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Abstract

In this paper, we investigate homomorphisms between C∗-ternary algebras, and derivations on C∗-ternary algebras associated
with the following Cauchy–Jensen type additive functional equation:

f

(
x + y

2
+ z

)
+ f

(
x + z

2
+ y

)
+ f

(
y + z

2
+ x

)
= 2

(
f (x) + f (y) + f (z)

)
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1. Introduction

The stability problem of functional equations originated from a question of Ulam [39] concerning the stability of
group homomorphisms: Let (G1,∗) be a group and let (G2,�, d) be a metric group with the metric d(·,·). Given
ε > 0, does there exist δ(ε) > 0 such that if a mapping h :G1 → G2 satisfies the inequality

d
(
h(x ∗ y),h(x) � h(y)

)
< δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d
(
h(x),H(x)

)
< ε

for all x ∈ G1?
In other words, we are looking for situations when the homomorphisms are stable, i.e., if a mapping is almost a ho-

momorphism, then there exists a true homomorphism near it. In 1941, Hyers [7] considered the case of approximately
additive mappings in Banach spaces and satisfying the well-known weak Hyers inequality controlled by a positive
constant.
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The famous Hyers stability result that appeared in [7] was generalized in the stability involving a sum of powers
of norms by Aoki [2]. In 1978, Th.M. Rassias [32] provided a generalization of Hyers’ Theorem which allows the
Cauchy difference to be unbounded.

In 1982, J.M. Rassias [25] following the spirit of the innovative approach of Th.M. Rassias [32] for the unbounded
Cauchy difference proved a similar stability theorem in which he replaced the factor ‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for
p,q ∈ R with p + q �= 1.

Theorem 1.1 (Th.M. Rassias). Let f :E → E′ be a mapping from a normed vector space E into a Banach space E′
subject to the inequality∥∥f (x + y) − f (x) − f (y)

∥∥ � ε
(‖x‖p + ‖y‖p

)
(1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f (2nx)

2n

exists for all x ∈ E and L :E → E′ is the unique additive mapping which satisfies∥∥f (x) − L(x)
∥∥ � 2ε

2 − 2p
‖x‖p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y �= 0 and (1.2) for x �= 0. Also, if the mapping t 
→ f (tx) is
continuous in t ∈ R for each fixed x ∈ X, then L is R-linear.

Theorem 1.2 (J.M. Rassias). Let X be a real normed linear space and Y be a real complete normed linear space.
Assume that f : X → Y is an approximately additive mapping for which there exist constants θ � 0 and p,q ∈ R

such that r = p + q �= 1 and f satisfies inequality∥∥f (x + y) − f (x) − f (y)
∥∥ � θ‖x‖p‖y‖q

for all x, y ∈ X. Then there exists a unique additive mapping L : X → Y satisfying∥∥f (x) − L(x)
∥∥ � θ

|2r − 2| ‖x‖r

for all x ∈ X. If, in addition, f :X → Y is a mapping such that the transformation t 
→ f (tx) is continuous in t ∈ R

for each fixed x ∈ X, then L is an R-linear mapping.

In 1990, Th.M. Rassias [33] during the 27th International Symposium on Functional Equations asked the ques-
tion whether such a theorem can also be proved for p � 1. In 1991, Z. Gajda [4] following the same approach as in
Th.M. Rassias [32], gave an affirmative solution to this question for p > 1. It was shown by Z. Gajda [4], as well
as by Th.M. Rassias and P. Šemrl [37] that one cannot prove a Th.M. Rassias’ type theorem when p = 1. The coun-
terexamples of Z. Gajda [4], as well as of Th.M. Rassias and P. Šemrl [37] have stimulated several mathematicians to
invent new definitions of approximately additive or approximately linear mappings, cf. P. Găvruta [5], S. Jung [13],
who among others studied the Hyers–Ulam–Rassias stability of functional equations. The inequality (1.1) that was
introduced for the first time by Th.M. Rassias [32] provided a lot of influence in the development of a generalization
of the Hyers–Ulam stability concept. This new concept is known as generalized Hyers–Ulam stability of functional
equations (cf. the books of P. Czerwik [3], D.H. Hyers, G. Isac and Th.M. Rassias [8]).

In J.M. Rassias’ Theorem, there was a singular case. Then for this singularity, a counterexample was given by
Gǎvruta [6].

The stability problems of several functional equations have been extensively investigated by a number of authors
and there are many interesting results concerning this problem (see [9–11,14]). For further research developments
in stability of functional equations, the readers are referred to the works of Park [15–24], J.M. Rassias [25–31],
Th.M. Rassias [32–36], Skof [38] and the references cited therein.

A C∗-ternary algebra is a complex Banach space A, equipped with a ternary product (x, y, z) 
→ [x, y, z]
of A3 into A, which is C-linear in the outer variables, conjugate C-linear in the middle variable, and associa-
tive in the sense that [x, y, [z,w,v]] = [x, [w,z, y], v] = [[x, y, z],w, v], and satisfies ‖[x, y, z]‖ � ‖x‖ · ‖y‖ · ‖z‖
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and ‖[x, x, x]‖ = ‖x‖3 (see [1,40]). Every left Hilbert C∗-module is a C∗-ternary algebra via the ternary product
[x, y, z] := 〈x, y〉z.

If a C∗-ternary algebra (A, [·, · ,·]) has an identity, i.e., an element e ∈ A such that x = [x, e, e] = [e, e, x] for all
x ∈ A, then it is a routine to verify that A, endowed with x ◦ y := [x, e, y] and x∗ := [e, x, e], is a unital C∗-algebra.
Conversely, if (A,◦) is a unital C∗-algebra, then [x, y, z] := x ◦ y∗ ◦ z makes A into a C∗-ternary algebra.

A C-linear mapping H :A → B is called a C∗-ternary algebra homomorphism if

H
([x, y, z]) = [

H(x),H(y),H(z)
]

for all x, y, z ∈ A. If, in addition, the mapping H is bijective, then the mapping H :A → B is called a C∗-ternary
algebra isomorphism. A C-linear mapping δ :A → A is called a C∗-ternary derivation if

δ
([x, y, z]) = [

δ(x), y, z
] + [

x, δ(y), z
] + [

x, y, δ(z)
]

for all x, y, z ∈ A (see [1]).

2. Stability of homomorphisms in C∗-ternary algebras

Throughout this section, assume that A is a C∗-ternary algebra with norm ‖ · ‖A and that B is a C∗-ternary algebra
with norm ‖ · ‖B .

We will use the following lemma in this paper.

Lemma 2.1. Let X and Y be linear spaces and let f :X → Y be an additive mapping such that f (μx) = μf (x) for
all x ∈ X and all μ ∈ T

1. Then the mapping f is C-linear.

Lemma 2.2. Let X be a uniquely 2-divisible abelian group and Y be a linear space. A mapping f :X → Y satisfies

f

(
x + y

2
+ z

)
+ f

(
x + z

2
+ y

)
+ f

(
y + z

2
+ x

)
= 2

[
f (x) + f (y) + f (z)

]
(2.1)

for all x, y, z ∈ X if and only if f :X → Y is additive.

Proof. Suppose that f satisfies (2.1). Letting y = z = x in (2.1), we get f (2x) = 2f (x) for all x ∈ X. So f (0) = 0
and 2f (x/2) = f (x) for all x ∈ X. Therefore by letting y = −x and z = 0 in (2.1), we get f (−x) = −f (x) for all
x ∈ X. Letting z = −y in (2.1), we get

f

(
x + y

2

)
+ f

(
x − y

2

)
= f (x) (2.2)

for all x, y ∈ X. Replacing x and y by x + y and x − y in (2.2), respectively, we infer that f (x + y) = f (x) + f (y)

for all x, y ∈ X. So the mapping f :X → Y is additive.
It is clear that each additive mapping satisfies (2.1). �
For a given mapping f :A → B, we define

Df (x, y, z) := f

(
x + y

2
+ z

)
+ f

(
x + z

2
+ y

)
+ f

(
y + z

2
+ x

)
− 2f (x) − 2f (y) − 2f (z),

Dμf (x, y, z) := f

(
μx + μy

2
+ μz

)
+ f

(
μx + μz

2
+ μy

)
+ f

(
μy + μz

2
+ μx

)
− 2μf (x) − 2μf (y) − 2μf (z)

for all μ ∈ T
1 := {λ ∈ C: |λ| = 1} and all x, y, z ∈ A.

