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1. Introduction

Maximal regularity is a very useful tool in the study of linear and nonlinear evolution equations and results in this
direction have been studied extensively in recent years (see, for example, [2,4,5,12,14,26,28,30] and the bibliography therein).
Indeed, besides of giving optimal results under minimal regularity assumptions on the coefficients of differential operators
(cf. [1]), in the investigation of nonlinear equations it facilitates the application of linearization techniques based on the
implicit function theorem (see, e.g., [18]).

However, in concrete situations it is no easy task to verify that a given equation possesses the property of maximal
regularity. Therefore it is important to have at our disposal general theorems which allow to derive the desired property for
large classes of equations.

In this paper we characterize the maximal regularity on periodic Lebesgue spaces for the following integral equation
with infinite delay

u(t) = A

t∫
−∞

a(t − s)u(s)ds + B

t∫
−∞

b(t − s)u(s)ds + f (t), (1.1)

where a(·),b(·) ∈ L1(R+) are scalar-valued kernels, A and B are closed linear operators defined on a UMD space X , such
that D(A) ∩ D(B) �= {0}. Equations of the form (1.1) has been motived by Pugliese [32] and Prüss [31, p. 235].
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In contrast with many papers on the subject of maximal regularity for integral equations, in this work we will study
directly the full problem (1.1) by a method based on operator-valued Fourier multiplier theorems, which was initiated by
L. Weis in [35] in the investigation of maximal regularity for abstract equations (see also [7] and [34]). The specific operator-
valued Fourier multiplier theorems which we use are those established by Arendt and Bu in [8, Theorem 1.3].

Maximal regularity on periodic Lebesgue, Besov and Triebel spaces for the subject of integrodifferential equations, and by
use of operator-valued Fourier multiplier theorems, have been studied recently in [11,21–24,29]. Our case is more difficult
to handle because of the presence of the perturbing operator B . We are able to obtain necessary and sufficient conditions
for maximal regularity in terms of R-boundedness of{(

I − b̃(ik)B − ã(ik)A
)−1}

k∈Z
and b̃(ik)B

{(
I − b̃(ik)B − ã(ik)A

)−1}
k∈Z

. (1.2)

We do not make in this paper any parabolicity assumption on the operators, not even that A generates a semigroup. In
fact, we give examples showing that the condition that A be the generator of a semigroup is not necessary. We study, in
particular, the special case B = Aε . Under analogous assumptions as in [13] we prove that if ε ∈ (1/2,1], then an integral
version of the problem

u′′(t) + Aεu′(t) + Au(t) = f (t)

has a periodic solution under the presence of resonances, provided a compatibility condition in terms of the forcing term f
is satisfied.

The paper is organized as follows. In Section 2 we collect some results about operator-valued Fourier multipliers and
R-bounded families. In Section 3 we characterize R-boundedness of (1.2) in terms of L p-multipliers (Theorem 3.1). We
obtain our main result which characterizes the maximal regularity of (1.1) on periodic Lebesgue spaces (Theorem 3.5). We
remark that in this case, Fejer’s theorem can be used to construct the solution.

Section 4 is devoted to maximal regularity in the periodic Lebesgue spaces L p
2π (R; X) in case that (1.1) has resonances.

A similar case was studied in [16] but under the condition that A generates an analytic semigroup. We show that under
essentially the same conditions established in Section 3, Eq. (1.1) has L p periodic solution if and only if f satisfies suitable
compatibility conditions (Theorem 4.4). Also in this case we give a representation formula for all the solutions, which allows
the study of their qualitative properties.

2. Preliminaries

Let X , Y be Banach spaces. We denote by B(X, Y ) the space of all bounded linear operators from X to Y . When X = Y ,
we write simply B(X). As usual, we identify the spaces of (vector- or operator-valued) functions defined on [0,2π ] to their
periodic extensions to R. Thus, in this paper, we consider the space L p

2π (R; X) (denoted also L p((0,2π); X), 1 � p � ∞) of
all 2π -periodic Bochner measurable X-valued functions f such that the restriction of f to [0,2π ] is p-integrable (usual
modification in case p = ∞). For a function f ∈ L1

2π (R; X), denote by f̂ (k), for k ∈ Z, the kth Fourier coefficient of f , that
is,

f̂ (k) = 1

2π

2π∫
0

e−k(t) f (t)dt,

where ek(t) = eikt , with t ∈ R.
We begin with preliminaries about operator-valued Fourier multipliers. More information may be found in Arendt and

Bu [8] for the periodic case and Amann [4], Weis [34] for the non-periodic case.

Definition 2.1. For 1 � p � ∞, we say that a sequence {Mk}k∈Z ⊂ B(X, Y ) is an L p
X,Y -multiplier, if for each f ∈ L p

2π (R; X)

there exists u ∈ L p
2π (R; Y ) such that

û(k) = Mk f̂ (k) for all k ∈ Z.

It follows from the uniqueness theorem of Fourier series that u is uniquely determined by f . If a sequence {Mk}k∈Z ⊂
B(X, Y ) is an L p-multiplier, then and only then, there exists a unique bounded operator M : L p

2π (R; X) → L p
2π (R; Y ) such

that

(̂M f )(k) = Mk f̂ (k),

for all k ∈ Z and all f ∈ L p
2π (R; X). The set of Fourier multipliers is a vector space. Moreover, it is clear from the definition

that if X , Y , Z are Banach spaces and {Mk}k∈Z ⊂ B(X, Y ) and {Nk}k∈Z ⊂ B(Y , Z) are Fourier multipliers then {Nk Mk}k∈Z ⊂
B(X, Z) is a Fourier multiplier as well. When X = Y , the space of Fourier multipliers is an operator algebra.

For j ∈ N, denote by r j the jth Rademacher function on [0,1], i.e. r j(t) = sgn(sin(2 jπt)). For x ∈ X we denote by r j ⊗ x
the vector-valued function t → r j(t)x.



