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We consider a nonlinear plate equation with thermal memory effects due to non-Fourier
heat flux laws. First we prove the existence and uniqueness of global solutions as well
as the existence of a global attractor. Then we use a suitable Łojasiewicz–Simon type
inequality to show the convergence of global solutions to single steady states as time goes
to infinity under the assumption that the nonlinear term f is real analytic. Moreover, we
provide an estimate on the convergence rate.
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1. Introduction

In this paper, we consider the following nonlinear plate equation with thermal memory effects due to non-Fourier heat
flux laws⎧⎪⎪⎨

⎪⎪⎩
θt − �ut +

∞∫
0

κ(s)
[−�θ(t − s)

]
ds = 0,

utt − �ut + �(�u + θ) + f (u) = 0,

(1.1)

for (t, x) ∈ R
+ × Ω , subject to the boundary conditions{

u(t) = �u(t) = 0, t � 0, x ∈ Γ,

θ(t) = 0, t ∈ R, x ∈ Γ,
(1.2)

and initial conditions

u(0) = u0, ut(0) = v0, θ(0) = θ0, x ∈ Ω,

θ(−s) = φ(s), (s, x) ∈ R
+ × Ω. (1.3)

Here, Ω ∈ R
2 is a bounded domain with smooth boundary Γ , θ represents the temperature variation from the equilibrium

reference value while u is the vertical displacement of the plate. Function φ : R
+ × Ω �→ R is called the initial past history

of temperature. The memory kernel κ : R
+ �→ R is assumed to be a positive bounded convex function vanishing at infinity.

For the sake of simplicity, we set all the physical constants to be one.
Recently, evolution equations under various non-Fourier heat flux laws have attracted interests of many mathematicians

(cf. [1,2,4,8,11–17,19,33,34] and references cited therein). Let q be the heat flux vector. According to the Gurtin–Pinkin
theory [21], the linearized constitutive equation of q is given by
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q(t) = −
∞∫

0

κ(s)∇θ(t − s)ds, (1.4)

where κ is the heat conductivity relaxation kernel. The presence of convolution term in (1.4) entails finite propagation speed
of thermal disturbances, so that in this case the corresponding equation is of hyperbolic type. It is easy to see that (1.4) can
be reduced to the classical Fourier law q = −∇θ if κ is the Dirac mass at zero. Besides, if we take

κ(s) = 1

σ
e− s

σ , σ > 0, (1.5)

and differentiate (1.4) with respect to t , we can (formally) arrive at the so-called Cattaneo–Fourier law (cf. [24,29,30])

σqt(t) + q(t) = −∇θ(t). (1.6)

On the other hand, evolution equations under Colemann–Gurtin theory for the heat conduction (cf. [6]) have also been
studied extensively (see, for instance [1,2,10,17]). There the heat flux q depends on both the past history and on the instan-
taneous of the gradient of temperature:

q(t) = −K I∇θ(t) −
∞∫

0

κ(s)∇θ(t − s)ds, (1.7)

where K I > 0 is the instantaneous diffusivity coefficient.
There are a lot of work on thermoelastic plate equations in the literature. For linear thermoelastic plate equations without

memory effects in heat conduction, exponential stability of the associated C0-semigroups has been proven under different
boundary conditions (cf. [32, Section 2.5], [35,36]). On the other hand, when the heat flux is modeled by non-Fourier laws,
well-posedness and stability for the corresponding linear thermoelastic plate equations have been investigated in several
recent papers (cf. [12,14] and references cited therein).

In this paper, we consider the nonlinear problem (1.1)–(1.3). Asymptotic behavior of global solutions to nonlinear isother-
mal plate equations has been considered before. We may refer to [22,25], where convergence to equilibrium as t → ∞ was
obtained by the well-known Łojasiewicz–Simon approach under the assumption that the nonlinearity is real analytic. How-
ever, to the best of our knowledge, there are few results on the long-time behavior of global solutions to nonlinear plate
equations with thermal memory like (1.1)–(1.3). This is just the main goal of the present paper. First, we prove the existence
and uniqueness of global solutions to (1.1)–(1.3). Then we derive some uniform estimates which yields the precompactness
of the solutions and furthermore the existence of a global attractor. Finally, combining some techniques for evolution equa-
tions with memory and for plate equations, we are able to prove the convergence of global solutions to single steady states
as time goes to infinity via a suitable Łojasiewicz–Simon type inequality. Moreover, we obtain some estimates on conver-
gence rate. Further investigations concerning the infinite dimensional system associated with our problem such as existence
of exponential attractors, etc., can be made by adapting the arguments in recent papers [10,34].

Our problem (1.1)–(1.3) is an evolution system with memory. It is well known in the literature that it would be more
convenient to work in the history space setting by introducing a new variable η called summed past history of θ . This
approach has been proven to be very effective in analyzing such kind of evolution systems (cf. [1,2,10,11,13,14,16,17,19,33,
34]). On the other hand, it has been pointed out in the previous literature that when memory effects are present, the
additional variable η does not enjoy any regularizing effect. As a result, to ensure the precompactness of the trajectory,
we have to make suitable decomposition of the solution which is typical for dissipative systems. To overcome the lack
of compactness of the history space M in which the variable η exists, an ad hoc compactness lemma will be used (cf.
[10,11,19]).

Comparing with the Colemann–Gurtin law (cf. [1,2,17]), the dissipation in temperature θ for our system is only due to
the memory effect, which is rather weak. The stronger dissipation provided in the Colemann–Gurtin law would make the
problem easier to be dealt with. For instance, we can refer to [1] in which the authors considered a nonisothermal phase-
field system with (1.7) and proved convergence to equilibrium for global solutions by the Łojasiewicz–Simon approach (see
also [2] for a conserved phase-field model). To overcome the difficulty due to such a weaker dissipation under the Gurtin–
Pinkin law (1.4), it is necessary to introduce a suitable additional functional which may vary from problem to problem to
produce some new dissipations (cf. [10,11,13,19,33] and references cited therein). By using this idea, convergence to equi-
librium for a nonisothermal Cahn–Hilliard equation was proven in [33] and in [13] a nonconserved phase-field model of
Caginalp type consisting of two coupled integro-partial differential equations was successfully treated. Besides, in order to
prove the convergence result for our problem, we have to make use of an extended Łojasiewicz–Simon type inequality asso-
ciated with a fourth order operator, which can be derived from the abstract result in [22]. Due to the structure of (1.2), the
standard Łojasiewicz–Simon approach used in the parabolic case must be modified by introducing an appropriate auxiliary
functional (see Section 5) which usually depends on the problem under consideration (cf. [13,22,33,34,40] and references
therein). In our case, the required auxiliary functional is formed by adding two perturbations to the original Lyapunov func-
tional of system (1.1)–(1.3) and coefficients of those perturbations should be chosen properly. As far as the convergence
rate is concerned, it is known that an estimate in certain (lower order) norm can usually be obtained directly from the
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Łojasiewicz–Simon approach (see, e.g., [18,23,42]). Then one straightforward way to get estimates in higher order norms is
using interpolation inequalities (cf. [15,23,33]) and, consequently, the decay exponent deteriorates. We shall show that by
using suitable energy estimates and constructing proper differential inequalities, it is possible to obtain the same estimates
on convergence rate in both higher and lower order norms. In particular, we find that as long as uniform estimates in
certain norm can be obtained, we are able to prove convergence rate in the corresponding norm without loss in the decay
exponent. In our case, we can also avoid using the decomposition argument used in [33] for this purpose. This technique
has been successfully applied to other problems as well (cf. [9,20,28,39,40]) and it could be used to improve some previous
results in the literature (e.g., [13,15,27,33,41]). At last we show that actually better results on convergence rate for problem
(1.1)–(1.3) can be obtained if we use the decomposition of the trajectory z = zD + zC (see Section 4). More precisely, the
decay part zD converges to zero exponentially fast while the compact part zC converges to equilibrium in a higher order
norm with the same rate as for the whole trajectory.

The remaining part of this paper is organized as follows. In Section 2, we introduce the functional setting, the main
results of this paper and some technical lemmas. Well-posedness of problem (1.1)–(1.3) is proven in Section 3. Section 4 is
devoted to the uniform estimates and precompactness as well as the existence of a global attractor. In the final Section 5,
we prove the convergence of global solutions to single steady states as time goes to infinity and obtain an estimate on
convergence rate.