Lemma 2.3. Let X and Y be linear spaces and let f :X → Y be a mapping such that

Dμf (x, y, z) = 0 (2.3)

for all μ ∈ T1 and all x, y, z ∈ A. Then the mapping f :X → Y is C-linear.
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Proof. Letting y = z = 0 in (2.3) and using Lemma 2.2, we get f (μx) = μf (x). Now by using Lemma 2.2 twice
and Lemma 2.1, we infer that the mapping f :X → Y is C-linear. �

In the following we investigate the generalized Hyers–Ulam stability of (2.3).

Theorem 2.4. Let ϕ :A3 → [0,∞) and ψ :A3 → [0,∞) be functions such that

ϕ̃(x) :=
∞∑

n=0

1

2n
ϕ
(
2nx,2nx,2nx

)
< ∞, lim

n→∞
1

2n
ϕ
(
2nx,2ny,2nz

) = 0, (2.4)

lim
n→∞

1

8n
ψ

(
2nx,2ny,2nz

) = 0 (2.5)

for all x, y, z ∈ A. Suppose that f :A → B is a mapping satisfying∥∥Dμf (x, y, z)
∥∥

B
� ϕ(x, y, z), (2.6)∥∥f

([x, y, z]) − [
f (x), f (y), f (z)

]∥∥
B

� ψ(x, y, z) (2.7)

for all μ ∈ T
1 and all x, y, z ∈ A. Then there exists a unique C∗-ternary algebra homomorphism H :A → B such

that ∥∥f (x) − H(x)
∥∥

B
� 1

6
ϕ̃(x) (2.8)

for all x ∈ A.

Proof. Letting μ = 1 and x = y = z in (2.6), we get∥∥3f (2x) − 6f (x)
∥∥

B
� ϕ(x, x, x) (2.9)

for all x ∈ A. If we replace x by 2nx in (2.9) and divide both sides of (2.9) by 3 × 2n+1, we get∥∥∥∥ 1

2n+1
f

(
2n+1x

) − 1

2n
f

(
2nx

)∥∥∥∥
B

� 1

3 × 2n+1
ϕ
(
2nx,2nx,2nx

)
for all x ∈ A and all non-negative integers n. Hence∥∥∥∥ 1

2n+1
f

(
2n+1x

) − 1

2m
f

(
2mx

)∥∥∥∥
B

=
∥∥∥∥∥

n∑
k=m

[
1

2k+1
f

(
2k+1x

) − 1

2k
f

(
2kx

)]∥∥∥∥∥
B

�
n∑

k=m

∥∥∥∥ 1

2k+1
f

(
2k+1x

) − 1

2k
f

(
2kx

)∥∥∥∥
B

� 1

6

n∑
k=m

1

2k
ϕ
(
2kx,2kx,2kx

)
(2.10)

for all x ∈ A and all non-negative integers n � m � 0. It follows from (2.4) and (2.10) that the sequence { 1
2n f (2nx)}

is a Cauchy sequence in B for all x ∈ A. Since B is complete, the sequence { 1
2n f (2nx)} converges for all x ∈ A. Thus

one can define the mapping H :A → B by

H(x) := lim
n→∞

1

2n
f

(
2nx

)
for all x ∈ A. Moreover, letting m = 0 and passing the limit n → ∞ in (2.10) we get (2.8). It follows from (2.4) that

∥∥DμH(x,y, z)
∥∥

B
= lim

n→∞
1

2n

∥∥Dμf
(
2nx,2ny,2nz

)∥∥
B

� lim
1

ϕ
(
2nx,2ny,2nz

) = 0

n→∞ 2n
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for all x, y, z ∈ A. So DμH(x,y, z) = 0 for all μ ∈ T
1 and all x, y, z ∈ A. By Lemma 2.3 the mapping H :A → B is

C-linear.
It follows from (2.5) and (2.7) that∥∥H

([x, y, z]) − [
H(x),H(y),H(z)

]∥∥
B

= lim
n→∞

1

8n

∥∥f
([

2nx,2ny,2nz
]) − [

f
(
2nx

)
, f

(
2ny

)
, f

(
2nz

)]∥∥
B

� lim
n→∞

1

8n
ψ

(
2nx,2ny,2nz

) = 0

for all x, y, z ∈ A. Therefore

H
([x, y, z]) = [

H(x),H(y),H(z)
]

for all x, y, z ∈ A. Therefore the mapping H :A → B is a C∗-ternary algebra homomorphism.
Now, let I :A → B be another C∗-ternary algebra homomorphism satisfying (2.8). Then we have from (2.4) that∥∥H(x) − I (x)

∥∥
B

= lim
n→∞

1

2n

∥∥f
(
2nx

) − I
(
2nx

)∥∥
B

� 1

6
lim

n→∞
1

2n
ϕ̃
(
2nx

)
= 1

6
lim

n→∞

∞∑
k=n

1

2k
ϕ
(
2kx,2kx,2kx

) = 0

for all x ∈ A. So H(x) = I (x) for all x ∈ A. This proves the uniqueness of H. Thus the mapping H :A → B is a
unique C∗-ternary algebra homomorphism satisfying (2.8). �
Corollary 2.5. Let ε, θ,p1,p2,p3, q1, q2, q3 be positive real numbers such that p1,p2,p3 < 1 and q1, q2, q3 < 3.

Suppose that f :A → B is a mapping satisfying∥∥Dμf (x, y, z)
∥∥

B
� θ

(‖x‖p1
A + ‖y‖p2

A + ‖z‖p3
A

)
, (2.11)∥∥f

([x, y, z]) − [
f (x), f (y), f (z)

]∥∥
B

� ε
(‖x‖q1

A + ‖y‖q2
A + ‖z‖q3

A

)
(2.12)

for all μ ∈ T
1 and all x, y, z ∈ A. Then there exists a unique C∗-ternary algebra homomorphism H :A → B such

that ∥∥f (x) − H(x)
∥∥

B
� θ

3

{
1

2 − 2p1
‖x‖p1

A + 1

2 − 2p2
‖x‖p2

A + 1

2 − 2p3
‖x‖p3

A

}
(2.13)

for all x ∈ A.

Remark 2.6. Replacing (2.11) by ‖Df (x, y, z)‖B � θ(‖x‖p1
A + ‖y‖p2

A + ‖z‖p3
A ), in Corollary 2.5, we get that the

mapping H :A → B is additive and satisfies (2.13). By using the results of [12,37], we prove in the following example
that the mapping constructed by Rassias and Šemrl serves as a counterexample for the case p1 = p2 = p3 = 1.

Example 2.7. We prove that the continuous real-valued mapping defined by

f (x) =
{

x log2(x + 1), x � 0,

x log2|x − 1|, x < 0,

satisfies the inequality∣∣Df (x, y, z)
∣∣ � 4

(|x| + |y| + |z|)
for all x, y, z ∈ R, and the range of |f (x) − H(x)|/|x| for x �= 0 is unbounded for each additive mapping H : R → R.