C. Lizama, V. Poblete / J. Math. Anal. Appl. 348 (2008) 775–786 777
Definition 2.2. A family T ⊂ B(X, Y ) is called R-bounded if there exists cp � 0 such that∥∥∥∥∥
n∑

j=1

r j ⊗ T j x j

∥∥∥∥∥
Lp(0,1;Y )

� cp

∥∥∥∥∥
n∑

j=1

r j ⊗ x j

∥∥∥∥∥
Lp(0,1;X)

(2.1)

for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X and n ∈ N, where 1 � p < ∞. We denote by R p(T) the smallest constant cp such
that (2.1) holds.

The notion of R-boundedness goes back to Bourgain [10], Berkson and Gillespie [9], and Clément, de Pagter, Sukochev
and Witvliet [15]. Several properties of R-bounded families can be founded in the recent monograph of Denk, Hieber and
Prüss [17]. For the reader’s convenience, we summarize here from [17, Section 3] some results.

Remark 2.3.

(a) Any finite family T ⊂ B(X, Y ) is R-bounded.
(b) If T ⊂ B(X, Y ) is R-bounded then it is uniformly bounded, with

sup
{‖T ‖: T ∈ T

}
� R p(T ).

(c) The definition of R-boundedness is independent of p ∈ [1,∞).
(d) When X and Y are Hilbert spaces, T ⊂ B(X, Y ) is R-bounded if and only if T is uniformly bounded.
(e) Let X , Y be Banach spaces and T ,S ⊂ B(X, Y ) be R-bounded. Then

T + S = {T + S: T ∈ T , S ∈ S}
is R-bounded as well, and R p(T + S) � R p(T ) + R p(S).

(f) Let X , Y , Z be Banach spaces, and T ⊂ B(X, Y ) and S ⊂ B(Y , Z) be R-bounded. Then

ST = {ST : T ∈ T , S ∈ S}
is R-bounded, and R p(ST ) � R p(S)R p(T ).

(g) Let X , Y be Banach spaces and T ⊂ B(X, Y ) be R-bounded. By contraction principle of Kahane, see [17,25], we have
that, if {αk}k∈Z is a bounded sequence then

{αk T : T ∈ T , k ∈ Z}
is R-bounded.

Remark 2.4. Let {Mk}k∈Z ⊂ B(X, Y ) be an L p
X,Y -multiplier, where 1 � p < ∞. An inspection of the proof of [8, Proposi-

tion 1.11] shows that the set {Mk}k∈Z is R-bounded.

In order to present the conditions that we will need later we introduce some notation. Let {ak}k∈Z be a sequence of
complex numbers. We set

�0ak = ak, �ak = �1ak = ak+1 − ak

and for n = 2,3, . . .

�nak = �
(
�n−1ak

)
.

The following concept of n-regularity introduced in [23] is the discrete analog for the notion of n-regularity related to
Volterra integral equations (see [31, Chapter I, Section 3.2]).

Definition 2.5. A sequence {ak}k∈Z ⊆ C \ {0} is called n-regular (n ∈ N) if

sup
1�l�n

sup
k∈Z

∥∥kl(�lak
)
/ak

∥∥ < ∞. (2.2)

Remark 2.6. Note that if {ak}k∈Z is 1-regular then lim|k|→∞ ak+1/ak = 1. Observe that an n-regular sequence need not be
bounded. We cite here from [23] some useful properties of n-regular sequences valid for n � 3.

(i) If {ak}k∈Z and {bk}k∈Z are n-regular sequences such that supk | ak
ak+bk

| < ∞, then the sequence {ak + bk}k∈Z is n-regular.
(ii) If the sequences {ak}k∈Z and {bk}k∈Z are n-regular, then the sequence {akbk}k∈Z is n-regular.

(iii) The sequence {ak}k∈Z is n-regular if and only if the sequence { 1
ak

}k∈Z is n-regular.
(iv) If the sequences {ak}k∈Z and {bk}k∈Z are n-regular, then the sequence {ak/bk}k∈Z is n-regular.
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Remark 2.7. We recall that those Banach spaces X for which the Hilbert transform defined by

(H f )(t) = lim
ε→0

R→∞

1

π

∫
ε�|s|�R

f (t − s)

s
ds (2.3)

is bounded on L p(R, X) for some p ∈ (1,∞) are called UMD-spaces. The limit in the above formula is to be understood in
the L p sense. For more information and details on the Hilbert transform and the UMD Banach spaces we refer to [4, Sec-
tions III.4.3–III.4.5]. The definition of Banach spaces with the unconditional martingale difference property UMD was intro-
duced by D.L. Burkholder. Examples of UMD spaces include Hilbert spaces, Sobolev spaces W s

p(Ω),1 < p < ∞ (see [3]) and
Lebesgue spaces L p(Ω,μ), 1 < p < ∞, L p(Ω,μ; X), 1 < p < ∞, when X is a UMD space.

The following theorem, due to Arendt and Bu [8, Theorem 1.3], is the discrete analogue of the operator-valued version of
Mikhlin’s theorem due to Weis [34] and play a central role in this paper.

Theorem 2.8. Let X , Y be UMD spaces and let {Mk}k∈Z ⊆ B(X, Y ). If the sets {Mk}k∈Z and {k(Mk+1 − Mk)}k∈Z are R-bounded, then
{Mk}k∈Z is an L p

X,Y -multiplier for 1 < p < ∞.

3. A characterization

We first consider the relation between multipliers and R-boundedness for special cases of sequences of operators. Anal-
ogous results were established in [11,21] and [22] in case of a unique closed linear operator A. In contrast, in what follows,
we assume that A and B are closed linear operators with D(A) ∩ D(B) �= {0}. We denote by [D(A) ∩ D(B)] the domain of
A + B endowed with the graph norm, that is: ‖x‖[D(A)∩D(B)] = ‖x‖ + ‖Ax‖ + ‖Bx‖, so that it becomes a Banach space. The
following theorem corresponds to an extension of [21, Proposition 2.8] and is the key in the study of characterizations of
maximal regularity.