2. Preliminaries and main results

We shall work under the functional settings used in e.g. [14]. Consider the positive operator A on L2(Ω) defined by
A = −� with domain D(A) = H2(Ω) ∩ H1

0(Ω). Consequently, for r ∈ R we can introduce the Hilbert spaces V r = D(Ar/2),
endowed with the inner products

〈w1, w2〉V r = 〈
Ar/2 w1, Ar/2 w2

〉
, ∀w1, w2 ∈ V r,

where 〈·,·〉 denotes the inner product in L2(Ω). It is easy to see that the embedding V r1 ↪→ V r2 is compact for r1 > r2. In
what follows, we shall denote the norm in L2(Ω) by ‖ · ‖ for the sake of simplicity.

We suppose that κ is vanishing at ∞. Moreover, denoting

μ(s) = −κ ′(s),

we make the following assumptions on μ.

(H1) μ ∈ W 1,1(R+),

(H2) μ(s) � 0, μ′(s) � 0, ∀s ∈ R
+,

(H3) μ′(s) + δμ(s) � 0, for some δ > 0, ∀s ∈ R
+,

(H4) κ(0) = ∫∞
0 μ(s)ds := κ0 > 0.

From recent work [4,13,37] and references cited therein, assumptions on μ might be properly weakened and our results
still hold. Our results also hold under the assumptions made in [33,34] where (H1) (cf. [13]) is replaced by μ ∈ C1(R+) ∩
L1(R+). In that case, μ is allowed to be unbounded in a right neighborhood of 0 and this can be handled by introducing a
“cut-off” function near the origin.

For the nonlinear term f , we assume that

(F1) f (s) ∈ C2(R).

(F2) lim inf|s|→+∞
f (s)

s
> − 1

CΩ

,

where CΩ is the best constant depending only on Ω such that

‖w‖2
L2(Ω)

� CΩ‖Aw‖2
L2(Ω)

.

In order to prove the convergence to steady states, instead of (F1), we assume

(F1)′ f (s) is real analytic in s ∈ R.

We will also make use of the Poincaré inequality

‖w‖ � C P ‖∇w‖, w ∈ H1
0(Ω),

where C P is a positive constant depending only on Ω .
In view of (H1), (H2), we introduce the weighted Hilbert spaces for r ∈ R,

Mr = L2
μ

(
R

+; V r),
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with inner products

〈η1, η2〉Mr =
∞∫

0

μ(s)
〈
Ar/2η1(s), Ar/2η2(s)

〉
ds.

Here we notice that the embeddings Mr1 ↪→Mr2 , for r1 > r2, are continuous but not compact (cf. [10,11]).
Finally, we define the product Hilbert spaces

Vr = V 2+r × V r × V r ×M1+r, r ∈ R,

with norm

‖z‖2
Vr = ∥∥A(2+r)/2z1

∥∥2 + ∥∥Ar/2z2
∥∥2 + ∥∥Ar/2z3

∥∥2 + ‖z4‖2
M1+r ,

for all z = (z1, z2, z3, z4)
T ∈ Vr .

It is convenient to work in the history space setting by introducing the so-called summed past history of θ which is
defined as follows (cf. [7,12,14]),

ηt(s) =
s∫

0

θ(t − y)dy, (t, s) ∈ [0,∞) × R
+. (2.1)

The variable ηt (formally) satisfies the linear equation

ηt
t (s) + ηt

s(s) = θ(t), in Ω, (t, s) ∈ R
+ × R

+, (2.2)

subject to the boundary and initial conditions

ηt(0) = 0, in Ω, t � 0, (2.3)

η0(s) = η0(s) =
s∫

0

φ(y)dy, in Ω, s ∈ R
+. (2.4)

We introduce a linear operator T on M1 defined by

Tη = −ηs, η ∈ D(T ), (2.5)

with domain

D(T ) = {
η ∈M1

∣∣ ηs ∈M1, η(0) = 0
}
, (2.6)

here and in above ηs is the distributional derivative of η with respect to internal variable s.
As in [13,19], we notice that an integration by parts in time of the convolution products appearing in the equation for θ

leads to⎧⎪⎪⎨
⎪⎪⎩

θt − �ut −
∞∫

0

μ(s)�ηt(s)ds = 0,

utt − �ut + �(�u + θ) + f (u) = 0.

(2.7)

Let us now introduce the vector

z(t) = (
u(t), v(t), θ(t), ηt)T

,

and denote the initial data by

z0 = (u0, v0, θ0, η0)
T ∈ V0.

Our problem (2.7), (1.2), (1.3) can be translated into the nonlinear abstract evolution equation in V0,{
zt = Lz + G(z),

z(0) = z0,
(2.8)

with

G(z) = (
0,− f (u),0,0

)T
. (2.9)

Here the linear operator L is defined as
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L

⎛
⎜⎜⎜⎝

u

v

θ

η

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

v

−Av − A(Au − θ)

−Av − ∫∞
0 μ(s)Aηt(s)ds

θ + Tη

⎞
⎟⎟⎟⎠ , (2.10)

with domain

D(L) =

⎧⎪⎪⎨
⎪⎪⎩z ∈ V0

∣∣∣∣∣
v, Au − θ ∈ V 2

θ ∈M1∫∞
0 μ(s)Aηt(s)ds ∈ V 0

η ∈ D(T )

⎫⎪⎪⎬
⎪⎪⎭ . (2.11)

Remark 2.1. System (2.8) is obtained through formal integration by parts, however one can show that it is in fact equivalent
to the original problem (1.1)–(1.3) (cf. [14]).

Now we are ready to state the main results of this paper

Theorem 2.1. Let (H1)–(H4) and (F1), (F2) hold. The semigroup associated with problem (2.8) in V0 possesses a compact global
attractor A in V0 .

Theorem 2.2. Let (H1)–(H4) and (F1)′ , (F2) hold. Then for any z0 = (u0, v0, θ0, η0)
T ∈ V0 , there exists u∞ being a solution to the

following equation{
A2u∞ + f (u∞) = 0, x ∈ Ω,

u∞ = �u∞ = 0, x ∈ Γ,
(2.12)

such that as t → ∞,

u(t) → u∞, in V 2, (2.13)

v(t) → 0, θ(t) → 0, in L2(Ω), (2.14)

ηt → 0, in M1. (2.15)

Moreover, there exists a positive constant C depending on the initial data such that∥∥u(t) − u∞
∥∥

V 2 + ∥∥v(t)
∥∥+ ∥∥θ(t)

∥∥+ ∥∥ηt
∥∥
M1 � C(1 + t)−

ρ
(1−2ρ) , ∀t � 0, (2.16)

with ρ ∈ (0,1/2) being the same constant as in the Łojasiewicz–Simon inequality (see Lemma 5.3).

Remark 2.2. With minor modifications, corresponding results can be proven for equations under various other type of
non-Fourier heat conduction laws:

θt + c1θ − c2�θ − �ut +
∞∫

0

κ(s)
[
c3θ(t − s) − �θ(t − s)

]
ds = 0, (2.17)

with c1, c2, c3 being nonnegative constants. When c1 > 0, we have a (dissipative) term c1θ in (2.17), which is arising from
the assumption that besides the heat flux, the thermal power depends on the past history of θ (cf. [12]). The case c2 > 0
corresponds to the Colemann–Gurtin theory as mentioned before. Moreover, we may refer to [12,31] for the case c3 > 0.
Although there might be additional terms like c1θ , −c2�θ and

∫∞
0 κ(s)c3θ(t − s)ds in the equation, these terms provide

stronger dissipations on θ from the mathematical point of view, which make the extensions of our results possible.

For reader’s convenience we report below some helpful technical lemmas which will be used in this paper. The first one
is a frequently used compactness lemma for the spaces Mr (cf. [14, Lemma 2.1]).

Lemma 2.1. Let Tη(y) be defined as follows

Tη(y) =
∫

(0,1/y)∪(y,∞)

μ(s)
∥∥A1/2η(s)

∥∥2
ds, y � 1. (2.18)

If C ⊂M1 satisfies

(i) supη∈C ‖η‖M2 < ∞,
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(ii) supη∈C ‖Tη‖M1 < ∞,

(iii) limy→∞(supη∈C Tη(y)) = 0,

then C is relatively compact in M1 .

The following lemma can be found in [3].

Lemma 2.2. Let X be a Banach space and Z ∈ C([0,∞), X). Let E : X → R be a function bounded from below such that E(Z(0)) � M
for Z ∈ X. If

d

dt
E
(

Z(t)
)+ δ

∥∥Z(t)
∥∥2

X � k,

for some δ � 0 and k � 0 independent of Z , then for all ε > 0 there is t0 = t0(M, ε) > 0 such that

E
(

Z(t)
)
� sup

ξ∈X

{
E(ξ): δ‖ξ‖2

X � k + ε
}
, ∀t � t0.