It follows from [12,37] that the mapping f satisfies the following inequalities:∣∣f (x + y) − f (x) − f (y)
∣∣ � |x| + |y|,∣∣∣∣2f

(
x + y

)
− f (x) − f (y)

∣∣∣∣ � 2
(|x| + |y|)
2
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for all x, y ∈ R. Therefore we have

∣∣Df (x, y, z)
∣∣ �

∣∣∣∣f
(

x + y

2
+ z

)
− f

(
x + y

2

)
− f (z)

∣∣∣∣ + 1

2

∣∣∣∣2f

(
x + y

2

)
− f (x) − f (y)

∣∣∣∣
+

∣∣∣∣f
(

x + z

2
+ y

)
− f

(
x + z

2

)
− f (y)

∣∣∣∣ + 1

2

∣∣∣∣2f

(
x + z

2

)
− f (x) − f (z)

∣∣∣∣
+

∣∣∣∣f
(

y + z

2
+ x

)
− f

(
y + z

2

)
− f (x)

∣∣∣∣ + 1

2

∣∣∣∣2f

(
y + z

2

)
− f (y) − f (z)

∣∣∣∣
� 4

(|x| + |y| + |z|)
for all x, y, z ∈ R. Since limx→∞ f (x)

x
= +∞, then the range of |f (x) − H(x)|/|x| for x �= 0 is unbounded for each

additive mapping H : R → R.

Theorem 2.8. Let Φ :A3 → [0,∞) and Ψ :A3 → [0,∞) be functions such that

Φ̃(x) :=
∞∑

n=1

2nΦ

(
x

2n
,

x

2n
,

x

2n

)
< ∞, lim

n→∞ 2nΦ

(
x

2n
,

y

2n
,

z

2n

)
= 0, (2.14)

lim
n→∞ 8nΨ

(
x

2n
,

y

2n
,

z

2n

)
= 0 (2.15)

for all x, y, z ∈ A. Suppose that f :A → B is a mapping satisfying∥∥Dμf (x, y, z)
∥∥

B
� Φ(x,y, z), (2.16)∥∥f

([x, y, z]) − [
f (x), f (y), f (z)

]∥∥
B

� Ψ (x, y, z) (2.17)

for all μ ∈ T
1 and all x, y, z ∈ A. Then there exists a unique C∗-ternary algebra homomorphism H :A → B such

that

∥∥f (x) − H(x)
∥∥

B
� 1

6
Φ̃(x) (2.18)

for all x ∈ A.

Proof. Letting μ = 1 and x = y = z in (2.16), we get

∥∥f (2x) − 2f (x)
∥∥

B
� 1

3
Φ(x,x, x) (2.19)

for all x ∈ A. If we replace x by x

2n+1 in (2.19) and multiply both sides of (2.19) to 2n, we get∥∥∥∥2n+1f

(
x

2n+1

)
− 2nf

(
x

2n

)∥∥∥∥
B

� 2n

3
Φ

(
x

2n+1
,

x

2n+1
,

x

2n+1

)

for all x ∈ A and all non-negative integers n. Hence

∥∥∥∥2n+1f

(
x

2n+1

)
− 2mf

(
x

2m

)∥∥∥∥
B

=
∥∥∥∥∥

n∑
k=m

[
2k+1f

(
x

2k+1

)
− 2kf

(
x

2k

)]∥∥∥∥∥
B

�
n∑

k=m

∥∥∥∥2k+1f

(
x

2k+1

)
− 2kf

(
x

2k

)∥∥∥∥
B

� 1

6

n∑
2k+1Φ

(
x

2k+1
,

x

2k+1
,

x

2k+1

)
(2.20)
k=m
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for all x ∈ A and all non-negative integers n � m � 0. It follows from (2.14) and (2.20) that the sequence {2nf ( x
2n )}

is a Cauchy sequence in B for all x ∈ A. Since B is complete, the sequence {2nf ( x
2n )} converges for all x ∈ A. Thus

one can define the mapping H :A → B by

H(x) := lim
n→∞ 2nf

(
x

2n

)
for all x ∈ A. Moreover, letting m = 0 and passing the limit n → ∞ in (2.20) we get (2.18). The rest of the proof is
similar to the proof of Theorem 2.4. �
Corollary 2.9. Let ε, θ,p1,p2,p3, q1, q2 and q3 be non-negative real numbers such that p1,p2,p3 > 1 and
q1, q2, q3 > 3. Suppose that f :A → B is a mapping satisfying (2.11) and (2.12). Then there exists a unique C∗-
ternary algebra homomorphism H :A → B such that

∥∥f (x) − H(x)
∥∥

B
� θ

3

{
1

2p1 − 2
‖x‖p1

A + 1

2p2 − 2
‖x‖p2

A + 1

2p3 − 2
‖x‖p3

A

}
for all x ∈ A.

3. Homomorphisms between C∗-ternary algebras

In the following we investigate the generalized Hyers–Ulam stability of (2.3).

Lemma 3.1. Let X and Y be linear spaces. A mapping f :X → Y satisfies (2.1) for all x, y, z ∈ X \ {0} if and only if
f :X → Y is additive.

Proof. Suppose that f satisfies (2.1). Letting y = z = x in (2.1), we get

f (2x) = 2f (x) (3.1)

for all x ∈ X \ {0}. Letting y = z = −x in (2.1), we get

2f (−x) + 2f (x) = f (0) (3.2)

for all x ∈ X \ {0}. Letting y = 3x, z = −x in (2.1) and using (3.1), we get

f (3x) = f (x) − 2f (−x) (3.3)

for all x ∈ X \ {0}. It follows from (3.1) that 2f (x/2) = f (x) for all x ∈ X \ {0}. So by letting y = x and z = 2x

in (2.1) and using (3.1), we get

f (5x) + f (3x) = 8f (x) (3.4)

for all x ∈ X \ {0}. Putting y = 5x and z = −x in (2.1) and using (3.2), we get

f (5x) − f (3x) = 2f (x) − f (0) (3.5)

for all x ∈ X \ {0}. It follows from (3.4) and (3.5) that

2f (3x) = 6f (x) + f (0) (3.6)

for all x ∈ X \ {0}. It follows from (3.3) and (3.6) that

4
[
f (x) + f (−x)

] + f (0) = 0 (3.7)

for all x ∈ X \ {0}. It follows from (3.2) and (3.7) that f (0) = 0. Hence it follows from (3.2) that f is odd. Therefore
by letting z = −x in (2.1), we get

f

(
x + y

)
+ f

(
y − x

)
= f (y) (3.8)
2 2
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for all x, y ∈ X \ {0}. Since f is odd, then (3.8) holds for all x, y ∈ X. Replacing x and y by x − y and x + y in (3.8),
respectively, we get f (x + y) = f (x) + f (y) for all x, y ∈ X. So the mapping f :X → Y is additive.

It is clear that each additive mapping satisfies (2.1). �
Notation. Let X be a linear space. x ∈ X
 means x ∈ X or x ∈ X \ {0}.

Theorem 3.2. Let ε, θ be non-negative real numbers and let p1,p2,p3, q1, q2, q3 be real numbers such that pi < 0
for all 1 � i � 3 and qj �= 1 for some 1 � j � 3. Suppose that f :A → B is a mapping satisfying∥∥Dμf (x, y, z)

∥∥
B

� θ‖x‖p1
A ‖y‖p2

A ‖z‖p3
A , (3.9)∥∥f

([x, y, z]) − [
f (x), f (y), f (z)

]∥∥
B

� ε‖x‖q1
A ‖y‖q2

A ‖z‖q3
A (3.10)

for all μ ∈ T
1 and all x, y, z ∈ A
. Then there exists a unique C∗-ternary algebra homomorphism H : A → B such

that ∥∥f (x) − H(x)
∥∥

B
� 1

3(2 − 2λ)
‖x‖λ

A (3.11)

for all x ∈ A \ {0}, where λ = p1 + p2 + p3.