Theorem 3.1. Let {ak}k∈Z and {bk}k∈Z be a 1-regular sequences with {bk} bounded. Let A and B be a closed linear operators defined
on a UMD space X. Assume that the operator I − ak A − bk B with domain D(A) ∩ D(B) is invertible and (I − ak A − bk B)−1 ∈
B(X, [D(A) ∩ D(B)]), then the following assertions are equivalent:

(i) {(I − ak A − bk B)−1}k∈Z and {bk B(I − ak A − bk B)−1}k∈Z are L p
X,X -multipliers, 1 < p < ∞.

(ii) {(I − ak A − bk B)−1}k∈Z and {bk B(I − ak A − bk B)−1}k∈Z are R-bounded.

Proof. (ii) ⇒ (i). Let Mk = (I − ak A − bk B)−1. In order to prove (i) is sufficient to show, by Theorem 2.8, that the sets
{k(Mk+1 − Mk)}k∈Z and {k(bk+1 BMk+1 − bk BMk)} are R-bounded. In fact, a computation gives the following identity

k[Mk+1 − Mk] = k
ak+1 − ak

ak
Mk+1Mk + k

bk+1 − bk

bk

ak+1

ak
Mk+1bk BMk

− k
ak+1 − ak

ak

bk+1

bk
Mk+1bk BMk − k

ak+1 − ak

ak
Mk+1. (3.1)

By 1-regularity, it follows that the sequences {ak+1/ak} and {bk+1/bk} are bounded. Hence from (3.1) and Remark 2.3 we
obtain that {k(Mk+1 − Mk)}k∈Z is R-bounded. On the other hand, we have the identity

k[bk+1 BMk+1 − bk BMk] = k
bk+1 − bk

bk
bk BMk + kbk+1 B(Mk+1 − Mk)

= k
bk+1 − bk

bk
bk BMk + k

ak+1 − ak

ak
bk+1 BMk+1Mk

+ k
bk+1 − bk

bk

ak+1

ak
bk+1 BMk+1bk BMk

− k
ak+1 − ak

ak

bk+1

bk
bk+1 BMk+1bk BMk − k

ak+1 − ak

ak
bk+1 BMk+1,

and hence again by Remark 2.3 we obtain the desired assertion. Finally, (i) ⇒ (ii) follows from Remark 2.4. �
In what follows, we are concerned with the following integral equation with infinite delay⎧⎪⎪⎨

⎪⎪⎩
u(t) = A

t∫
−∞

a(t − s)u(s)ds + B

t∫
−∞

b(t − s)u(s)ds + f (t), (3.2)
u(0) = u(2π)
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where a,b ∈ L1(R+) are scalar kernels, and A, B are closed linear operators defined on a UMD space X , such that D(A) ∩
D(B) �= {0}. Our objective is to provide necessary and sufficient conditions for the existence and uniqueness of periodic
solutions to Eq. (3.2) in vector-valued Lebesgue spaces.

Denote by ã(λ), b̃(λ) the Laplace transforms of a and b respectively. In the following we will assume that ã(ik), b̃(ik)

exist for all k ∈ Z. We suppose that λ → ã(λ) (resp. b̃(λ)) admits an analytical extension to a sector containing the imaginary
axis, and still denote this extension by ã (resp. b̃) and by ãk (resp. b̃k) the Laplace transform ã(ik) (resp. b̃(ik)).

We define

ρa,b(A, B) = {
λ ∈ C: I − a(λ)A − b(λ)B is invertible and

(
I − a(λ)A − b(λ)B

)−1 ∈ B
(

X,
[

D(A) ∩ D(B)
])}

,

and denote by σa,b(A, B) the complementary set C \ ρa,b(A, B).

Definition 3.2. Let 1 < p < ∞. A function u is called a mild L p-solution of (3.2) if a ∗ u ∈ L p
2π (R; [D(A)]), b ∗ u ∈

L p
2π (R; [D(B)]) and Eq. (3.2) holds for almost all t ∈ [0,2π ].

Remark 3.3. We note that the above definition differs of the notion of strong L p-solution, which considers instead of (3.2)
the equation u(t) = (a ∗ Au)(t) + (b ∗ Bu)(t) + f (t). In general not every mild solution is a strong solution. Mild solutions
for integral equations in case B ≡ 0 has been studied previously in the literature (see e.g. [31]).

Definition 3.4. Let 1 � p < ∞. We say that the problem (3.2) has L p-maximal regularity (or is well posed) if for every
f ∈ L p

2π (R; X) there exists a unique mild L p-solution of (3.2).

We recall that a pair (A, B) is called coercive if A + t B with domain D(A) ∩ D(B) is closed for all t > 0 and there is
a constant M > 0 such that

‖Ax‖ + t‖Bx‖ � M‖Ax + t Bx‖
for all x ∈ D(A)∩ D(B), t > 0. For further information we refer [31] and [33]. The following is the main result of this section.

Theorem 3.5. Let a,b ∈ L1(R+) be functions such that {ãk} and {b̃k} are 1-regular sequences. Let A and B be closed linear operators
defined on a UMD space X such that (ãk A, b̃k B) is a coercive pair. Then the following assertions are equivalent for 1 < p < ∞.

(i) Problem (3.2) has L p-maximal regularity.
(ii) {ik}k∈Z ∈ ρã,b̃(A, B), {(I − ãk A − b̃k B)−1}k∈Z , and {b̃k B(I − ãk A − b̃k B)−1}k∈Z are R-bounded.

Proof. (ii) ⇒ (i). Denote by Mk = (I − ãk A − b̃k B)−1 and let f ∈ L p
2π (R, X). By Proposition 3.1, there is u ∈ L p

2π (R; X) such
that

û(k) = Mk f̂ (k), for all k ∈ Z. (3.3)

We conclude that û(k) ∈ D(A) ∩ D(B).
On the other hand, since {b̃k I} and {Mk} are R-bounded sets, an easy computation proves that {b̃k Mk} is an L p

X,X -

multiplier. Hence, for f ∈ L p
2π (R, X) there is h ∈ L p

2π (R; X) such that

ĥ(k) = b̃k Mk f̂ (k) = b̃kû(k), for all k ∈ Z.