3. Well-posedness

By using the semigroup approach, we are able to prove the existence and uniqueness of global solution to system (2.8).

Theorem 3.1. Suppose that assumptions (H1), (H2) and (F1), (F2) hold. Then for any initial data z0 = (u0, v0, θ0, η0)
T ∈ V0 , system

(2.8) admits a unique global solution z(t) ∈ C([0,+∞),V0).

Proof. We apply the semigroup theory (see, e.g., [42, Theorems 2.5.4, 2.5.5]).
Since

〈Tη,η〉M1 = 1

2

∞∫
0

μ′(s)
∥∥A1/2η(s)

∥∥2
ds � 0, ∀η ∈ D(T ), (3.1)

it is easy to see that

〈Lz, z〉V0 = −‖∇v‖2 + 〈Tη,η〉M1 � 0, ∀z ∈ D(L). (3.2)

By a similar argument in [12, Section 3] (see also [14]) we can show that I − L : D(L) �→ V0 is onto. Thus L is an m-accretive
operator. On the other hand, by the Sobolev embedding theorem, for any z1, z2 ∈ V0 with ‖z1‖V0 � M , ‖z2‖V0 � M , there
exists a constant LM > 0 depending on M such that∥∥G(z1) − G(z2)

∥∥
V0 � LM‖u1 − u2‖V 2 � LM‖z1 − z2‖V0 .

Therefore, G(z) is a nonlinear operator from V0 to V0 satisfying the local Lipschitz condition. Consequently, local existence
of a unique mild solution z(t) ∈ C([0, T ],V0) follows from [42, Theorem 2.5.4].

Next we prove the global existence. Taking inner product of (2.8) and z in V0, we get

d

dt

(
1

2

∥∥z(t)
∥∥2
V0 +

∫
Ω

F (u)dx

)
+ ‖∇v‖2 − 1

2

∞∫
0

μ′(s)
∥∥A1/2ηt(s)

∥∥2
ds = 0, (3.3)

where F (u) = ∫ u
0 f (y)dy.

Assumption (F2) implies that there exist constants δ ∈ (0,1) and N = N(δ) > 0 such that (cf. [5])

F (s) � −1 − δ

2CΩ

s2, for |s| � N.

To see this, let M be a positive constant such that f (z)/z + 1
CΩ

� 2δ
CΩ

for |z| � M and certain δ ∈ (0,1). Then we have

F (s) + 1

2CΩ

s2 =
M∫

0

(
f (z)

z
+ 1

CΩ

)
z dz +

s∫
M

(
f (z)

z
+ 1

CΩ

)
z dz � C + 2δ

CΩ

(
s2

2
− M2

2

)
� δ

2CΩ

s2, (3.4)

for

s2 � max

{
2M2 − 2CΩ C

δ
,0

}
:= N2.

For negative s one can repeat the same computation with M replaced by −M .
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Now we have∫
Ω

F (u)dx =
∫

|u|�N

F (u)dx +
∫

|u|>N

F (u)dx � −1 − δ

2CΩ

∫
Ω

u2 dx + C
(|Ω|, f

)
, (3.5)

where C(|Ω|, f ) = |Ω|min|s|�N F (s).
By the definition of CΩ in (F2) we can deduce∫

Ω

F (u)dx � −1 − δ

2
‖Au‖2 + C

(|Ω|, f
)
. (3.6)

This implies that for any ε ∈ (0, δ] there holds

1

2

∥∥z(t)
∥∥2
V0 +

∫
Ω

F (u)dx = ε

2

∥∥z(t)
∥∥2
V0 + 1 − ε

2

∥∥z(t)
∥∥2
V0 +

∫
Ω

F (u)dx � ε

2

∥∥z(t)
∥∥2
V0 + C

(|Ω|, f
)
. (3.7)

As a result,

1

2

∥∥z(t)
∥∥2
V0 � 1

ε

(
1

2

∥∥z(t)
∥∥2
V0 +

∫
Ω

F (u)dx − C
(|Ω|, f

))
. (3.8)

Integrating (3.3) with respect to t , we infer from (3.8) that∥∥z(t)
∥∥2
V0 � C

(‖z0‖V0 , |Ω|, f
)
, ∀t � 0. (3.9)

This uniform estimate together with [42, Theorem 2.5.5] yields the global existence, i.e., z(t) ∈ C([0,+∞),V0). Moreover, it
is not difficult to check that for any z01, z02 ∈ V0, the corresponding global solutions z1(t), z2(t) satisfy∥∥z1(t) − z2(t)

∥∥2
V0 � CT ‖z01 − z02‖2

V0 , 0 � t � T , (3.10)

for all T � 0, where CT is a constant depending on the norms of z01, z02 in V0 and T .
The proof is complete. �

Remark 3.1. From the above theorem, we can see that the solution to our problem (2.8) defines a strongly continuous
semigroup S(t) on the phase space V0 such that S(t)z0 = z(t).

4. Precompactness of trajectories and global attractor

In this section, we will first prove (i) uniform estimate of the solution which also indicates the existence of an absorbing
set, (ii) precompactness of trajectory z(t). In what follows, we shall exploit some formal a priori estimates which can be
justified rigorously by the standard density argument.

Lemma 4.1. Let (H1)–(H4) and (F1), (F2) hold. There exists a positive constant R0 such that the ball

B0 := {
z ∈ V0

∣∣ ‖z‖V0 � R0
}

is an absorbing set. Namely, for any bounded set B ∈ V0 , there is t0 = t0(B) � 0 such that S(t)B ⊂ B0 for every t � t0 .

Proof. Multiplying the second equation in (1.1) by ε2u, integrating on Ω and adding the result to (3.3), we get

d

dt

(
1

2

∥∥z(t)
∥∥2
V0 + ε2

2
‖∇u‖2 +

∫
Ω

F (u)dx + ε2
∫
Ω

uv dx

)
+ ‖∇v‖2 − ε2‖v‖2 − 1

2

∞∫
0

μ′(s)
∥∥A1/2ηt(s)

∥∥2
ds + ε2‖Au‖2

= −ε2
∫
Ω

f (u)u dx + ε2
∫
Ω

θ Au dx. (4.1)

In order to apply Lemma 2.2, we need more dissipation on the left-hand side of (4.1). To such an aim, we introduce the
following functional (cf. [13,19,33] and references cited therein)

J (t) := −
∞∫

0

μ(s)
〈
θ(t), ηt(s)

〉
ds. (4.2)

It turns out from the Hölder inequality and (H1) that
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∣∣ J (t)
∣∣� ∥∥θ(t)

∥∥ ∞∫
0

μ(s)
〈
ηt(s), ηt(s)

〉 1
2 ds � 1

2

∥∥θ(t)
∥∥2 + 1

2

∥∥ηt(s)
∥∥2
M0

∞∫
0

μ(s)ds � C
∥∥z(t)

∥∥2
V0 . (4.3)

Besides, a direct calculation yields (cf. (2.2), (2.7))

d

dt
J (t) = −

∞∫
0

μ(s)
〈
θt(t), η

t(s)
〉
ds −

∞∫
0

μ(s)
〈
θ(t), ηt

t (s)
〉
ds

= −
∞∫

0

μ(s)
〈
�ut(t), η

t(s)
〉
ds −

∥∥∥∥∥
∞∫

0

μ(s)A1/2ηt(s)ds

∥∥∥∥∥
2

− κ0‖θ‖2 +
∞∫

0

μ(s)
〈
θ(t), ηt

s(s)
〉
ds. (4.4)

Terms on the right-hand side of (4.4) can be controlled in the following way:∣∣∣∣∣−
∞∫

0

μ(s)
〈
�ut(t), η

t(s)
〉
ds

∣∣∣∣∣=
∣∣∣∣∣

∞∫
0

μ(s)
〈∇v(t),∇ηt(s)

〉
ds

∣∣∣∣∣� 1

2
‖∇v‖2 + κ0

2

∥∥ηt
∥∥2
M1 , (4.5)

∥∥∥∥∥
∞∫

0

μ(s)A1/2ηt(s)ds

∥∥∥∥∥
2

�
∞∫

0

μ(s)ds

∞∫
0

μ(s)
〈
A1/2ηt , A1/2ηt 〉ds � κ0

∥∥ηt
∥∥2
M1 , (4.6)

∣∣∣∣∣
∞∫

0

μ(s)
〈
θ(t), ηt

s(s)
〉
ds

∣∣∣∣∣=
∣∣∣∣∣−

∞∫
0

μ′(s)
〈
θ(t), ηt(s)

〉
ds

∣∣∣∣∣� −
∞∫

0

μ′(s)
∥∥θ(t)

