2Ω(t − T )]

(
y − σ 2

2α

)
. (5.24)

The solution to the original problem follows from (5.24).

6. Conclusion

In this paper we have taken the model proposed by Benth and Karlsen for the optimisation of
a portfolio, which gives rise to a highly nonlinear evolution partial differential equation in 2 + 1
variables, and subjected it to a symmetry analysis in the tradition of Lie. That this equation,
(2.5), had as much symmetry as the analysis revealed was remarkable enough. One of the major
obstacles to the solution of partial differential equations using symmetries7 is the concomitant
requirement to satisfy the initial/boundary/terminal conditions. In this respect the equations of
Financial Mathematics having the nature of a Hamilton–Jacobi–Bellman equation seem to be
susceptible to analysis from the approach of symmetry. The Black–Scholes equation [9] was the
original exemplar. As a linear 1 + 1 evolution equation which can be transformed to the clas-
sical heat equation its possession of the full complement of Lie point symmetries for a 1 + 1
evolution equation [17] was one thing. That these symmetries were compatible with the terminal
condition which is a standard feature of the class of problems being modelled could be imagined
as being fortuitous. One could not be optimistic that a similarly complete result would apply to
the other equations devised in the mathematical modelling of a multitude of financial scenarii
of the most diverse variety [7,14]. This is particularly the case for nonlinear equations which
generally do not enjoy the fullness of the complement of symmetries of linear systems. Natu-
rally it would seem that there are exceptions! This has been the case of the model analysed here.
The symmetries were compatible with the boundary condition (the second of (2.6)) so that a
symmetry-based reduction from a 2 + 1 to a 1 + 1 equation was possible within the context of
the problem. The reduced equation was still nonlinear, but could be reduced to a linear equation
by means of a cosmetic transformation that was derived using the symmetry of the equation.
The linear equation was not obviously well-endowed with Lie point symmetries, but some stan-
dard transformations, conflated into the single (5.3), made the 1 + 1 equation one of evident
maximal symmetry. The remaining condition, that of the value of the function at the terminal
time T , reduced the number of Lie point symmetries to just two. One would have been sufficient
to reduce the 1 + 1 equation to an ordinary differential equation in terms of the similarity vari-
ables. The additional symmetry made the resulting differential equation just that much simpler
to solve.

It seems to be a peculiarity of Hamilton–Jacobi–Bellman equations that the amount of sym-
metry revealed by the Lie analysis is often significant and so helpful to the determination of
solutions. This makes the application of symmetry methods to the equations of Mathematical Fi-
nance a technique to be used as a component of the standard repertoire of analysis. We observed
above the very nice analysis of Benth and Karlsen which was not based upon the methods of Lie.
Their feeling and intuition can only be admired. Not everyone is so endowed with such insight.
For these latter persons the use of the Lie analysis can be expected to aid the search for insight
into some of these complex and nonlinear equations in the Mathematics of Finance.

7 In principle this can also be an obstacle for ordinary differential equations, but it is nothing like the same order of
difficulty. For a recent contribution to this aspect of ordinary differential equations with initial/boundary conditions see
Hydon [13].
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