We conclude that h(t) = (b ∗ u)(t) and hence (b ∗ u) ∈ L p
2π (R; X).

By Theorem 3.1 we have that {b̃k BMk} is an L p
X,X -multiplier. Then, for f ∈ L p

2π (R, X) there is v ∈ L p
2π (R; X) such that

v̂(k) = b̃k BMk f̂ (k), for all k ∈ Z.

By (3.3) we obtain v̂(k) = Bb̃kû(k), for all k ∈ Z. By Lemma 3.1 in [8] we obtain that (b ∗ u)(t) ∈ D(B) and v(t) =
B(b ∗ u)(t). Since b ∗ u ∈ L p

2π (R; X) and B(b ∗ u) ∈ L p
2π (R; X) using Hölder’s inequality, we obtain that b ∗ u ∈ L p

2π (R; [D(B)]).

Now, from (3.3) we have that ãk Aû(k) = û(k) − b̃k Bû(k) − f̂ (k) or Aãkû(k) = û(k) − ĥ(k) − f̂ (k). By Lemma 3.1 in [8] it
follows that (a ∗ u)(t) ∈ D(A) and

A(a ∗ u)(t) = u(t) − h(t) − f (t) = u(t) − B(b ∗ u)(t) − f (t) (3.4)

(cf. [21, Eq. (2.1)]). Note that A(a ∗ u) ∈ L p
2π (R; X), hence a ∗ u ∈ L p

2π (R; [D(A)]).
From (3.4) and the uniqueness theorem of Fourier coefficients that (3.2) holds for almost all t ∈ [0,2π ]. We have proved

that u is a mild L p-solution of (3.2). It remains to show uniqueness.
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Let a ∗ u ∈ L p
2π (R; [D(A)]) and b ∗ u ∈ L p

2π (R; [D(B)]) be such that

u(t) − A

t∫
−∞

a(t − s)u(s) − B

t∫
−∞

b(t − s)u(s)ds = 0.

Taking Fourier transforms on both sides we obtain that û(k) ∈ D(A) ∩ D(B) and (I − (ãk A + b̃k B))û(k) = 0. Since {ik}k∈Z ∈
ρã,b̃(A, B) this implies that û(k) = 0 for all k ∈ Z and thus u = 0.

(i) ⇒ (ii). Let k ∈ Z and y ∈ X . Define f = ek ⊗ y. There exists u such that a ∗ u ∈ L p
2π (R; [D(A)]), b ∗ u ∈ L p

2π (R; [D(B)])
and

u(t) = A

t∫
−∞

a(t − s)u(s) + B

t∫
−∞

b(t − s)u(s)ds + f (t).

Taking Fourier transforms on both sides we obtain that û(k) ∈ D(A) ∩ D(B) and

û(k) − ãk Aû(k) − b̃k Bû(k) = f̂ (k) = y.

Thus, (I − ãk A − b̃k B) is surjective. Let x ∈ D(A)∩ D(B). If (I − ãk A − b̃k B)x = 0, that is, Ax = I−b̃k B
ãk

x, then u(t) = eikt x defines

a periodic solution of u(t) − A
∫ t
−∞ a(t − s)u(s) − B

∫ t
−∞ b(t − s)u(s)ds = 0. Hence u = 0 by the assumption of uniqueness

and thus x = 0.
Finally, by hypothesis (ãk A, b̃k B) is coercive pair and then we have that ãk A + b̃k B is closed. Since (I − ãk A − b̃k B) is

bijective we conclude that {ik}k∈Z ∈ ρã,b̃(A, B).

Next we show that {(I − ãk A − b̃k B)−1}k∈Z is an L p
X,X -multiplier. Let f ∈ L p

2π (R, X). By hypothesis, there exist a unique

u such that a ∗ u ∈ L p
2π (R, [D(A)]), b ∗ u ∈ L p

2π (R, [D(B)]) and

u(t) = A

t∫
−∞

a(t − s)u(s) + B

t∫
−∞

b(t − s)u(s)ds + f (t).

Taking Fourier transforms on both sides of the equality, we obtain that û(k) ∈ D(A) ∩ D(B) and

û(k) = (I − ãk A − b̃k B)−1 f̂ (k).

Since û(k) ∈ D(B) we have Bb̃kû(k) = Bb̃k(I − ãk A − b̃k B)−1 f̂ (k). Note that if b ∗ u ∈ L p
2π (R, [D(B)]) then B(b ∗ u) ∈

L p
2π (R, X). Let v = B(b ∗ u). By Lemma 3.1 in [8] we obtain Bb̃kû(k) = v̂(k) hence v̂(k) = Bb̃k(I − ãk A − b̃k B)−1 f̂ (k). Then,

by definition, {Bb̃k(I − ãk A − b̃k B)−1}k∈Z is an L p
X,X -multiplier. Analogously we show that {Aãk(I − ãk A − b̃k B)−1}k∈Z is an

L p
X,X -multiplier. Finally, from the identity

(I − ãk A − b̃k B)−1 = I + Bb̃k(I − ãk A − b̃k B)−1 + Aãk(I − ãk A − b̃k B)−1,

we obtain that (I − ãk A − b̃k B)−1 is an L p
X,X -multiplier. The assertion (i) then follows from Theorem 3.1. �

Remark 3.6.

(i) Fejer’s theorem (see [6, Theorem 4.2.19]) allows us to construct the solution u(·) given by the above theorem. In fact,
we have

u(t) = lim
n→∞

n∑
k=−n

(
1 − |k|

n + 1

)
eikt(I − ãk A − b̃k B)−1 f̂ (k)

with convergence in L p
2π (R; X).