∥∥∥∥ηt(s)
∥∥ds

� κ0

2
‖θ‖2 − C1

∞∫
0

μ′(s)
∥∥A1/2ηt(s)

∥∥2
ds, (4.7)

where in (4.7) we use (H1) that μ′ is integrable (this can be weakened as mentioned in the previous section) and C1 > 0
depends on κ0. Now we can conclude

d

dt
J (t) + κ0

2
‖θ‖2 � 1

2
‖∇v‖2 + C2

∥∥ηt
∥∥2
M1 − C1

∞∫
0

μ′(s)
∥∥A1/2ηt

∥∥2
ds, (4.8)

where C2 = 3κ0
2 > 0. Multiplying (4.8) by 2ε and adding it to (4.1) we obtain

d

dt

(
1

2

∥∥z(t)
∥∥2
V0 + ε2

2
‖∇u‖2 +

∫
Ω

F (u)dx + ε2
∫
Ω

uv dx + 2ε J (t)

)
− ε2‖v‖2

+ (1 − ε)‖∇v‖2 + εκ0‖θ‖2 −
(

1

2
− 2C1ε

) ∞∫
0

μ′(s)
∥∥A1/2ηt(s)

∥∥2
ds + ε2‖Au‖2

� −ε2
∫
Ω

f (u)u dx + ε2
∫
Ω

θ Au dx + 2C2ε
∥∥ηt

∥∥2
M1 . (4.9)

Define

Ψ
(
z(t)

)= 1

2

∥∥z(t)
∥∥2
V0 + ε2

2

∥∥∇u(t)
∥∥2 +

∫
Ω

F
(
u(t)

)
dx + ε2

∫
Ω

u(t)v(t)dx + 2ε J (t)

and

F
(‖u‖V 2

)= |Ω| max
|y|�‖u‖V 2

∣∣F (y)
∣∣.

Due to (F1) and the Sobolev embedding theorem V 2 ↪→ L∞(Ω), we can see that F(s) is bounded for |s| � M , ∀M > 0. It
follows from this fact and (3.7) that for all z ∈ V0 and ε sufficiently small there holds

C3‖z‖2
V0 − C4 � Ψ � ‖z‖2

V0 +F
(‖u‖V 2

)
, (4.10)

where C3, C4 are positive constants independent of z.
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(F2) implies that there exist constants σ > 0 and N = N(σ ) > 0 satisfying

f (s)s � −1 − σ

CΩ

s2, ∀|s| � N.

As a result,∫
Ω

f (u)u dx � −1 − σ

CΩ

‖u‖2 + C
(|Ω|, f

)
� −(1 − σ)‖Au‖2 + C

(|Ω|, f
)
, (4.11)

where C(|Ω|, f ) = |Ω|min|s|�N f (s)s.
Moreover, from (H3), we can see that

−
∞∫

0

μ′(s)
∥∥A1/2ηt(s)

∥∥2
ds � δ

∞∫
0

μ(s)
∥∥A1/2ηt(s)

∥∥2
ds, (4.12)

and by the Hölder inequality we have∣∣∣∣ε2
∫
Ω

θ Au dx

∣∣∣∣� ε
κ0

2
‖θ‖2 + C5ε

3‖Au‖2. (4.13)

In (4.9) and (4.13) we take ε small enough such that

0 < ε � min

{
1

4
,

1

16C1
,

δ

16C2
,

σ

2C5
,

1

2C P

}
.

Then it follows from (4.9)–(4.13) that

d

dt
Ψ (t) + δ0

∥∥z(t)
∥∥2
V0 � k, (4.14)

where δ0 is a constant depending on ε,σ , δ, κ0 and k is a certain positive constant depending on ε, |Ω|, f , δ,σ , N(σ ).
We infer from Lemma 2.2 that there is t0 = t0(B) > 0 such that

Ψ
(
z(t)

)
� sup

ξ∈V0

{
Ψ (ξ): δ0‖ξ‖2

V0 � 1 + k
}
, ∀t � t0,

which together with (4.10) implies the existence of absorbing set.
The proof is complete. �
Next we prove the precompactness of solutions to problem (2.8). Since our system (2.8) does not enjoy smooth prop-

erty as parabolic equations, it suffices to show that the semigroup is asymptotically smooth (cf. [38]). To accomplish this,
we make a decomposition of the flow into a uniformly stable part and a compact part (cf. [10,11,13,19,34]). Namely, we
decompose the solution to (2.8) with initial data z(0) = z0 ∈ V0 as

z(t) = zD(t) + zC (t),

where zD(t) = (uD(t), v D(t), θD(t), ηt
D)T and zC (t) = (uC (t), vC (t), θC (t), ηt

C )T satisfy⎧⎨
⎩

d

dt
zD = LzD ,

zD(0) = z0

(4.15)

and ⎧⎨
⎩

d

dt
zC = LzC + G(z),

zC (0) = 0.

(4.16)

Similar to Theorem 3.1, it is easy to check that system (4.15) admits a unique mild solution zD(t) ∈ C([0,+∞),V0). More-
over, we have

Lemma 4.2. There exist constants C, δ1 > 0 such that the solution zD of (4.15) fulfills

∥∥zD(t)
∥∥
V0 � Ce− δ1

2 t , ∀t � 0, (4.17)

where C > 0 is a constant depending on ‖z0‖V0 .
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Proof. Let E D(z) : V0 �→ R be defined as follows

E D(zD) = ∥∥zD(t)
∥∥2
V0 + ε2‖∇uD‖2 + 2ε2

∫
Ω

uD v D dx + 4ε J D(t) (4.18)

with

J D(t) := −
∞∫

0

μ(s)
〈
θD(t), ηt

D(s)
〉
ds. (4.19)

It is easy to see that for ε > 0 sufficiently small

1

2
‖zD‖2

V0 � E D(zD) � 2‖zD‖2
V0 . (4.20)

Similar to the proof of Lemma 4.1, we can show that there exists δ1 > 0 such that

d

dt
E D(zD) + 2δ1‖zD‖2

V0 � 0. (4.21)

As a consequence of (4.20), we have

d

dt
E D(zD) + δ1 E D(zD) � 0 (4.22)

which yields

E D
(
zD(t)

)
� E D

(
zD(0)

)
e−δ1t , ∀t � 0. (4.23)

(4.17) follows immediately from (4.20) and (4.23). �
Next we analyze zC . For initial data z0 ∈ V0, we can see that zC (t) = z(t) − zD(t) belongs to a bounded set in V0 for

t � 0. In what follows we will show that zC is more regular and actually it is uniformly bounded in V1.

Lemma 4.3. For all z0 ∈ V0 , there exists C > 0 depending on ‖z0‖V0 such that∥∥zC (t)
∥∥
V1 � C, ∀t � 0. (4.24)

Proof. Taking the inner product of (4.16) and AzC in V0, we have

d

dt

(
1

2

∥∥A1/2zC
∥∥2
V0 +

∫
Ω

f (u)AuC dx

)
+ ‖AvC ‖2 − 1

2

∞∫
0

μ′(s)
∥∥Aηt

C (s)
∥∥2

ds =
∫
Ω

f ′(u)v AuC dx. (4.25)

Multiplying the second equation in (4.16) by AuC and integrating on Ω we get

d

dt

(
1

2
‖AuC ‖2 +

∫
Ω

vC AuC dx

)
+ ∥∥A3/2uC

∥∥2 − ∥∥A1/2 vC
∥∥2 = −

∫
Ω

f (u)AuC dx +
∫
Ω

AθC AuC dx. (4.26)

Let

JC (t) := −
∞∫

0

μ(s)
〈
A1/2θC (t), A1/2ηt

C (s)
〉
ds. (4.27)

Then in analogy to the argument in Lemma 4.1, we have

∣∣ JC (t)
∣∣� 1

2

∥∥A1/2θC (t)
∥∥2 + 1

2

∥∥ηt
C (s)

∥∥2
M1

∞∫
0

μ(s)ds � C
∥∥zC (t)

∥∥2
V1 (4.28)

and

d

dt
JC (t) + κ0

2

∥∥A1/2θC
∥∥2 � 1

2
‖AvC ‖2 + C6

∥∥ηt
C

∥∥2
M2 − C7

∞∫
μ′(s)

∥∥Aηt
C

∥∥2
ds, (4.29)
0
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here C6, C7 > 0 depend on κ0. Introduce the functional

