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Abstract

We show that McShane and Pettis integrability coincide for functions f : [0,1] → L1(μ), where μ is any finite measure. On
the other hand, assuming the Continuum Hypothesis, we prove that there exist a weakly Lindelöf determined Banach space X,
a scalarly null (hence Pettis integrable) function h : [0,1] → X and an absolutely summing operator u from X to another Banach
space Y such that the composition u ◦ h : [0,1] → Y is not Bochner integrable; in particular, h is not McShane integrable.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Several methods of integration for functions taking values in Banach spaces have been studied over the years.
Among these methods, those developed by Bochner [7] and Pettis [24,25,30] have been the most popular ones.
McShane’s [23] alternative approach to Lebesgue’s integration theory has also been extended to the case of vector-
valued functions, see e.g., [13,17] and [18]. In general, the McShane integral lies strictly between the Bochner and
Pettis integrals [13,17], although for some classes of Banach spaces McShane and Pettis integrability coincide: this
happens for separable spaces [13,17,18], super-reflexive (e.g., Hilbert) spaces [4] and c0(Γ ) (where Γ is any non-
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empty set) [4]. The relationship between the McShane integral and others which are less known (e.g., the Henstock–
Kurzweil, Birkhoff and Talagrand integrals) has been discussed in [11,12,27] and [29].

The following question was attributed to K. Musiał in [4]: Is every scalarly null Banach space-valued function
McShane integrable? Under the Continuum Hypothesis (CH), L. Di Piazza and D. Preiss [4] answered in the negative
Musiał’s question by means of an �∞(ω1)-valued function. Recall that a Banach space X is weakly measure compact
if and only if every X-valued scalarly measurable function is scalarly equivalent to a strongly measurable one [8].
This property holds true for any weakly Lindelöf Banach space (e.g., weakly compactly generated—WCG—or, more
generally, weakly Lindelöf determined—WLD). In view of the comments above, an affirmative answer to Musiał’s
question for functions taking values in a particular weakly measure compact Banach space X would imply automati-
cally that McShane and Pettis integrability coincide for X-valued functions. This approach was used by Di Piazza and
Preiss to obtain the aforementioned results on the equivalence of both integrals in super-reflexive spaces and c0(Γ ) for
any non-empty set Γ . An important part of their argument relies on the existence of suitable projectional resolutions
of the identity (PRI) in those spaces. The fact that every WCG space is weakly measure compact and admits a PRI led
them to ask whether McShane and Pettis integrability are still equivalent for functions with values in arbitrary WCG
spaces [4, p. 1178]. It is also natural to think about the same question within the more general class of WLD Banach
spaces, since all of these are weakly measure compact and admit a PRI as well.

In this paper (summarized below) we discuss the coincidence of McShane and Pettis integrability in certain non-
separable WLD Banach spaces.

In Section 2 we introduce the terminology and notation used throughout the paper. A few known lemmas on PRIs
and the McShane integral are stated there for the convenience of the reader.

Section 3 is devoted to show that, for an arbitrary finite measure μ, a function f : [0,1] → L1(μ) is McShane inte-
grable if and only if it is Pettis integrable (Theorem 3.5). Recall that L1(μ) is always WCG for finite μ, while it may be
non-separable. Besides the aforementioned reduction to the case of scalarly null functions, our proof of Theorem 3.5
makes use of Maharam’s classification of measure algebras, a special type of separable projectional resolutions of the
identity (SPRI) on L1(μ)-spaces and the already known equivalence of McShane and Pettis integrability for Hilbert
space-valued functions (a proof is included here, see Corollary 3.2).

In Section 4 we present another example (also under CH) of a scalarly null function which is not McShane inte-
grable (Example 4.1). The novelty of this example relies on the fact that the Banach space in the range is WLD, so we
cannot expect a general result on the coincidence of McShane and Pettis integrability in WLD spaces. In Example 4.1,
the key to distinguish Pettis integrability from McShane integrability has to do with the behavior of the composition
of a vector-valued function with an absolutely summing operator, as we next explain.