(ii) In the context of Theorem 3.5 we have A(a ∗ u), B(b ∗ u) ∈ L p
2π (R, X). Moreover, by the Closed Graph Theorem there

exists a constant C > 0, independent of f ∈ L p
2π (R, X) such that

‖u‖Lp
2π (R,X) + ‖Aa ∗ u‖Lp

2π (R,X) + ‖Bb ∗ u‖Lp
2π (R,X) � C‖ f ‖Lp

2π (R,X).

(iii) The R-boundedness condition in Theorem 3.5(i) can be satisfied in special cases of operators A appearing in applica-
tions. For example, if A is sectorial and B is such that D(A) ⊂ D(B) and ‖Bx‖ � α‖Ax‖, x ∈ D(A), for some α > 0 then
we can make use of [17, Proposition 4.2]. In the case of relatively bounded perturbations i.e. ‖Bx‖ � α‖Ax‖ + β‖x‖,
x ∈ D(A) with small relative bound α, we can modify the arguments of [17, Proposition 4.2] to satisfy the hypothesis
of Theorem 3.5.

(iv) We note that the coercivity condition on the pair (ãk A, b̃k B) is used only in the implication (ii) → (i).
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Example 3.7. Given γ > 0, we consider the following particular case of (3.2):⎧⎪⎪⎨
⎪⎪⎩

u(t) = −A

t∫
−∞

e−γ (t−s)(t − s)u(s)ds − Aε

t∫
−∞

e−γ (t−s)u(s)ds + f (t),

u(0) = u(2π),

(3.5)

where A is closed linear operator defined on UMD space X . We note that Eq. (3.5) can be considered as an integral version
of the second order Cauchy problem

u′′(t) + Aεu′(t) + Au(t) = f (t), (3.6)

since, formally, it corresponds to the second derivative of (3.5) in the limit case γ = 0. L p-maximal regularity for Eq. (3.6)
with initial conditions u(0) = u′(0) = 0 was recently proved in [13] in case A is sectorial and admits a bounded RH∞-
calculus of angle less than π/2ε. There was also proved that for ε ∈ (0,1/2) one cannot expect L p-maximal regularity in
general, even if A is a selfadjoint operator on a Hilbert space. The proof of the main result in [13] relies on the problem of
estimating some concrete scalar holomorphic functions. We use these estimates to prove our main result concerning now
Eq. (3.5).

For the kernels a(t) = −te−γ t and b(t) = −e−γ t we easily check the 1-regularity of ãk = −1
(ik+γ )2 and b̃k = −1

(ik+γ )
. Now,

we assume that A is densely defined and sectorial of angle β ∈ (0,π), that is, σ(A) ⊂ ∑
β , and for every β ′ ∈ (β,π)

sup
z∈C\∑β′

∥∥z(z − A)−1
∥∥ < ∞,

with
∑

β = {z ∈ C: |arg z| < β}. In this condition, for A, is possible to define a functional calculus from H∞
0 (

∑
β ′ ) into B(X).

This H∞ functional calculus may be extended in a natural way in order to define the fractional powers Aε for every ε > 0
(see [19,27]).

In order to obtain L p-maximal regularity of (3.5) we need to establish conditions such that {(I − b̃k Aε − ãk A)−1}k∈Z and
{Bb̃k(I − b̃k Aε − ãk A)−1}k∈Z are R-bounded sequences. Note that in this case we have

(
I − b̃k Aε − ãk A

)−1 =
(

I + 1

(ik + γ )
Aε + 1

(ik + γ )2
A

)−1

= (ik + γ )2((ik + γ )2 I + (ik + γ )Aε + A
)−1

,

and

Aεbk
(

I − b̃k Aε − ãk A
)−1 = −(ik + γ )Aε

(
(ik + γ )2 I + (ik + γ )Aε + A

)−1
.

We denote by M(λ) = (λ2 I +λAε + A)−1 whenever exists. For the notion of RH∞ functional calculus and R-boundedness in
the following result, we refer to [17,20,34].

Proposition 3.8. Let A be a sectorial operator which admits a bounded RH∞ functional calculus of angle β ∈ (0, π
3 ). Then (3.5) with

ε = 1/2 has L p-maximal regularity.

Proof. For all λ ∈ C and z ∈ C \ (−∞,0], we define M1(λ, z) := λ2(λ2 I + λzε + z)−1 ∈ C ∪ {∞} and M2(λ, z) := λzε(λ2 I +
λzε + z)−1 ∈ C ∪ {∞}. Choose β ′ > β and δ > 0 such that β ′/2 < π/6 − δ. By the proof of [13, Lemma 4.1(b)], there ex-
ist a constant M � 0 independent of λ ∈ ∑

δ+π/2 and z ∈ ∑
β ′ such that {M j(λ, z)} ⊂ H∞(

∑
β ′) is uniformly bounded

for j = 1,2. Since A admits a bounded RH∞-calculus of angle β we conclude from [17, Proposition 4.10] that the
set M := {M j(λ, A): λ ∈ ∑

δ+π/2} is R-bounded in B(X) for j = 1,2. In particular, the sets (ik + γ )2M(ik + γ ) and

(ik + γ )A1/2M(ik + γ ) are R-bounded. The conclusion follows from Theorem 3.5 and Remark 3.6(iv). �
Examples of concrete operators satisfying the condition of the above proposition can be obtained from [17, Theorem 4.11].

Now, suppose ε ∈ ( 1
2 ,1] in (3.5). Then again from the proof of [13, Lemma 4.1(c)] we get that there exist constants ω1 � 0

and M1 � 0 such that for every λ ∈ ω1 +∑
δ+π/2 and every z ∈ ∑

β ′ the sets {M j(λ, z)} ⊂ H∞(
∑

β ′ ) are uniformly bounded
for j = 1,2. We have to distinguish two cases:

Case 1. ω1 > γ . Then the same conclusion of Proposition 3.8 holds.
Case 2. ω1 � γ . Then possibly ik ∈ σã,b̃(A, B) for at most a finite number of k ∈ Z. We are in this case in the presence of

resonances which will be the subject of the next section.