Φ(t) = ∥∥A1/2zC (t)
∥∥2
V0 + 2

∫
Ω

f (u)AuC dx + 2ε2
∫
Ω

vC AuC dx + ε2‖AuC ‖2 + 4ε JC (t) + k,

where k � 0 denotes a generic constant depending on ‖z0‖V0 .
It is easy to see that, if the constant k appearing in the definition of Φ is large enough and ε is small enough, there

holds

1

2

∥∥A1/2zC (t)
∥∥2
V0 � Φ � 2

∥∥A1/2zC (t)
∥∥2
V0 + C

(‖z0‖V0

)+ k. (4.30)

It follows from (4.25), (4.26), (4.29) that

1

2

d

dt
Φ(t) + (1 − ε)‖AvC ‖2 −

(
1

2
− 2C7ε

) ∞∫
0

μ′(s)
∥∥Aηt

C (s)
∥∥2

ds − ε2
∥∥A1/2 vC

∥∥2 + ε2
∥∥A3/2uC

∥∥2 + εκ0
∥∥A1/2θC

∥∥2

�
∫
Ω

f ′(u)v AuC dx + 2C6ε
∥∥ηt

C

∥∥2
M2 − ε2

∫
Ω

f (u)AuC dx + ε2
∫
Ω

AθC AuC dx

:= I1 + I2 + I3 + I4. (4.31)

The right-hand side of (4.31) can be estimated as follows. By (F2) and the Sobolev embedding theorem we get

|I1| =
∣∣∣∣
∫
Ω

f ′(u)v AuC dx

∣∣∣∣� ∥∥ f ′(u)
∥∥

L∞‖v‖‖AuC ‖ � C
(|Ω|,‖Au‖)‖v‖∥∥A3/2uC

∥∥� ε2

4

∥∥A3/2uC
∥∥2 + C . (4.32)

Besides,

|I3| =
∣∣∣∣−ε2

∫
Ω

f (u)AuC dx

∣∣∣∣� ε2
∥∥ f (u)

∥∥
L∞‖AuC ‖ � ε2

4

∥∥A3/2uC
∥∥2 + C, (4.33)

|I4| =
∣∣∣∣ε2

∫
Ω

AuC AθC dx

∣∣∣∣� εκ0

2

∥∥A1/2θC
∥∥2 + C8ε

3
∥∥A3/2uC

∥∥2
, (4.34)

where in the above three estimates, C > 0 is a constant depending on ‖z0‖V0 and C8 = 1
2κ0

.
In (4.31)–(4.34), we take ε small enough such that

0 < ε � min

{
1

4
,

1

2C P
,

δ

16C6
,

1

16C7
,

1

4C8

}
. (4.35)

Consequently, we can obtain the following inequality

d

dt
Φ(t) + δ2Φ(t) � C, (4.36)

where δ2 > 0, C � 0 are constants depending on ε and ‖z0‖V0 .
(4.30) and (4.36) yield∥∥A1/2zC (t)

∥∥
V0 � C, ∀t � 0.

The proof is complete. �
In order to obtain the required compactness, we have to take care of the fourth component ηt . Embedding V1 ↪→ V0

is not compact because embedding M2 ↪→ M1 is not compact in general. However, we have the following lemma whose
proof is becoming standard (cf. [11,16,19] and references therein). For the sake of completeness, we give a sketch of the
proof.

Lemma 4.4. Let C =⋃
t�0 ηt

C . Then C is relatively compact in M1 .

Proof. It is obvious that C ⊂M1. According to Lemma 2.1, we need to verify∥∥ηt
C

∥∥
M2 � C, t � 0, (4.37)∥∥Tηt

C

∥∥
M1 � C, t � 0, (4.38)

lim
y→∞

(
sup Tηt

C
(y)

)
= 0. (4.39)
t�0
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(4.37) follows from Lemma 4.3 immediately. Since zC (0) = 0, ηC has the following explicit representation formula

ηt
C (s) =

{∫ s
0 θC (t − y)dy, 0 < s � t,∫ t
0 θC (t − y)dy, s > t.

(4.40)

Differentiating it with respect to s yields

Tηt
C (s) =

{−θC (t − s), 0 < s � t,

0, s > t.
(4.41)

Thanks to (H4) and Lemma 4.3, we have

∞∫
0

μ(s)
∥∥A1/2Tηt

C (s)
∥∥2

ds =
t∫

0

μ(s)
∥∥A1/2Tηt

C (s)
∥∥2

ds =
t∫

0

μ(s)
∥∥A1/2θC (t − s)

∥∥2
ds � C, (4.42)

which yields (4.38). This also implies that ηt
C ∈ H1

μ(R+; V 1).
(4.40) and Lemma 4.3 imply that∥∥A1/2ηt

C (s)
∥∥2 � C

(
1 + s2), ∀s > 0.

For y � 1, we define

I(y) = C

∫
(0,1/y)∪(y,∞)

μ(s)
(
1 + s2)ds.

It is obvious that (see the definition of T)

Tηt
C
(y) � I(y).

Assumption (H3) implies the exponential decay of the memory kernel, hence we have

I(y) � C, for y � 1,

and as a consequence

lim
y→∞ I(y) = 0,

which yields (4.39). The lemma is proved. �
Lemmas 4.3 and 4.4 yield the compactness result we need

Lemma 4.5. For any z0 ∈ V0 ,
⋃

t�0 zC (t) is relatively compact in V0 .

Proof of Theorem 2.1. On account of Lemmas 4.1, 4.2, 4.5 and the classical result in dynamical system [38, Theorem I.1.1],
we can prove the conclusion of Theorem 2.1, i.e., problem (1.1)–(1.3) possesses a compact global attractor A in V0. �
5. Convergence to equilibrium and convergence rate

In this section we prove the convergence of global solutions to single steady states as time tends to infinity. Let S be
the set of steady states of S(t),

S = {
Z ∈ V0: S(t)Z = Z , for all t � 0

}
. (5.1)

It is clear that every steady state Z∞ has the form Z∞ = (u∞,0,0,0)T , where u∞ solves the following equation

A2u∞ + f (u∞) = 0, x ∈ Ω, (5.2)

with boundary conditions

u∞ = �u∞ = 0, x ∈ Γ. (5.3)

The total energy

E(t) = 1

2

∥∥z(t)
∥∥2
V0 +

∫
F (u)dx, (5.4)
Ω
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with F (u) = ∫ u
0 f (z)dz serves as a Lyapunov functional for problem (2.8). Namely, we have

d

dt
E(t) = −‖∇v‖2 + 1

2

∞∫
0

μ′(s)
∥∥A1/2ηt(s)

∥∥2
ds � 0, ∀t > 0. (5.5)

For any initial data z0 ∈ V0, its ω-limit set is defined as follows:

ω(z0) = {
z∞ = (u∞, v∞, θ∞, η∞)T

∣∣ ∃{tn} such that z(tn) → z∞ ∈ V0, as tn → +∞}
.

Then we have

Lemma 5.1. For any z0 ∈ V0 , the ω-limit set of z0 is a nonempty compact connected subset in V0 . Furthermore,

(i) ω(z0) is invariant under the nonlinear semigroup S(t) defined by the solution z(t, x), i.e., S(t)ω(z0) = ω(z0) for all t � 0.
(ii) E(t) is constant on ω(z0). Moreover, ω(z0) ⊂ S .

Proof. Since our system has a continuous Lyapunov functional E(t), the conclusion of the present lemma follows from
Lemmas 4.3, 4.5 and the well-known results in dynamical system (see, e.g., [38, Lemma I.1.1]). �
Remark 5.1. Since solutions to problem (5.2), (5.3) are smooth, points in ω(z0) are smooth. In particular, ω(z0) is contained
in a bounded set in V1.

After the previous preparations, we are ready to finish the proof of Theorem 2.2.

5.1. Convergence to equilibrium

For any initial datum z0 ∈ V0, it follows from Lemmas 4.3 and 4.5 that there is an equilibrium (u∞,0,0,0)T ∈ ω(z0) and
an increasing unbounded sequence {tn}n∈N such that

lim
tn→+∞

(∥∥u(tn) − u∞
∥∥

V 2 + ∥∥v(tn)
∥∥+ ∥∥θ(tn)

∥∥+ ∥∥ηt(tn)
∥∥
M1

)= 0. (5.6)

Actually, the convergence for v, θ,ηt can be proved directly as follows:

Lemma 5.2. Under the assumptions in Theorem 2.2, we have

v(t) → 0, θ(t) → 0, in L2(Ω), (5.7)

and

ηt → 0, in M1, (5.8)

as time goes to infinity.