Proof. Letting μ = 1 and x = y = z in (3.9), we get∥∥3f (2x) − 6f (x)
∥∥

B
� ‖x‖λ

A (3.12)

for all x ∈ A \ {0}. If we replace x by 2nx in (3.12) and divide both sides of (3.12) by 6 × 2n, we get∥∥∥∥ 1

2n+1
f

(
2n+1x

) − 1

2n
f

(
2nx

)∥∥∥∥
B

� 1

6

(
2λ

2

)n

‖x‖λ
A

for all x ∈ A \ {0} and all non-negative integers n. Hence∥∥∥∥ 1

2n+1
f

(
2n+1x

) − 1

2m
f

(
2mx

)∥∥∥∥
B

=
∥∥∥∥∥

n∑
k=m

[
1

2k+1
f

(
2k+1x

) − 1

2k
f

(
2kx

)]∥∥∥∥∥
B

�
n∑

k=m

∥∥∥∥ 1

2k+1
f

(
2k+1x

) − 1

2k
f

(
2kx

)∥∥∥∥
B

� 1

6

n∑
k=m

(
2λ

2

)k

‖x‖λ
A (3.13)

for all x ∈ A \ {0} and all non-negative integers n � m � 0. Since λ < 0, it follows from (3.13) that the sequence
{ 1

2n f (2nx)} is a Cauchy sequence in B for all x ∈ A. Since B is complete, the sequence { 1
2n f (2nx)} converges for all

x ∈ A. Thus one can define the mapping H :A → B by

H(x) := lim
n→∞

1

2n
f

(
2nx

)
for all x ∈ A. Moreover, letting m = 0 and passing the limit n → ∞ in (3.13) we get (3.11). It follows from (2.4) that

∥∥DμH(x,y, z)
∥∥

B
= lim

n→∞
1

2n

∥∥Dμf
(
2nx,2ny,2nz

)∥∥
B

� lim
n→∞

(
2λ

2

)n

‖x‖p1
A ‖y‖p2

A ‖z‖p3
A = 0

for all x, y, z ∈ A\{0}. So DμH(x,y, z) = 0 for all μ ∈ T1 and all x, y, z ∈ \{0}. By Lemmas 3.1 and 2.3 the mapping
H : A → B is C-linear.

Without any loss of generality, we may suppose that q1 �= 1. Let q1 > 1. It follows from (3.10) that
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∥∥H
([x, y, z]) − [

H(x),H(y),H(z)
]∥∥

B
= lim

n→∞ 2n

∥∥∥∥f

([
x

2n
, y, z

])
−

[
f

(
x

2n

)
, f (y), f (z)

]∥∥∥∥
B

� ε lim
n→∞

2n

2nq1
‖x‖q1

A ‖y‖q2
A ‖z‖q3

A = 0

for all x, y, z ∈ A
. Therefore

H
([x, y, z]) = [

H(x),H(y),H(z)
]

(3.14)

for all x, y, z ∈ A
. Since H(0) = 0, then (3.14) holds for all x, y, z ∈ A. Similarly, for q1 < 1, we get (3.14). So the
mapping H :A → B is a C∗-ternary algebra homomorphism.

Now, let T :A → B be another C∗-ternary algebra homomorphism satisfying (3.11). Then we have from (2.4) that

∥∥H(x) − T (x)
∥∥

B
= lim

n→∞
1

2n

∥∥f
(
2nx

) − T
(
2nx

)∥∥
B

� 1

3(2 − 2λ)
lim

n→∞

(
2λ

2

)n

‖x‖λ
A = 0

for all x ∈ A \ {0}. Since H(0) = T (0) = 0, so H(x) = T (x) for all x ∈ A. This proves the uniqueness of H. Thus
the mapping H :A → B is a unique C∗-ternary algebra homomorphism satisfying (3.11). �
Remark 3.3. Theorem 3.2 will be valid if we replace the condition qj �= 1 for some 1 � j � 3 by one of the conditions
q1 + q2 + q3 �= 3 or qi + qj �= 2 for some 1 � i < j � 3.

Theorem 3.4. Let q1, q2, q3 be real numbers and ε, θ,p1,p2,p3 be non-negative real numbers such that pi > 0 and
qj �= 1 for some 1 � i, j � 3. Suppose that f :A → B is a mapping satisfying (3.9) and (3.10) for all μ ∈ T

1 and all
x, y, z ∈ A (x,y, z ∈ A \ {0} when qi < 0 for some 1 � i � 3). Then the mapping f :A → B is a C∗-ternary algebra
homomorphism.

Proof. Without any loss of generality, we suppose p1 > 0. By letting x = y = z = 0 in (3.9), we get f (0) = 0. Letting
x = y = 0 and replacing z by 2z in (3.9), we get

f (2μz) + 2f (μz) = 2μf (2z) (3.15)

for all μ ∈ T
1 and all z ∈ A. Letting μ = 1 in (3.15), we get

f (2z) = 2f (z) (3.16)

for all z ∈ A. We get from (3.15) and (3.16) that f (μz) = μf (z) for all μ ∈ T
1 and all z ∈ A. Therefore f is an odd

function.
Letting x = 0 and replacing y and z by 2y and 2z in (3.9), respectively, we get

f (y + 2z) + f (z + 2y) + f (y + z) = 4f (y) + 4f (z) (3.17)

for all y, z ∈ A. Replacing y by y + z and z by −z in (3.17) and using the oddness of f, we get

f (y − z) + f (2y + z) + f (y) = 4f (y + z) − 4f (z) (3.18)

for all y, z ∈ A. Replacing y by z and z by y in (3.18) and using the oddness of f, we get

−f (y − z) + f (2z + y) + f (z) = 4f (y + z) − 4f (y) (3.19)

for all y, z ∈ A. Adding (3.18) to (3.19) we have

f (y + 2z) + f (z + 2y) = 8f (y + z) − 5f (y) − 5f (z) (3.20)

for all y, z ∈ A. Now, by (3.17) and (3.20), we have f (y + z) = f (y) + f (z) for all y, z ∈ A. Hence by Lemma 2.1
the mapping f :A → B is C-linear.
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Without any loss of generality, we may suppose that q1 �= 1. Let q1 > 1. It follows from (3.10) that∥∥f
([x, y, z]) − [

f (x), f (y), f (z)
]∥∥

B
= lim

n→∞ 2n

∥∥∥∥f

([
x

2n
, y, z

])
−

[
f

(
x

2n

)
, f (y), f (z)

]∥∥∥∥
B

� ε lim
n→∞

2n

2nq1
‖x‖q1

A ‖y‖q2
A ‖z‖q3

A = 0

for all x, y, z ∈ A. Therefore

f
([x, y, z]) = [

f (x), f (y), f (z)
]

(3.21)

for all x, y, z ∈ A (x,y, z ∈ A \ {0} when qi < 0 for some 2 � i � 3). Since f (0) = 0, then (3.21) holds for all
x, y, z ∈ A when qi < 0 for some 2 � i � 3. Similarly, for q1 < 1, we get (3.21). So the mapping f :A → B is a
C∗-ternary algebra homomorphism. �

We will use the following lemma in the proof of the next theorem.

Lemma 3.5. Let X and Y be linear spaces. An odd mapping f :X → Y satisfies

f

(
x + y

2

)
+ f

(
x

2
+ y

)
+ f

(
y

2
+ x

)
= 2

[
f (x) + f (y)

]
(3.22)

for all x, y ∈ X \ {0} if and only if f :X → Y is additive.