Example 3.9. Let X = l2(Z) and consider the system

un = (n − iβ)a ∗ un + fn, n ∈ Z, 0 < β < 1. (3.7)
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This problem is of the form (3.2) with

(Au)n = (n − iβ)un, D(A) = {
(un) ∈ l2(Z): (n · un) ∈ l2(Z)

}
,

and b(t) = 0 for all t ∈ R+ . Note that A does not generate a C0-semigroup since σ(A) = {n − iβ: n ∈ Z} is not contained
in any left halfplane. Define a(t) = e−αt , α > 0. Clearly the sequence ã(ik) = 1

ik+α is 1-regular and {ik + α}k∈Z ⊂ ρ(A).

Moreover, for each x = (xn) ∈ l2(Z) we have

∥∥(
I − ã(ik)A

)−1
x
∥∥ = ∥∥(ik + α)(ik + α − A)−1x

∥∥
=

∑
n∈Z

∣∣∣∣ ik + α

ik + α − n + iβ
xn

∣∣∣∣
2

�
∑
n∈Z

k2 + α2

(α − n)2 + (β + k)2
|xn|2

�
∑
n∈Z

k2 + α2

(k + β)2
|xn|2.

Since 0 < β < 1, we obtain for all k ∈ Z

∥∥(
I − ã(ik)A

)−1
x
∥∥ � max

{
α2

β2
,

α2 + 1

(β − 1)2

}∑
n∈Z

|xn|2 =: M‖x‖,

where, as indicated, the constant M depends only on α and β . Then, the hypothesis of Theorem 3.5 is satisfied (cf. Re-
mark 2.3(d)) and we conclude that for every f ∈ L p

2π (R, l2(Z)) there exists a unique mild L p-solution of (3.7).

4. A resonance case

In the previous section we have assumed that no element of σã,b̃(A, B) lies in the set iZ and we characterize the property

that, for every f ∈ L p
2π (R, X) there exists a unique mild L p-solution of (3.2). Now, following [16] we consider a resonance

case. In what follows, we assume that there are k1, . . . ,kN ∈ Z such that⎧⎨
⎩

(i) ik j ∈ σã,b̃(A, B) for j = 1, . . . , N,

(ii) ik /∈ σã,b̃(A, B) for k ∈ Z, k �= k1, . . . ,kN ,

(iii) ik j is a simple pole of F (·) for j = 1, . . . , N
(4.1)

where F :ρã,b̃(A, B) → B(X, [D(A) ∩ D(B)]) is defined by F (λ) = (I − ã(λ)A − b̃(λ)B)−1. We begin with some preliminary
results about the solvability of the equation

(
I − ã(λ0)A − b̃(λ0)B

)
x = y, (4.2)

where λ0 is a simple pole of F (·) and x ∈ D(A) ∩ D(B). Denote by Q the residue of F (·) at λ0, that is,

Q = lim
λ→λ0

(λ − λ0)F (λ) = 1

2π i

∫
B(λ0,ε)

F (λ)dλ, (4.3)

where ε > 0 and B(λ0, ε) := {λ ∈ C: |λ − λ0| < ε}. We define

G(λ) =
{

(λ − λ0)F (λ), 0 < |λ − λ0| < ε,

Q , λ = λ0.
(4.4)

Note that Q ∈ B(X, [D(A) ∩ D(B)]) is a non-zero operator which verifies the properties established in the following lemma
and proposition. The proofs follow essentially the same steps contained in [16, Lemma 1.5 and Proposition 1.6] and therefore
are omitted.

Lemma 4.1. With the notations as above, we have

Q = Q
[−ã′(λ0)A − b̃′(λ0)B

]
Q .

The following result is the key for results on existence of solutions in the resonance case.
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Proposition 4.2. Let λ0 be a simple pole of F (·) and let Q be defined by (4.3). Then

Ker
(

I − ã(λ0)A − b̃(λ0)B
) = Q (X). (4.5)

Moreover, for any y ∈ X such that Q y = 0, all solutions of (4.2) are given by

x = G ′(λ0)y − Q A(ã′G)′(λ0)y − Q B(b̃′G)′(λ0)y. (4.6)

Remark 4.3. The first lemma follows from the identity

G(λ)
μ − λ0

λ − μ
− G(μ)

λ − λ0

λ − μ
= G(λ)

[
ã(λ) − ã(μ)

λ − μ
A + b̃(λ) − b̃(μ)

λ − μ
B

]
G(μ),

whereas the proposition is proved examining the identity

G ′(λ) = F (λ)
[
1 + (

ã′(λ0)A + b̃′(λ0)B
)

Q
] + (λ − λ0)F (λ)A

ã′(λ)G(λ) − ã′(λ0)G(λ0)

λ − λ0

+ (λ − λ0)F (λ)B
b̃′(λ)G(λ) − b̃′(λ0)G(λ0)

λ − λ0
.

Now, arguing as in the proof of Theorem 3.5, we find that, if f ∈ L p
2π (R, X) and u is a mild L p-solution of (3.2) then

a ∗ u ∈ L p
2π (R, [D(A)]), b ∗ u ∈ L p

2π (R, [D(B)]), Eq. (3.2) holds and we have

(I − ãk A − b̃k B)û(k) = f̂ (k), k ∈ Z. (4.7)

For each k �= kn , n = 1, . . . , N , Eq. (4.7) can be uniquely solved, with

û(k) = (I − ãk A − b̃k B)−1 f̂ (k).