Proof. Taking the inner product of (2.8) with z in V−1, we get

1

2

d

dt

∥∥z(t)
∥∥2
V−1 = −‖v‖2 + 1

2

∞∫
0

μ′(s)
〈
ηt , ηt 〉ds − 〈

f (u), v
〉
V −1 � −〈

f (u), v
〉
V −1 , (5.9)

where in the last step we use (H2). Then the Hölder inequality, (3.9) and the Sobolev embedding theorem yield

1

2

d

dt

(‖v‖2
V −1 + ‖θ‖2

V −1 + ∥∥ηt
∥∥2
M0

)
� −〈u, v〉V 1 − 〈

f (u), v
〉
V −1 � C‖Au‖‖v‖ + C

∥∥ f (u)
∥∥‖v‖ � C, (5.10)

where C is a constant depending on ‖z0‖V0 .
Multiplying (4.8) by 2ε and adding it to (3.3) yields

d

dt

(
1

2

∥∥z(t)
∥∥2
V0 +

∫
Ω

F (u)dx + 2ε J (t)

)
+ (1 − ε)‖∇v‖2 + εκ0‖θ‖2

−
(

1

2
− 2C1ε

) ∞∫
μ′(s)

∥∥A1/2ηt(s)
∥∥2

ds � 2C2ε
∥∥ηt

∥∥2
M1 . (5.11)
0
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It follows from (H3) that

d

dt

(
1

2

∥∥z(t)
∥∥2
V0 +

∫
Ω

F (u)dx + 2ε J (t)

)
+ (1 − ε)‖∇v‖2 + εκ0‖θ‖2 +

[
δ

(
1

2
− 2C1ε

)
− 2C2ε

]∥∥ηt
∥∥2
M1 � 0. (5.12)

Taking ε sufficiently small and integrating (5.12) with respect to t , we get

∞∫
0

(‖∇v‖2 + ‖θ‖2 + ∥∥ηt
∥∥2
M1

)
dt < ∞. (5.13)

Denote

h(t) = ‖v‖2
V −1 + ‖θ‖2

V −1 + ∥∥ηt
∥∥2
M0 . (5.14)

Then from the continuous embedding V 1 ↪→ V 0 ↪→ V −1, M1 ↪→M0, we can conclude from (5.13) that

h(t) ∈ L1(0,∞). (5.15)

This and (5.10) imply

lim
t→+∞ h(t) = 0. (5.16)

Finally, (5.7) and (5.8) follow from (5.6) and (5.16). The proof is complete. �
In order to complete the proof of Theorem 2.2, it remains to show the convergence of u. This can be done by making use

of a suitable Łojasiewicz–Simon type inequality. In our case, it would be convenient to apply the abstract version in [22].
Denote

E(u) = 1

2

∫
Ω

|Au|2 dx +
∫
Ω

F (u)dx. (5.17)

Then we have

Lemma 5.3 (Łojasiewicz–Simon type inequality). Suppose that assumptions (F1)′ , (F2) are satisfied. Let ψ be a critical point of E(u).
There exist constants ρ ∈ (0, 1

2 ) and β > 0 depending on ψ such that for any u ∈ V 2 satisfying ‖u − ψ‖V 2 < β , there holds∥∥A2u + f (u)
∥∥

V −2 �
∣∣E(u) − E(ψ)

∣∣1−ρ
. (5.18)

Remark 5.2. We note that a “smooth” version of Łojasiewicz–Simon inequality of similar type has been introduced in [25].
However, the solution to our problem no longer enjoys the smooth property as in [25].

We prove the convergence result following a simple argument introduced in [26] in which the key observation is that
after certain time t0, the solution u will fall into the small neighborhood of u∞ and stay there forever. Unlike parabolic
equations, in order to apply the Łojasiewicz–Simon approach to our problem we have to introduce an auxiliary functional
which is usually a perturbation of the Lyapunov functional E(t) due to the structure of (2.8) (cf. [22,25,33,40] and references
cited therein).

Define

H(t) = 1

2

∥∥v(t)
∥∥2 + 1

2

∥∥θ(t)
∥∥2 + 1

2

∥∥ηt
∥∥2
M1 + E

(
u(t)

)− α

∞∫
0

μ(s)
〈
θ(t), ηt(s)

〉
ds + ε

〈
A2u(t) + f

(
u(t)

)
, v(t)

〉
V −2 , (5.19)

where α > 0, ε > 0 are two coefficients to be determined later. It is easy to check that H(t) is well defined for t � 0.
A direct calculation yields

dH

dt
= −‖∇v‖2 + 1

2

∞∫
0

μ′(s)
∥∥A1/2ηt(s)

∥∥2
ds − α

∞∫
0

μ(s)
〈
�ut(t), η

t(s)
〉
ds − ακ0‖θ‖2 − α

∥∥∥∥∥
∞∫

0

μ(s)A
1
2 ηt(s)ds

∥∥∥∥∥
2

+ α

∞∫
0

μ(s)
〈
θ(t), ηt

s(s)
〉
ds + ε

[∥∥A2u + f (u)
∥∥2

V −2 + 〈
A2u + f (u), Av − Aθ

〉
V −2 + 〈

A2 v + f ′(u)v, v
〉
V −2

]
. (5.20)

It follows from the Hölder inequality, the Poincaré inequality and the Sobolev embedding theorem that
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∣∣〈A2u + f (u), Av − Aθ
〉
V −2

∣∣� 1

2

∥∥A2u + f (u)
∥∥2

V −2 + ‖v‖2 + ‖θ‖2 � 1

2

∥∥A2u + f (u)
∥∥2

V −2 + C9‖∇v‖2 + ‖θ‖2, (5.21)∣∣〈A2 v + f ′(u)v, v
〉
V −2

∣∣� ‖v‖2 + ∥∥ f ′(u)
∥∥

L∞‖v‖2 � C10‖∇v‖2, (5.22)

where C9 = C2
P and C10 > 0 depends on C P and ‖z0‖V0 . Recalling (4.8) and (H3), we deduce from (5.20)–(5.22) that

dH

dt
� −

[
1 − 1

2
α − (C9 + C10)ε

]
‖∇v‖2 +

(
1

2
− C1α

) ∞∫
0

μ′(s)
∥∥A1/2ηt(s)

∥∥2
ds

−
(

ακ0

2
− ε

)
‖θ‖2 + C2α

∥∥ηt(s)
∥∥2
M1 − 1

2
ε
∥∥A2u + f (u)

∥∥2
V −2

� −
[

1 − 1

2
α − (C9 + C10)ε

]
‖∇v‖2 −

[(
1

2
− C1α

)
δ − C2α

]∥∥ηt(s)
∥∥2
M1

−
(

ακ0

2
− ε

)
‖θ‖2 − 1

2
ε
∥∥A2u + f (u)

∥∥2
V −2 . (5.23)

We take α > 0 small enough such that(
1

2
− C1α

)
δ − C2α � 1

4
δ and

1

2
α � 1

4
, (5.24)

namely,

0 < α � min

{
δ

4(C1δ + C2)
,

1

2

}
. (5.25)

After fixing α, we take ε > 0 sufficiently small satisfying

0 < ε � min

{
1

4(C9 + C10)
,

1

4
ακ0

}
. (5.26)

As a result, there exists a positive constant γ such that

d

dt
H(t) � −γ

(‖∇v‖2 + ∥∥ηt(s)
∥∥2
M1 + ‖θ‖2 + ∥∥A2u + f (u)

∥∥2
V −2

)
. (5.27)

Thus H(t) is decreasing on [0,∞). Because H(t) is bounded from below, it has a finite limit as time goes to infinity. On the
other hand, it follows from (5.6)–(5.8) that as tn → ∞,

H(tn) → E∞ = E(u∞). (5.28)

From (5.27) we can infer that H(t) � E(u∞) for all t > 0, and the equality sign holds if and only if u is independent of t
and solves problem (2.12) while θ = v = ηt = 0.

We now consider all possibilities.

Case 1. If there is a t0 > 0 such that at this time H(t0) = E(u∞), then for all t > t0, we deduce from (5.27) that

‖∇v‖ ≡ 0. (5.29)

Namely, u is independent of time for all t > t0. Due to (5.6), we can see that (2.13) holds.