Proof. Suppose that f satisfies (3.22). Since f is odd, then f (0) = 0. Letting y = x in (3.22), we get

f

(
3x

2

)
= 3

2
f (x) (3.23)

for all x ∈ X \ {0}. Letting y = 2x in (3.22) and using (3.23), we get

f

(
5x

2

)
= f (2x) + 1

2
f (x) (3.24)

for all x ∈ X \ {0}. Letting y = −2x in (3.22) and using the oddness of f, we get

f

(
3x

2

)
+ f

(
x

2

)
= 2f (2x) − 2f (x) (3.25)

for all x ∈ X \ {0}. It follows from (3.25) that

f (3x) + f (x) = 2f (4x) − 2f (2x) (3.26)

for all x ∈ X \ {0}. Letting y = 4x in (3.22) and using (3.23) and (3.24), we get

5f (3x) = 4f (4x) − 2f (2x) + 3f (x) (3.27)

for all x ∈ X \ {0}. It follows from (3.26) and (3.27) that

3f (4x) = 4f (2x) + 4f (x) (3.28)

for all x ∈ X \ {0}. It follows from (3.23) and (3.25) that

7f (x) + 2f

(
x

2

)
= 4f (2x)

for all x ∈ X \ {0}. Replacing x by 2x in the last equation, we get

4f (4x) = 7f (2x) + 2f (x) (3.29)

for all x ∈ X \ {0}. It follows from (3.28) and (3.29) that f (2x) = 2f (x) for all x ∈ X \ {0}. Since f (0) = 0, then
f (2x) = 2f (x) for all x ∈ X. Therefore (3.22) holds for all x, y ∈ X. Hence the mapping f satisfies (3.17) for all
y, z ∈ X. Using the proof of Theorem 3.4, we get that the mapping f :X → Y is additive.

It is clear that each additive mapping satisfies (3.22). �
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Theorem 3.6. Let ε, θ be non-negative real numbers and let p1,p2,p3, q1, q2, q3 be real numbers such that pipj < 0
for some 1 � i < j � 3 and qj �= 1 for some 1 � j � 3. Suppose that f :A → B is a mapping satisfying (3.9)
and (3.10) for all μ ∈ T1 and all x, y, z ∈ A
. Then the mapping f :A → B is a C∗-ternary algebra homomorphism.

Proof. Without any loss of generality, we may assume that p3 > 0. Let μ = 1. Letting z = 0 in (3.9), we get

f

(
x + y

2

)
+ f

(
x

2
+ y

)
+ f

(
y

2
+ x

)
= 2

[
f (x) + f (y) + f (0)

]
(3.30)

for all x, y ∈ A \ {0}. We show that f is additive.
Letting y = −x in (3.30), we get

f

(
x

2

)
+ f

(−x

2

)
= 2

[
f (x) + f (−x)

] + f (0) (3.31)

for all x ∈ A \ {0}. It follows from (3.31) that

f (x) + f (−x) = 2
[
f (2x) + f (−2x)

] + f (0), (3.32)

f

(
3x

2

)
+ f

(−3x

2

)
= 2

[
f (3x) + f (−3x)

] + f (0) (3.33)

for all x ∈ A \ {0}. Letting y = x in (3.30), we get

2f

(
3x

2

)
= 3f (x) + 2f (0) (3.34)

for all x ∈ A \ {0}. It follows from (3.34) that

2

[
f

(
3x

2

)
+ f

(−3x

2

)]
= 3

[
f (x) + f (−x)

] + 4f (0), (3.35)

2
[
f (3x) + f (−3x)

] = 3
[
f (2x) + f (−2x)

] + 4f (0) (3.36)

for all x ∈ A \ {0}. It follows from (3.33) and (3.35) that

3
[
f (x) + f (−x)

] + 2f (0) = 4
[
f (3x) + f (−3x)

]
(3.37)

for all x ∈ A \ {0}. It follows from (3.36) and (3.37) that

f (x) + f (−x) = 2
[
f (2x) + f (−2x) + f (0)

]
(3.38)

for all x ∈ A \ {0}. Now, we get from (3.32) and (3.38) that f (0) = 0. Hence (3.38) implies that

f (x) + f (−x) = 2
[
f (2x) + f (−2x)

]
(3.39)

for all x ∈ A \ {0}. Letting y = −2x in (3.30) and using (3.34) (with f (0) = 0), we get

f

(−x

2

)
+ 3

2
f (−x) = 2

[
f (x) + f (−2x)

]
for all x ∈ A \ {0}. It follows from the last equation that[

f

(
x

2

)
+ f

(−x

2

)]
+ 3

2

[
f (x) + f (−x)

] = 2
[
f (x) + f (−x)

] + 2
[
f (2x) + f (−2x)

]
(3.40)

for all x ∈ A \ {0}. Since f (0) = 0, then it follows from (3.31), (3.39) and (3.40) that f (−x) = −f (x) for all
x ∈ A\{0}. Since f (0) = 0, then f is odd. Therefore the odd mapping f : A → B satisfies (3.22) for all x, y ∈ A\{0}.
So by Lemma 3.5, the mapping f is additive. Therefore by letting z = 0 and y = x in (3.9), we get f (μx) = μf (x)

for all x ∈ A \ {0}. Since f (0) = 0, then f (μx) = μf (x) for all x ∈ A. So by Lemma 2.1, the mapping f is C-linear.
The rest of the proof is similar to the proof of Theorem 3.4. �
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Theorem 3.7. Let q1, q2, q3 be real numbers and let ε, θ,p1,p2,p3 be non-negative real numbers such that q1 +q2 +
q3 �= 3 and pi > 0 for some 1 � i � 3. Suppose that f :A → B is a mapping satisfying (3.9) and (3.10) for all μ ∈ T

1

and all x, y, z ∈ A (x,y, z ∈ A \ {0} when qi < 0 for some 1 � i � 3). Then the mapping f :A → B is a C∗-ternary
algebra homomorphism.

Proof. Similarly to the proof of Theorem 3.4, the mapping f :A → B is C-linear. Let q1 + q2 + q3 > 3. It follows
from (3.10) that∥∥f

([x, y, z]) − [
f (x), f (y), f (z)

]∥∥
B

= lim
n→∞ 8n

∥∥∥∥f

([
x

2n
,

y

2n
,

z

2n

])
−

[
f

(
x

2n

)
, f

(
y

2n

)
, f

(
z

2n

)]∥∥∥∥
B

� ε lim
n→∞

8n

2n(q1+q2+q3)
‖x‖q1

A ‖y‖q2
A ‖z‖q3

A = 0

for all x, y, z ∈ A. Therefore we get (3.21) for all x, y, z ∈ A (x,y, z ∈ A\ {0} when qi < 0 for some 1 � i � 3). Since
f (0) = 0, then (3.21) holds for all x, y, z ∈ A when qi < 0 for some 1 � i � 3. Similarly, for q1 + q2 + q3 < 3, we
get (3.21). So the mapping f :A → B is a C∗-ternary algebra homomorphism. �
Remark 3.8. If we replace the condition q1 +q2 +q3 �= 3 in Theorem 3.7 by qi +qj �= 2 for some 1 � i < j � 3, then
by using the similar proof of Theorem 3.7, we get that the mapping f :A → B is a C∗-ternary algebra homomorphism.

Remark 3.9. It is an open problem: can we prove Theorems 3.2, 3.4, 3.6 and 3.7 when q1 = q2 = q3 = 1?

4. Homomorphisms between unital C∗-ternary algebras

Throughout this section, assume that A is a unital C∗-ternary algebra with norm ‖ · ‖A, unit e and that B is a
C∗-ternary algebra with norm ‖ · ‖B and unit e′.

We investigate homomorphisms between unital C∗-ternary algebras, associated to the functional equation
Dμf (x, y, z) = 0.

Theorem 4.1. Let ε, θ,p1,p2,p3, q1, q2, q3 be positive real numbers such that p1,p2,p3 < 1, q1, q2 < 2 and q3 < 3.

Suppose that f :A → B is a mapping satisfying (2.11) and (2.12). If there exists a real number λ > 1 (0 < λ < 1)

and an element x0 ∈ A such that limn→∞ 1
λn f (λnx0) = e′ (limn→∞ λnf (

x0
λn ) = e′), then the mapping f :A → B is a

C∗-ternary algebra homomorphism.