For kn , n = 1, . . . , N , by Proposition 4.2 Eq. (4.7) is solvable if and only if

Q n f̂ (kn) = 0, (4.8)

where Q n is the residue of F (·) at λ = ikn . If (4.8) holds, then by (4.6), the Fourier coefficients of the solution to (4.7) in kn ,
n = 1, . . . , N are given by

û(kn) = [
G ′

n(ikn) − Q n A(ã′Gn)′(ikn) − Q n B(b̃′Gn)′(ikn)
]

f̂ (kn), (4.9)

where Gn is an analytic function defined by

Gn(λ) =
{

(λ − ikn)F (λ), 0 < |λ − ikn| < ε,

Q n, λ = ikn
(4.10)

for any ε > 0 sufficiently small.
Now, define the following sequence of operators

Mk =
{

(I − ãk A − b̃k B)−1, k ∈ Z \ {k1, . . . ,kN },
G ′

j(ik j) − Q j A(ã′G j)
′(ik j) − Q j B(b̃′G j)

′(ik j), k ∈ {k1, . . . ,kN }. (4.11)

Since ik ∈ ρã,b̃(A, B) for all k ∈ Z \ {k j} j=1,...,N we have {Mk}k∈Z ⊂ B(X, [D(A) ∩ D(B)]).

With the above preliminaries, we are in position to prove the main theorem of this section, which gives compatibility
conditions on f which are necessary and sufficient for the existence of a mild L p-solution to Eq. (3.2). We note that
compared with [16], where a similar integral equation with B ≡ 0 was studied, our hypothesis on the operators A and B is
weaker.

Theorem 4.4. Let a,b ∈ L1(R+) be functions such that ãk and b̃k are 1-regular sequences and suppose that (4.1) holds. Let A and B be
closed linear operators defined on a UMD space X. If {Mk}k∈Z\{k j} j=1,...,N and {b̃k BMk}k∈Z\{k j} j=1,...,N are R-bounded sequences, then

for every f ∈ L p
2π (R, X) Eq. (3.2) has a mild L p-solution if and only if Q j f̂ (k j) = 0, for every j = 1, . . . , N.

In addition, in this case, all mild solutions of (3.2) are given by

u(t) = lim
n→∞

n∑
k=−n

k �=k1,...,kN

(
1 − |k|

n + 1

)
eikt(I − ãk A − b̃k B)−1 f̂ (k)

+
N∑

j=1

eik jt
[
G ′

j(ik j) − Q j A(ã′G j)
′(ik j) − Q j B(b̃′G j)

′(ik j)
]

f̂ (k j). (4.12)
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Proof. We assume that for every f ∈ L p
2π (R, X) there exist v such that a ∗ v ∈ L p

2π (R, [D(A)]), b ∗ v ∈ L p
2π (R, [D(B)])

and (3.2) is satisfied. Taking Fourier transforms on both sides in (3.2) we obtain that v̂(k) ∈ D(A) ∩ D(B) and

(I − ãk A − b̃k B)v̂(k) = f̂ (k), for all k ∈ Z.

For λ ∈ ρã,b̃(A, B), and k1,k2, . . . ,kN from the identity

(λ − ikn)F (λ)
(

I − ã(λ)A − b̃(λ)B
)

v̂(kn) = (λ − ikn)v̂(kn),

it follows that

lim
λ→ikn

(λ − ikn)F (λ)
(

I − ã(λ)A − b̃(λ)B
)

v̂(kn) = 0.

Since the limits limλ→ikn (λ − ikn)F (λ) and limλ→ikn (I − ã(λ)A − b̃(λ)B)v̂(kn) both exist, we obtain that

Q n
(

I − ã(ikn)A − b̃(ikn)B
)

v̂(kn) = 0,

or, equivalently, Q j f̂ (k j) = 0, for all k j , j = 1, . . . , N . Hence by Proposition 4.2 Eq. (4.7) is solvable and

v̂(k) =
{

(I − ãk A − b̃k B)−1 f̂ (k), k ∈ Z \ {k1, . . . ,kN },
[G ′

j(ik j) − Q j A(ã′G j)
′(ik j) − Q j B(b̃′G j)

′(ik j)] f̂ (k j), j = 1, . . . , N,

from which (4.12) follows.
Conversely, assume that f ∈ L p

2π (R, X) and Q j f̂ (k j) = 0. We define u(t) by (4.12). Then

û(k) = Mk f̂ (k), (4.13)

for all k ∈ Z, where Mk is defined by (4.11). Note that û(k) ∈ D(A) ∩ D(B) for all k ∈ Z.
In order to simplify the notation we write Fk := (I − ãk A − b̃k B)−1 = F (ik), for all k ∈ Z, k �= k1, . . . ,kN and H j :=

[G ′
j(ik j) − Q j A(ã′G j)

′(ik j) − Q j B(b̃′G j)
′(ik j)] for k j , j = 1, . . . , N .

Since {Mk}k∈Z is R-bounded, we claim that {k(Mk+1 − Mk)}k∈Z is also R-bounded. In fact, note that any finite family of
operators is R-bounded, and for all k �= k1, . . . ,kN we have

k(Mk+1 − Mk) = k
b̃k+1 − b̃k

b̃k

b̃k Fk+1 B Fk + k
ãk+1 − ãk

ãk
Fk+1

[
(I − b̃k B)Fk − I

]
.

Since {Fk} and {b̃k B Fk} are R-bounded sets and ãk and b̃k are 1-regular sequences the claim follows by Remark 2.3. From
Theorem 2.8 we conclude that {Mk}k∈Z is an L p

X,X -multiplier. So we obtain that there exists v ∈ L p
2π (R; X) such that v̂(k) =

Mk f̂ (k) for all k ∈ Z. Note that a similar argument as in the proof of Theorem 3.5 shows that a ∗ v ∈ L p
2π (R; [D(A)]) and

b∗ v ∈ L p
2π (R; [D(B)]). Hence the uniqueness theorem shows that u = v for t a.e. It remains to show that u satisfies Eq. (3.2).