Case 2. For all t > 0, H(t) > E(u∞). In this case, there holds

− d

dt

(
H(t) − E(u∞)

)ρ = −ρ
(

H(t) − E(u∞)
)ρ−1 d

dt
H(t), (5.30)

here ρ ∈ (0, 1
2 ) is the exponent in Lemma 5.3. By the Hölder inequality, we obtain

(
H − E(u∞)

)1−ρ � C
(‖v‖2(1−ρ) + ‖θ‖2(1−ρ) + ∥∥ηt

∥∥2(1−ρ)

M1 + ∣∣E(u) − E(u∞)
∣∣1−ρ

+ ‖θ‖1−ρ
∥∥ηt

∥∥1−ρ

M1 + ∥∥A2u + f (u)
∥∥1−ρ

V −2 ‖v‖1−ρ
)
. (5.31)

Besides, the Young inequality yields

∥∥A2u + f (u)
∥∥1−ρ

−2 ‖v‖1−ρ �
∥∥A2u + f (u)

∥∥ −2 + C‖v‖ 1−ρ
ρ . (5.32)
V V
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Noting that (1 − ρ)/ρ > 1 and 2(1 − ρ) > 1, by the uniform bounds obtained in previous section, we conclude

(
H − E(u∞)

)1−ρ � C
(‖v‖ + ‖θ‖ + ∥∥ηt

∥∥
M1 + ∥∥A2u + f (u)

∥∥
V −2 + ∣∣E(u) − E(u∞)

∣∣1−ρ)
. (5.33)

It follows from (5.6) that there exists N ∈ N such that for any n � N , ‖u(tn) − u∞‖V 2 < β . Set

t̄n = sup
{

t > tn
∣∣ ∥∥u(τ ) − u∞

∥∥
V 2 < β, ∀τ ∈ [tn, t]}. (5.34)

Observe that t̄n > tn for all n � N , due to the continuity of the orbit in V0. Now we have to deal with two subcases.
(a) There exists n0 such that t̄n0 = ∞. By Lemma 5.3, (5.20), (5.30), (5.33) and the Poincaré inequality, we can conclude

that

− d

dt

(
H(t) − E(u∞)

)ρ � Cργ
‖∇v‖2 + ‖ηt(s)‖2

M1 + ‖θ‖2 + ‖A2u + f (u)‖2
V −2

‖v‖ + ‖θ‖ + ‖ηt‖M1 + ‖A2u + f (u)‖V −2 + |E(u) − E(u∞)|1−ρ

� C11
(‖∇v‖ + ∥∥ηt(s)

∥∥
M1 + ‖θ‖ + ∥∥A2u + f (u)

∥∥
V −2

)
. (5.35)

Integrating from tn0 to t , we obtain

(
H(t) − E(u∞)

)ρ + C11

t∫
tn0

(‖∇v‖ + ∥∥ηt(s)
∥∥
M1 + ‖θ‖ + ∥∥A2u + f (u)

∥∥
V −2

)
dτ �

(
H(tn0 ) − E(u∞)

)ρ
. (5.36)

Recalling that H(t) − E(u∞) � 0 for t > 0, we infer

t∫
tn0

∥∥v(τ )
∥∥

V 1 dτ < ∞, ∀t � tn0 . (5.37)

Thus, u(t) converges in V 1. Then by the precompactness property of u(t) in V 2 (see Section 4), we can conclude (2.13).
(b) For all n ∈ N, t̄n < ∞.
Since H(t) is decreasing in [0,∞) and it has a finite limit E∞ = E(u∞) as t → ∞, then for any ζ ∈ (0, β) there exists an

integer N such that when n � N , for all t � tn > 0, there holds

(
H(tn) − E(u∞)

)ρ − (
H(t) − E(u∞)

)ρ
<

C11

2
ζ. (5.38)

As a result, for n � N there holds

t̄n∫
tn

∥∥v(τ )
∥∥

V 1 dτ <
ζ

2
. (5.39)

Moreover, by choosing N sufficiently large we have

∥∥u(tn) − u∞
∥∥

V 2 <
ζ

2
, ∀n � N. (5.40)

These imply that

∥∥u(t̄n) − u∞
∥∥

V 1 �
∥∥u(tn) − u∞

∥∥
V 1 +

t̄n∫
tn

∥∥v(τ )
∥∥

V 1 dτ < ζ, ∀n � N. (5.41)

Therefore,

lim
t̄n→+∞

∥∥u(t̄n) − u∞
∥∥

V 1 = 0. (5.42)

On the other hand, the precompactness of u in V 2 implies that there exists a subsequence of {u(t̄n)}, still denoted by
{u(t̄n)}, converging to u∞ in V 2. Thus for n sufficiently large, we get

∥∥u(t̄n) − u∞
∥∥

V 2 < β, (5.43)

which contradicts the definition of t̄n .
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5.2. Convergence rate

For t � t0 with t0 sufficiently large, it follows from Lemma 5.3 and (5.33), (5.35) that

d

dt

(
H(t) − E(u∞)

)+ C
(

H(t) − E(u∞)
)2(1−ρ) � 0. (5.44)

This yields (cf. [22,40,42])

H(t) − E(u∞) � C(1 + t)−1/(1−2ρ), ∀t � t0. (5.45)

Integrating (5.33) on (t,∞), we have

∞∫
t

‖v‖V 1 dτ � C(1 + t)−ρ/(1−2ρ), ∀t � t0. (5.46)

By adjusting the constant C properly, we obtain

∥∥u(t) − u∞
∥∥

V 1 � C(1 + t)−ρ/(1−2ρ), ∀t � 0. (5.47)

Based on this estimate for u in V 1 norm, we are able to obtain the estimates (in higher order norm) stated in Theorem 2.2.
By subtracting the evolution equations (2.7) and their corresponding stationary equations (2.12), we have

⎧⎪⎪⎨
⎪⎪⎩

θt − �ut −
∞∫

0

μ(s)�ηt(s)ds = 0,

utt − �ut + �θ + �2(u − u∞) + f (u) − f (u∞) = 0.

(5.48)

Similar to (3.3), we can see that

d

dt

(
1

2

∥∥u(t) − u∞
∥∥2

V 2 + 1

2
‖v‖2 + 1

2
‖θ‖2 + 1

2

∥∥ηt
∥∥2
M1 +

∫
Ω

F (u)dx −
∫
Ω

F (u∞)dx −
∫
Ω

f (u∞)(u − u∞)dx

)

+ ‖∇v‖2 − 1

2

∞∫
0

μ′(s)
∥∥A1/2ηt(s)

∥∥2
ds = 0. (5.49)

Multiplying the second equation in (5.48) by u − u∞ and integrating on Ω , we get

d

dt

(
1

2
‖∇u − ∇u∞‖2 +

∫
Ω

v(u − u∞)dx

)
− ‖v‖2 + ∥∥A(u − u∞)

∥∥2

= −
∫
Ω

(
f (u) − f (u∞)

)
(u − u∞)dx +

∫
Ω

θ A(u − u∞)dx. (5.50)

Multiplying (4.8) by 2ε and multiplying (5.50) by ε2 respectively, then adding the resultants to (5.49) yield

d

dt

(
1

2

∥∥u(t) − u∞
∥∥2

V 2 + 1

2
‖v‖2 + 1

2
‖θ‖2 + 1

2

∥∥ηt
∥∥2
M1 + ε2

2

∥∥∇(u − u∞)
∥∥2 +

∫
Ω

F (u)dx

−
∫
Ω

F (u∞)dx −
∫
Ω

f (u∞)(u − u∞)dx + ε2
∫
Ω

v(u − u∞)dx + 2ε J (t)

)

+ (1 − ε)‖∇v‖2 + εκ0‖θ‖2 +
[(

1

2
− 2C1ε

)
δ − 2C2ε

]∥∥ηt
∥∥2
M1 + ε2

∥∥A(u − u∞)
∥∥2

� ε2‖v‖2 − ε2
∫
Ω

(
f (u) − f (u∞)

)
(u − u∞)dx + ε2

∫
Ω

θ A(u − u∞)dx. (5.51)

We now estimate the three terms on the right-hand side of inequality (5.51),
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ε2‖v‖2 � ε2C2
P ‖∇v‖2, (5.52)∣∣∣∣−ε2

∫
Ω

(
f (u) − f (u∞)

)
(u − u∞)dx

∣∣∣∣� ε2‖ f ′‖L∞‖u − u∞‖2 � Cε2‖u − u∞‖2, (5.53)

∣∣∣∣ε2
∫
Ω

θ A(u − u∞)dx

∣∣∣∣� 1

4
ε2
∥∥A(u − u∞)

∥∥2 + ε2‖θ‖2. (5.54)

On the other hand, by the Taylor’s expansion, we have

F (u) = F (u∞) + f (u∞)(u − u∞) + f ′(ξ)(u − u∞)2, (5.55)

where ξ = au + (1 − a)u∞ with a ∈ [0,1].
Then we deduce that∣∣∣∣

∫
Ω

F (u)dx −
∫
Ω

F (u∞)dx +
∫
Ω

f (u∞)u∞ dx −
∫
Ω

f (u∞)u dx

∣∣∣∣=
∣∣∣∣
∫
Ω

f ′(ξ)(u − u∞)2 dx

∣∣∣∣
�
∥∥ f ′(ξ)