Proof. By Corollary 2.5 there exists a unique C∗-ternary algebra homomorphism H :A → B such that∥∥f (x) − H(x)
∥∥

B
� θ

3

{
1

2 − 2p1
‖x‖p1

A + 1

2 − 2p2
‖x‖p2

A + 1

2 − 2p3
‖x‖p3

A

}
(4.1)

for all x ∈ A. It follows from (4.1) that

H(x) = lim
n→∞

1

λn
f

(
λnx

) (
H(x) = lim

n→∞λnf

(
x

λn

))
(4.2)

for all x ∈ A and all real number λ > 1 (0 < λ < 1). Therefore by the assumption, we get that H(x0) = e′. Let λ > 1
and limn→∞ 1

λn f (λnx0) = e′. It follows from (2.12) that∥∥[
H(x),H(y),H(z)

] − [
H(x),H(y), f (z)

]∥∥
B

= ∥∥H [x, y, z] − [
H(x),H(y), f (z)

]∥∥
B

= lim
n→∞

1

λ2n

∥∥f
([

λnx,λny, z
]) − [

f
(
λnx

)
, f

(
λny

)
, f (z)

]∥∥
B

� ε lim
n→∞

1

λ2n

[
λnq1‖x‖q1

A + λnq2‖y‖q2
A + ‖z‖q3

A )
] = 0

for all x, y, z ∈ A. So [H(x),H(y),H(z)] = [H(x),H(y), f (z)] for all x, y, z ∈ A. Letting x = y = x0 in the last
equality, we get f (z) = H(z) for all z ∈ A. Similarly, one can show that H(z) = f (z) for all z ∈ A when 0 < λ < 1
and limn→∞ λnf (

x0
λn ) = e′. Therefore the mapping f :A → B is a C∗-ternary algebra homomorphism. �
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Remark 4.2. Theorem 4.1 will be valid if we replace the conditions q1, q2 < 2 and q3 < 3 by q2, q3 < 2 and q1 < 3.

Theorem 4.3. Let ε, θ,p1,p2,p3, q1, q2 and q3 be non-negative real numbers such that p1,p2,p3 > 1 and
q1, q2, q3 > 2. Suppose that f :A → B is a mapping satisfying (2.11) and∥∥f

([x, y, z]) − [
f (x), f (y), f (z)

]∥∥
B

� ε
(‖x‖q1

A ‖y‖q2
A + ‖y‖q2

A ‖z‖q3
A + ‖x‖q1

A ‖z‖q3
A

)
(4.3)

for all μ ∈ T
1 and all x, y, z ∈ A. If there exist a real number λ > 1 (0 < λ < 1) and an element x0 ∈ A such that

limn→∞ λnf (
x0
λn ) = e′ (limn→∞ 1

λn f (λnx0) = e′), then the mapping f :A → B is a C∗-ternary algebra homomor-
phism.

Proof. By Theorem 2.8 there exists a unique C∗-ternary algebra homomorphism H :A → B such that

∥∥f (x) − H(x)
∥∥

B
� θ

3

{
1

2p1 − 2
‖x‖p1

A + 1

2p2 − 2
‖x‖p2

A + 1

2p3 − 2
‖x‖p3

A

}
(4.4)

for all x ∈ A. It follows from (4.4) that

H(x) = lim
n→∞λnf

(
x

λn

) (
H(x) = lim

n→∞
1

λn
f

(
λnx

))
(4.5)

for all x ∈ A and all real number λ > 1 (0 < λ < 1). Therefore by the assumption, we get that H(x0) = e′. Let λ > 1
and limn→∞ λnf (

x0
λn ) = e′. It follows from (2.12) that∥∥[

H(x),H(y),H(z)
] − [

H(x),H(y), f (z)
]∥∥

B

= ∥∥H [x, y, z] − [
H(x),H(y), f (z)

]∥∥
B

= lim
n→∞λ2n

∥∥∥∥f

([
x

λn
,

y

λn
, z

])
−

[
f

(
x

λn

)
, f

(
y

λn

)
, f (z)

]∥∥∥∥
B

� ε lim
n→∞λ2n

[
1

λn(q1+q2)
‖x‖q1

A ‖y‖q2
A + 1

λnq2
‖y‖q2

A ‖z‖q3
A + 1

λnq1
‖x‖q1

A ‖z‖q3
A )

]
= 0

for all x, y, z ∈ A. So [H(x),H(y),H(z)] = [H(x),H(y), f (z)] for all x, y, z ∈ A. Letting x = y = x0 in the last
equality, we get f (z) = H(z) for all z ∈ A. Similarly, one can show that H(z) = f (z) for all z ∈ A when 0 < λ < 1
and limn→∞ 1

λn f (λnx0) = e′. Therefore the mapping f :A → B is a C∗-ternary algebra homomorphism. �
5. Stability of derivations on C∗-ternary algebras

Throughout this section, assume that A is a C∗-ternary algebra with norm ‖ · ‖A.
In this section we prove the generalized Hyers–Ulam stability of derivations on C∗-ternary algebras for the func-

tional equation Dμf (x, y, z) = 0.

Theorem 5.1. Let ϕ :A3 → [0,∞) and ψ :A3 → [0,∞) be functions such that

ϕ̃(x) :=
∞∑

n=0

1

2n
ϕ
(
2nx,2nx,2nx

)
< ∞, lim

n→∞
1

2n
ϕ
(
2nx,2ny,2nz

) = 0, (5.1)

lim
n→∞

1

8n
ψ

(
2nx,2ny,2nz

) = 0 (5.2)

for all x, y, z ∈ A. Suppose that f :A → A is a mapping satisfying∥∥Dμf (x, y, z)
∥∥

A
� ϕ(x, y, z), (5.3)∥∥f

([x, y, z]) − [
f (x), y, z

] − [
x,f (y), z

] − [
x, y,f (z)

]∥∥
A

� ψ(x, y, z) (5.4)

for all μ ∈ T1 and all x, y, z ∈ A. Then there exists a unique C∗-ternary algebra derivation D :A → A such that
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∥∥f (x) − D(x)
∥∥

A
� 1

6
ϕ̃(x) (5.5)

for all x ∈ A.

Proof. By the proof of Theorem 2.4, there exists a unique C-linear mapping D :A → A satisfying (5.5) and

D(x) := lim
n→∞

1

2n
f

(
2nx

)
for all x ∈ A. It follows from (5.2) and (5.4) that∥∥D[x, y, z] − [

D(x), y, z
] − [

x,D(y), z
] − [

x, y,D(z)
]∥∥

A

= lim
n→∞

1

8n

∥∥f
[
2nx,2ny,2nz

] − [
f

(
2nx

)
,2ny,2nz

] − [
2nx,f

(
2ny

)
,2nz

] − [
2nx,2ny,f

(
2nz

)]∥∥
A

� lim
n→∞

1

8n
ψ

(
2nx,2ny,2nz

) = 0

for all x, y, z ∈ A. So

D[x, y, z] = [
D(x), y, z

] + [
x,D(y), z

] + [
x, y,D(z)

]
for all x, y, z ∈ A. Therefore the mapping D :A → A is a C∗-ternary algebra derivation. �
Theorem 5.2. Let ϕ :A3 → [0,∞) be a function satisfying (5.1). Suppose that the function ψ :A3 → [0,∞) satisfies
one of the following conditions:

(i) limn→∞ 1
4n ψ(2nx,2ny, z) = 0;

(ii) limn→∞ 1
4n ψ(x,2ny,2nz) = 0;

(iii) limn→∞ 1
4n ψ(2nx, y,2nz) = 0

for all x, y, z ∈ A. Let f :A → A be a mapping satisfying (5.3) and (5.4). Then the mapping f :A → A is a C∗-
ternary algebra derivation.

Proof. By the proof of Theorem 2.4, there exists a C-linear mapping D :A → A defined by

D(x) := lim
n→∞

1

2n
f

(
2nx

)
for all x ∈ A. We show that if the mapping ψ satisfies one of the conditions (i), (ii) or (iii), then f = D.