Using the identity Fk = I + ãk A Fk + b̃k B Fk , valid for all k ∈ Z \ {k j}, j = 1, . . . , N , we obtain

u(t) =
n∑

k=−n
k �=ki

(
1 − |k|

n + 1

)
eikt Fk f̂ (k) +

N∑
j=1

eik jt H j f̂ (k j)

= lim
n→∞

n∑
k=−n
k �=ki

(
1 − |k|

n + 1

)
eikt f̂ (k) + lim

n→∞

n∑
k=−n
k �=ki

(
1 − |k|

n + 1

)
eiktãk A Fk f̂ (k)

+ lim
n→∞

n∑
k=−n
k �=ki

(
1 − |k|

n + 1

)
eikt b̃k B Fk f̂ (k) +

N∑
j=1

eik jt H j f̂ (k j)

= lim
n→∞

{
n∑

k=−n
k �=ki

(
1 − |k|

n + 1

)
eikt f̂ (k) +

N∑
j=1

(
1 − |k j |

n + 1

)
eik jt f̂ (k j)

}
− lim

n→∞

N∑
j=1

(
1 − |k j |

n + 1

)
eik jt f̂ (k j)

+ lim
n→∞

{
n∑

k=−n
k �=ki

(
1 − |k|

n + 1

)
eiktãk Aû(k) +

N∑
j=1

(
1 − |k j |

n + 1

)
eik jt ã(ik j)Aû(k j)

}

− lim
n→∞

N∑(
1 − |k j |

n + 1

)
eik jt ã(ik j)Aû(k j)
j=1
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+ lim
n→∞

{
n∑

k=−n
k �=ki

(
1 − |k|

n + 1

)
eikt b̃k Bû(k) +

N∑
j=1

(
1 − |k j |

n + 1

)
eik jt b̃(ik j)Bû(k j)

}

− lim
n→∞

N∑
j=1

(
1 − |k j |

n + 1

)
eik jt b̃(ik j)Bû(k j) +

N∑
j=1

eik jt H j f̂ (k j)

= lim
n→∞

n∑
k=−n

(
1 − |k|

n + 1

)
eikt f̂ (k) + lim

n→∞

n∑
k=−n

(
1 − |k|

n + 1

)
eiktãk Aû(k)

+ lim
n→∞

n∑
k=−n

(
1 − |k|

n + 1

)
eikt b̃k Bû(k) −

N∑
j=1

eik jt f̂ (k j)

−
N∑

j=1

eik jt
[
ã(ik j)A + b̃(ik j)B

]
û(k j) +

N∑
j=1

eik jt û(k j)

= f (t) + A(a ∗ u)(t) + B(b ∗ u)(t) −
N∑

j=1

eik jt f̂ (k j) +
N∑

j=1

eik jt
[
I − ã(ik j)A − b̃(ik j)B

]
û(k j).

Since Q k f̂ (k j) = 0, j = 1, . . . , N , it then follows from Proposition 4.2, equalities (4.8) and (4.9) that[
I − ã(ik j)A − b̃(ik j)B

][
G ′

j(ik j) − Q j A(ã′G j)
′(ik j) − Q j B(b̃′G j)

′(ik j)
]

f̂ (k j) = f̂ (k j).

Hence

u(t) = f (t) + A(a ∗ u)(t) + B(b ∗ u)(t),

proving the claim and the theorem. �
Example 4.5. Let X = l2(Z) and define Axn = (n + in)xn with maximal domain. Clearly A does not generate a C0-semigroup.
We take b(t) ≡ 0 and a(t) = e−t in Eq. (3.2). Clearly ã(ik) = 1

ik+1 is 1-regular and 1
ã(ik)

= ik + 1 ∈ ρ(A) for all k ∈ Z \ {1}.

Moreover λ0 = i is a simple pole of F (λ) = (I − ã(λ)A)−1. It remains to show that the set {(I − ã(ik)A)−1}k∈Z\{1} is bounded.
In fact, for each x = (xn) ∈ l2(Z) and k ∈ Z \ {1} we have

∥∥(
I − ã(ik)A

)−1
x
∥∥2 = ∥∥(ik + 1)(ik + 1 − A)−1x

∥∥2 =
∑
n∈Z

∣∣∣∣ ik + 1

ik + 1 − n − in
xn

∣∣∣∣
2

�
∑
n∈Z

k2 + 1

(1 − n)2 + (k − n)2
|xn|2 �

∑
n∈Z

2
k2 + 1

(k − 1)2
|xn|2,

then we obtain

sup
k∈Z\{1}

∥∥(
I − ã(ik)A

)−1∥∥ � 10.

We conclude by Theorem 4.4 that for every f ∈ L p
2π (R, l2(Z)) the equation

u(t, x) = ∂

∂x

t∫
−∞

e−(t−s)(u(s, x) − iu(s, x)
)

ds + f (t, x), x ∈ [0,2π ], t � 0,

with boundary values u(t,0) = u(t,2π), has a mild L p-solution if and only if Q 1 f̂ (1) = 0.
To compute Q 1 we note that F (λ)xn = λ+1

λ+1−n−in xn and hence

(λ − i)F (λ)xn = (λ − i)(λ + 1)

(λ − in) + (1 − n)
xn =

{
(λ + 1)x1, n = 1,

(λ−i)(λ+1)
(λ−in)+(1−n)

xn, n �= 1.

Then

Q 1xn := lim(λ − i)F (λ)xn =
{

(i + 1)x1, n = 1,

0, n �= 1.
λ→i
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Therefore if f (t) = ( fn(t)), then Q 1 f̂ (1) = 0 if and only if

2π∫
0

e−it f1(t)dt = 0.

Finally, concerning the remark after the proof of Proposition 3.8 in Section 3, we obtain the following result. It gives
a criterion for the case of resonances to the problem (3.5). As remarked in Section 3, it also corresponds in some sense to
the study of resonances for the second order Cauchy problem studied in [13] in case A = Bε .

Corollary 4.6. Let ε ∈ ( 1
2 ,1] and A be a sectorial operator which admits a bounded RH∞ functional calculus of angle β ∈ (0, π

2ε ).

Suppose that {ik}k=0,±1,...,±m ∈ σã,b̃(A, B) are simple poles of F (λ) = λ2(λ2 + λAε + A)−1 and let f ∈ L p
2π (R, X). Then (3.5) has

a mild L p-solution if and only if Q k f̂ (k) = 0 for all k = ±1, . . . ,±m where Q k = limλ→ik(λ − ik)F (λ).
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