∥∥
L∞‖u − u∞‖2 � C‖u − u∞‖2. (5.56)

Let us define now, for t � 0,

y(t) = 1

2

∥∥u(t) − u∞
∥∥2

V 2 + 1

2
‖v‖2 + 1

2
‖θ‖2 + 1

2

∥∥ηt
∥∥2
M1 + ε2

2

∥∥∇(u − u∞)
∥∥2 +

∫
Ω

F (u)dx

−
∫
Ω

F (u∞)dx −
∫
Ω

f (u∞)(u − u∞)dx + ε2
∫
Ω

v(u − u∞)dx + 2ε J (t). (5.57)

Taking ε sufficiently small, it follows from the Hölder inequality, (5.56) and (4.3) that there exist constants γ0, γ1, γ2 > 0
such that

γ0‖z − z∞‖2
V0 � y(t) � γ2‖z − z∞‖2

V0 − γ1‖u − u∞‖2
V 1 . (5.58)

Moreover, for small ε we can deduce from (5.51)–(5.54) and (5.58) that for certain γ3 > 0, the following inequality holds

d

dt
y(t) + γ3 y(t) � C‖u − u∞‖2

V 1 . (5.59)

The Gronwall inequality and (5.47) yield (see, e.g., [39,40])

y(t) � C(1 + t)−2ρ/(1−2ρ), ∀t � 0, (5.60)

which together with (5.58) implies that

‖z − z∞‖V0 � C(1 + t)−ρ/(1−2ρ), ∀t � 0. (5.61)

The proof of Theorem 2.2 is now complete.
Before ending this paper, we give a further remark on the estimate of convergence rate. As has been shown in the

previous section, the solution z(t) to our problem (2.8) with initial data z0 ∈ V0 can be decomposed into two parts
z(t) = zD(t) + zC (t), where zD(t) = (uD(t), v D(t), θD(t), ηt

D)T and zC (t) = (uC (t), vC (t), θC (t), ηt
C )T satisfy (4.15) and (4.16),

respectively. It is also shown in Lemma 4.2 that zD(t) will decay to 0 in V0 exponentially fast. This convergence rate is
obviously better than the rate for z(t) obtained in Theorem 2.2. As a result, we can easily obtain the following result for the
compact part zC (t) from Lemma 4.2 and Theorem 2.2.

Proposition 5.1. Under the assumptions of Theorem 2.2, we have∥∥zC (t) − z∞
∥∥
V0 � C(1 + t)−ρ/(1−2ρ), ∀t � 0, (5.62)

where C > 0 is a constant depending on ‖z0‖V0 and z∞ = (u∞,0,0,0)T .

Proof. We notice that∥∥zC (t) − z∞
∥∥
V0 �

∥∥z(t) − z∞
∥∥
V0 + ∥∥zD(t)

∥∥
V0 , (5.63)

lim
t→+∞ e− δ1

2 t(1 + t)ρ/(1−2ρ) = 0. (5.64)

Then the conclusion (5.62) follows from Lemma 4.2 and (5.61) after the constant C is properly modified. �
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Moreover, Lemma 4.3 provides a uniform estimate of zC in V1. As a direct consequence, this fact and Proposition 5.1
imply the weak convergence of zC such that

zC (t) ⇀ z∞, in V1, as t → +∞.

Based on the idea we used in the proof of Theorem 2.2, we are able to get a stronger result, namely

Theorem 5.1. Under the assumptions of Theorem 2.2, we have∥∥zC (t) − z∞
∥∥
V1 � C(1 + t)−ρ/(1−2ρ), ∀t � 0, (5.65)

where C > 0 is a constant depending on ‖z0‖V0 and ‖u∞‖V 3 .

Proof. Subtracting (2.12) from (4.16) we have⎧⎨
⎩

d

dt
(zC − z∞) = L(zC − z∞) + (

0,− f (u) + f (u∞),0,0
)T

,

(zC − z∞)|t=0 = z∞.

(5.66)

Taking the inner product of the resulting system (5.66) and A(zC − z∞) in V0, we get

d

dt

(
1

2

∥∥A1/2(zC − z∞)
∥∥2
V0 +

∫
Ω

(
f (u) − f (u∞)

)
A(uC − u∞)dx

)
+ ‖AvC ‖2 − 1

2

∞∫
0

μ′(s)
∥∥Aηt

C (s)
∥∥2

ds

=
∫
Ω

f ′(u)v A(uC − u∞). (5.67)

Next, multiplying the second equation in (5.66) by A(uC − u∞) and integrating on Ω , we have

d

dt

(∫
Ω

vC A(uC − u∞)dx + 1

2

∥∥A(uC − u∞)
∥∥2
)

+ ∥∥A3/2(uC − u∞)
∥∥2 − ∥∥A1/2 vC

∥∥2

= −
∫
Ω

(
f (u) − f (u∞)

)
A(uC − u∞)dx +

∫
Ω

AθC A(uC − u∞)dx. (5.68)

Now we introduce the functional

Υ (t) = ∥∥A1/2(zC (t) − z∞
)∥∥2

V0 + 2
∫
Ω

(
f (u) − f (u∞)

)
A(uC − u∞)dx

+ 2ε2
∫
Ω

vC A(uC − u∞)dx + ε2
∥∥A(uC − u∞)

∥∥2 + 4ε JC (t). (5.69)

It follows from Theorem 2.2, Proposition 5.1 and (4.28) that for t � 0,∣∣∣∣
∫
Ω

(
f (u) − f (u∞)

)
A(uC − u∞)dx

∣∣∣∣� ‖ f ′‖L∞‖u − u∞‖∥∥A(uC − u∞)
∥∥� C(1 + t)−2ρ/(1−2ρ), (5.70)

∣∣∣∣
∫
Ω

vC A(uC − u∞)dx

∣∣∣∣� ‖vC ‖∥∥A(uC − u∞)
∥∥� C(1 + t)−2ρ/(1−2ρ), (5.71)

∣∣ JC (t)
∣∣� C‖zC − z∞‖2

V1 . (5.72)

As a result, after choosing ε > 0 sufficiently small, there is a constant C > 0 such that∥∥zC (t) − z∞
∥∥2
V1 � 2Υ (t) + C(1 + t)−2ρ/(1−2ρ). (5.73)

It follows from (5.67)–(5.68) and (4.29) that

1

2

d

dt
Υ (t) + (1 − ε)‖AvC ‖2 −

(
1

2
− 2C7ε

) ∞∫
0

μ′(s)
∥∥Aηt

C (s)
∥∥2

ds

− ε2
∥∥A1/2 vC

∥∥2 + ε2
∥∥A3/2(uC − u∞)

∥∥2 + εκ0
∥∥A1/2θC

∥∥2

�
∫

f ′(u)v A(uC − u∞)dx + 2C6ε
∥∥ηt

C

∥∥2
M2 − ε2

∫ (
f (u) − f (u∞)

)
A(uC − u∞)dx + ε2

∫
AθC A(uC − u∞)dx. (5.74)
Ω Ω Ω
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The right-hand side of (5.74) can be estimated as follows∣∣∣∣
∫
Ω

f ′(u)v A(uC − u∞)dx

∣∣∣∣� ∥∥ f ′(u)
∥∥

L∞‖v‖∥∥A(uC − u∞)
∥∥� C(1 + t)−2ρ/(1−2ρ), (5.75)

∣∣∣∣
∫
Ω

(
f (u) − f (u∞)

)
A(uC − u∞)dx

∣∣∣∣� ‖ f ′‖L∞‖u − u∞‖∥∥A(uC − u∞)
∥∥� C(1 + t)−2ρ/(1−2ρ), (5.76)

∣∣∣∣ε2
∫
Ω

AθC A(uC − u∞)dx

∣∣∣∣� εκ0

2

∥∥A1/2θC
∥∥2 + Cε3

∥∥A3/2(uC − u∞)
∥∥2

, (5.77)

where in the above estimates C is a constant depending on ‖z0‖V0 at most. Similar to the previous section, we can choose
ε > 0 small enough and consequently there is a constant γ4 > 0 such that

d

dt
Υ (t) + γ4Υ (t) � C(1 + t)−2ρ/(1−2ρ). (5.78)

As a result,

Υ (t) � C(1 + t)−2ρ/(1−2ρ), ∀t � 0, (5.79)

here C > 0 is a constant depending on ‖z0‖V0 and ‖u∞‖V 3 (see Remark 5.1).
The required estimate (5.65) follows from (5.79) and (5.73). We complete the proof. �
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