Let ψ satisfies (i) (we have a similar proof if ψ satisfies (ii) or (iii)). It follows from (5.4) that∥∥D[x, y, z] − [
D(x), y, z

] − [
x,D(y), z

] − [
x, y,f (z)

]∥∥
A

= lim
n→∞

1

4n

∥∥f
[
2nx,2ny, z

] − [
f

(
2nx

)
,2ny, z

] − [
2nx,f

(
2ny

)
, z

] − [
2nx,2ny,f (z)

]∥∥
A

� lim
n→∞

1

4n
ψ

(
2nx,2ny, z

) = 0

for all x, y, z ∈ A. Therefore

D
([x, y, z]) = [

D(x), y, z
] + [

x,D(y), z
] + [

x, y,f (z)
]

(5.6)

for all x, y, z ∈ A. Replacing z by 2z in (5.6), we get

2D
([x, y, z]) = 2

[
D(x), y, z

] + 2
[
x,D(y), z

] + [
x, y,f (2z)

]
(5.7)

for all x, y, z ∈ A. It follows from (5.6) and (5.7) that[
x, y,f (2z) − 2f (z)

] = 0
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for all x, y, z ∈ A. Letting x = y = f (2z) − 2f (z) in the last equation, we get∥∥f (2z) − 2f (z)
∥∥3

A
= ∥∥[

f (2z) − 2f (z), f (2z) − 2f (z), f (2z) − 2f (z)
]∥∥

A
= 0

for all z ∈ A. So f (2z) = 2f (z) for all z ∈ A. By using induction, we infer that f (2nz) = 2nf (z) for all z ∈ A and all
n ∈ N. Therefore D(x) = f (x) for all x ∈ A. Hence it follows from (5.6) that the mapping f :A → A is a C∗-ternary
derivation. �
Corollary 5.3. Let ε, θ,p1,p2,p3, q1, q2 and q3 be non-negative real numbers such that p1,p2,p3 < 1 and qi < 2
for some 1 � i � 3. Suppose that f :A → A is a mapping satisfying∥∥Dμf (x, y, z)

∥∥
A

� θ
(‖x‖p1

A + ‖y‖p2
A + ‖z‖p3

A

)
, (5.8)∥∥f

([x, y, z]) − [
f (x), y, z

] − [
x,f (y), z

] − [
x, y,f (z)

]∥∥
A

� ε
(‖x‖q1

A + ‖y‖q2
A + ‖z‖q3

A

)
(5.9)

for all μ ∈ T
1 and all x, y, z ∈ A. Then the mapping f :A → A is a C∗-ternary algebra derivation.

Theorem 5.4. Let ϕ :A3 → [0,∞) be a function satisfying (5.1). Suppose that the function ψ :A3 → [0,∞) satisfies
one of the following conditions:

(i) limn→∞ 1
2n ψ(2nx, y, z) = 0;

(ii) limn→∞ 1
2n ψ(x,2ny, z) = 0;

(iii) limn→∞ 1
2n ψ(x, y,2nz) = 0

for all x, y, z ∈ A. Let f :A → A be a mapping satisfying (5.3) and (5.4). Then the mapping f :A → A is a C∗-
ternary algebra derivation.

Proof. By the proof of Theorem 2.4, there exists a C-linear mapping D :A → A defined by

D(x) := lim
n→∞

1

2n
f

(
2nx

)
for all x ∈ A. We show that if the mapping ψ satisfies one of the conditions (i), (ii) or (iii), then f = D.

Let ψ satisfies (i) (we have a similar proof if ψ satisfies (ii) or (iii)). It follows from (5.4) that∥∥D[x, y, z] − [
D(x), y, z

] − [
x,f (y), z

] − [
x, y,f (z)

]∥∥
A

= lim
n→∞

1

2n

∥∥f
[
2nx, y, z

] − [
f (2nx), y, z

] − [
2nx,f (y), z

] − [
2nx, y, f (z)

]∥∥
A

� lim
n→∞

1

2n
ψ

(
2nx, y, z

) = 0

for all x, y, z ∈ A. Therefore

D
([x, y, z]) = [

D(x), y, z
] + [

x,f (y), z
] + [

x, y,f (z)
]

(5.10)

for all x, y, z ∈ A.

The rest of the proof is similar to the proof Theorem 5.2. �
Theorem 5.5. Let Φ :A3 → [0,∞) and Ψ :A3 → [0,∞) be functions such that

Φ̃(x) :=
∞∑

n=1

2nΦ

(
x

2n
,

x

2n
,

x

2n

)
< ∞, lim

n→∞ 2nΦ

(
x

2n
,

y

2n
,

z

2n

)
= 0, (5.11)

lim
n→∞ 8nΨ

(
x

2n
,

y

2n
,

z

2n

)
= 0 (5.12)

for all x, y, z ∈ A. Suppose that f :A → A is a mapping satisfying
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∥∥Dμf (x, y, z)
∥∥

A
� Φ(x,y, z), (5.13)∥∥f

([x, y, z]) − [
f (x), y, z

] − [
x,f (y), z

] − [
x, y,f (z)

]∥∥
A

� Ψ (x, y, z) (5.14)

for all μ ∈ T
1 and all x, y, z ∈ A. Then there exists a unique C∗-ternary algebra derivation D :A → A such that

∥∥f (x) − D(x)
∥∥

A
� 1

6
Φ̃(x) (5.15)

for all x ∈ A.

Proof. By the proof of Theorem 2.8, there exists a unique C-linear mapping D :A → A satisfying (5.15) and

D(x) := lim
n→∞ 2nf

(
x

2n

)
for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 5.1. �
Theorem 5.6. Let Φ :A3 → [0,∞) be a function satisfying (5.11). Suppose that the function Ψ :A3 → [0,∞) satisfies
one of the following conditions:

(i) limn→∞ 4nΨ ( x
2n ,

y
2n , z) = 0;

(ii) limn→∞ 4nΨ (x,
y
2n , z

2n ) = 0;
(iii) limn→∞ 4nΨ ( x

2n , y, z
2n ) = 0

for all x, y, z ∈ A. Let f :A → A be a mapping satisfying (5.13) and (5.14). Then the mapping f :A → A is a
C∗-ternary algebra derivation.

Proof. By the proof of Theorem 2.8, there exists a C-linear mapping D :A → A defined by

D(x) := lim
n→∞ 2nf

(
x

2n

)
for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 5.2. �
Corollary 5.7. Let ε, θ,p1,p2,p3, q1, q2 and q3 be non-negative real numbers such that p1,p2,p3 > 1 and
q1, q2, q3 > 2. Suppose that f :A → A is a mapping satisfying (5.8) and∥∥f

([x, y, z]) − [
f (x), y, z

] − [
x,f (y), z

] − [
x, y,f (z)

]∥∥
A

� ε
(‖x‖q1

A ‖y‖q2
A + ‖y‖q2

A ‖z‖q3
A + ‖x‖q1

A ‖z‖q3
A

)
(5.16)

for all x, y, z ∈ A. Then the mapping f :A → A is a C∗-ternary algebra derivation.

Theorem 5.8. Let Φ :A3 → [0,∞) be a function satisfying (5.11). Suppose that the function Ψ :A3 → [0,∞) satisfies
one of the following conditions:

(i) limn→∞ 2nΨ ( x
2n , y, z) = 0;

(ii) limn→∞ 2nΨ (x,
y
2n , z) = 0;

(iii) limn→∞ 2nΨ (x, y, z
2n ) = 0

for all x, y, z ∈ A. Let f :A → A be a mapping satisfying (5.13) and (5.14). Then the mapping f :A → A is a
C∗-ternary algebra derivation.
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Proof. By the proof of Theorem 2.8, there exists a C-linear mapping D :A → A defined by

D(x) := lim
n→∞ 2nf

(
x

2n

)
for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 5.4. �
Theorem 5.9. Let ε, θ,p1,p2,p3 be non-negative real numbers and let q1, q2, q3 be real numbers such that pi > 0
and qj �= 1 for some 1 � i, j � 3. Suppose that f :A → A is a mapping satisfying∥∥Dμf (x, y, z)

∥∥
A

� θ‖x‖p1
A ‖y‖p2

A ‖z‖p3
A , (5.17)∥∥f

([x, y, z]) − [
f (x), y, z

] − [
x,f (y), z

] − [
x, y,f (z)

]∥∥
A

� ε‖x‖q1
A ‖y‖q2

A ‖z‖q3
A (5.18)

for all μ ∈ T
1 and all x, y, z ∈ A (x,y, z ∈ A \ {0} when qi < 0 for some 1 � i � 3). Then the mapping f : A → A is

a C∗-ternary algebra derivation.

Proof. Without any loss of generality, we may assume that q1 �= 1 and p1 > 0. Therefore it follows from the proof of
Theorem 3.4 that the mapping f :A → A is C-linear. Let q1 < 1. It follows from (5.18) that∥∥f

([x, y, z]) − [
f (x), y, z

] − [
x,f (y), z

] − [
x, y,f (z)

]∥∥
A

= lim
n→∞

1

2n

∥∥f
[
2nx, y, z

] − [
f

(
2nx

)
, y, z

] − [
2nx,f (y), z

] − [
2nx, y, f (z)

]∥∥
A

� ε lim
n→∞

2nq1

2n
‖x‖q1

A ‖y‖q2
A ‖z‖q3

A = 0

for all x, y, z ∈ A (x,y, z ∈ A \ {0} when qi < 0 for some 1 � i � 3). Therefore

f
([x, y, z]) = [

f (x), y, z
] + [

x,f (y), z
] + [

x, y,f (z)
]

(5.19)

for all x, y, z ∈ A (x,y, z ∈ A \ {0} when qi < 0 for some 1 � i � 3). Since f (0) = 0, then (5.20) holds for all
x, y, z ∈ A when qi < 0 for some 1 � i � 3. Similarly, we get (5.20) when q1 > 1. So the mapping f :A → B is a
C∗-ternary algebra derivation. �
Theorem 5.10. Let q1, q2, q3 be real numbers and let ε, θ,p1,p2,p3 be non-negative real numbers such that pi > 0
and q1 + q2 + q3 �= 3 for some 1 � i � 3. Suppose that f :A → A is a mapping satisfying (5.17) and (5.18). Then the
mapping f : A → B is a C∗-ternary algebra derivation.

Proof. It follows from the proof of Theorem 3.4 that the mapping f :A → A is C-linear. Let q1 + q2 + q3 < 3. It
follows from (5.18) that∥∥f

([x, y, z]) − [
f (x), y, z

] − [
x,f (y), z

] − [
x, y,f (z)

]∥∥
A

= lim
n→∞

1

8n

∥∥f
([

2nx,2ny,2nz
]) − [

f
(
2nx

)
,2ny,2nz

] − [
2nx,f

(
2ny

)
,2nz

] − [
2nx,2ny,f

(
2nz

)]∥∥
A

� ε lim
n→∞

2n(q1+q2+q3)

8n
‖x‖q1

A ‖y‖q2
A ‖z‖q3

A = 0

for all x, y, z ∈ A (x,y, z ∈ A \ {0} when qi < 0 for some 1 � i � 3). Therefore

f
([x, y, z]) = [

f (x), y, z
] + [

x,f (y), z
] + [

x, y,f (z)
]

(5.20)

for all x, y, z ∈ A (x,y, z ∈ A \ {0} when qi < 0 for some 1 � i � 3). Since f (0) = 0, then (5.20) holds for all
x, y, z ∈ A when qi < 0 for some 1 � i � 3. Similarly, we get (5.20) when q1 + q2 + q3 > 3. So the mapping
f :A → B is a C∗-ternary algebra derivation. �
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[6] P. Găvruta, An answer to a question of John Rassias concerning the stability of Cauchy equation, in: Advances in Equations and Inequalities,

in: Hadronic Math. Ser., USA, 1999, pp. 67–71.
[7] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941) 222–224.
[8] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[9] D.H. Hyers, G. Isac, Th.M. Rassias, On the asymptoticity aspect of Hyers–Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998)

425–430.
[10] G. Isac, Th.M. Rassias, Stability of ψ -additive mappings: Applications to nonlinear analysis, Int. J. Math. Math. Sci. 19 (1996) 219–228.
[11] K.W. Jun, H.-M. Kim, On the stability of Euler–Lagrange type cubic mappings in quasi-Banach spaces, J. Math. Anal. Appl. 332 (2007)

1334–1349.
[12] Soon-Mo Jung, Hyers–Ulam–Rassias stability of Jensen’s equation and its application, Proc. Amer. Math. Soc. 126 (1998) 3137–3143.
[13] S. Jung, On the Hyers–Ulam–Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 204 (1996) 221–226.
[14] Y.S. Jung, On the generalized Hyers–Ulam stability of module left derivations, J. Math. Anal. Appl. (2007), doi:10.1016/j.jmaa.2007.07.003.
[15] C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002) 711–720.
[16] C. Park, Approximate homomorphisms on JB∗-triples, J. Math. Anal. Appl. 306 (2005) 375–381.
[17] C. Park, Homomorphisms between Poisson JC∗-algebras, Bull. Braz. Math. Soc. 36 (2005) 79–97.
[18] C. Park, Isomorphisms between unital C∗-algebras, J. Math. Anal. Appl. 307 (2005) 753–762.
[19] C. Park, Hyers–Ulam–Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math. (2006), doi:10.1016/j.bulsci.2006.

07.004.
[20] C. Park, Lie ∗-homomorphisms between Lie C∗-algebras and Lie ∗-derivations on Lie C∗-algebras, J. Math. Anal. Appl. 293 (2004) 419–434.
[21] C. Park, Homomorphisms between Lie JC∗-algebras and Cauchy–Rassias stability of Lie JC∗-algebra derivations, J. Lie Theory 15 (2005)

393–414.
[22] C. Park, Y. Cho, M. Han, Stability of functional inequalities associated with Jordan–von Neumann type additive functional equations, J. In-

equal. Appl. 2007 (41820) (2007) 1–12.
[23] C. Park, J. Hou, S. Oh, Homomorphisms between JC∗-algebras and between Lie C∗-algebras, Acta Math. Sinica 21 (2005) 1391–1398.
[24] Ch. Park, A. Najati, Homomorphisms and derivations in C∗-algebras, Abstr. Appl. Anal. 2007 (2007), Article ID 80630.
[25] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1) (1982) 126–130.
[26] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984) 445–446.
[27] J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (3) (1989) 268–273.
[28] J.M. Rassias, Solution of a stability problem of Ulam, Discuss. Math. 12 (1992) 95–103.
[29] J.M. Rassias, Alternative contraction principle and alternative Jensen and Jensen type mappings, Int. J. Appl. Math. Stat. 2 (2005) 92–101.
[30] J.M. Rassias, On the Cauchy–Ulam stability of the Jensen equation in C∗-algebras, Int. J. Pure Appl. Math. Stat. 4 (5) (2006) 1–10.
[31] J.M. Rassias, Refined Hyers–Ulam approximation of approximately Jensen type mappings, Bull. Sci. Math. 131 (1) (2007) 89–98.
[32] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300.
[33] Th.M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990) 292–293, 309.
[34] Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000) 352–378.
[35] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000) 264–284.
[36] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 2003.
[37] Th.M. Rassias, P. Šemrl, On the behaviour of mappings which do not satisfy Hyers–Ulam stability, Proc. Amer. Math. Soc. 114 (1992)

989–993.
[38] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983) 113–129.
[39] S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.
[40] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983) 117–143.