Recall that an operator (i.e., linear and continuous map) u : X → Y between Banach spaces is absolutely summing
if it takes unconditionally convergent series to absolutely convergent ones. As one may expect, absolutely summing
operators also improve the integrability properties of vector-valued functions. This topic has been studied by several
authors, see [3,5,19,21,22] and [28]. Given an X-valued Pettis integrable function f , the Y -valued composition u ◦ f

is Bochner integrable in many cases (but not always): this happens whenever f is McShane, Birkhoff or Talagrand
integrable, as well as whenever X is a subspace of a weakly Lindelöf C(K) space, see [28]. The latter is the case if X

is WCG or, more generally, if X is WLD and (BX∗ ,w∗) has the so-called property (M) (i.e., every Radon probability
on it has separable support). The results in [28] left open the question whether u ◦ f is Bochner integrable provided
that f is scalarly null or X is WLD. It turns out that this is not true in general, since the composition of the function
of Example 4.1 with certain absolutely summing operator is not Bochner integrable. Our construction is based on
an example (under CH) of a WLD Banach space whose dual unit ball fails property (M), due to G. Plebanek and
O. Kalenda [26].

2. Preliminaries

All unexplained notation and terminology can be found in our standard references [7,9,10] and [30]. The cardinality
of a set A is denoted by card(A) and ω1 stands for the first uncountable ordinal. Our Banach spaces X are assumed to
be real. We write ‖ · ‖X (or simply ‖ · ‖) to denote the norm of X. The density character of X, denoted by dens(X), is
the smallest cardinality of a dense subset of X. As usual, BX = {x ∈ X: ‖x‖X � 1} and X∗ stands for the (topological)
dual of X. We denote by w∗ the weak∗ topology on X∗. Given a compact Hausdorff topological space K , we denote
by C(K) the Banach space of all real-valued continuous functions on K , equipped with the supremum norm. Given
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a finite measure space (Ω,Σ,μ), we write L1(μ) to denote the Banach space of all (equivalence classes of) Σ -
measurable and μ-integrable real-valued functions on Ω , equipped with the usual norm ‖f ‖L1(μ) = ∫

Ω
|f |dμ.

A Banach space X is WCG if there is a weakly compact set K ⊂ X such that span(K) = X. Standard examples
of WCG spaces are the separable or reflexive ones, c0(Γ ) (for any non-empty set Γ ) and L1(μ) (for any finite mea-
sure μ). The well-known Amir–Lindenstrauss theorem [1] (cf. [10, Theorem 11.6]) asserts that every non-separable
WCG Banach space X admits a PRI, i.e., a collection{

Pα: ω � α � dens(X)
}

of bounded linear projections on X such that Pω ≡ 0, Pdens(X) is the identity on X and for every ω < α � dens(X) the
following hold:

• ‖Pα‖ = 1.

• dens(Pα(X)) � card(α).

• Pα ◦ Pβ = Pβ ◦ Pα = Pβ whenever ω � β � α.

• ⋃
ω�β<α Pβ+1(X) is dense in Pα(X).

As in [9, Definition 6.2.6], we say that a collection {Pα: ω � α � dens(X)} of bounded linear projections on a non-
separable Banach space X is a SPRI if Pω ≡ 0, Pdens(X) is the identity on X and for every ω � α < dens(X) we
have:

• (Pα+1 − Pα)(X) is separable.

• Pα ◦ Pβ = Pβ ◦ Pα = Pβ whenever ω � β � α.

• x ∈ span{(Pα+1 − Pα)(x): ω � α < dens(X)} for every x ∈ X.

The last property also holds true for any PRI, see e.g., [9, Proposition 6.2.1]. In particular, if dens(X) = ω1, then every
PRI on X is also a SPRI.

A Banach space X is WLD if (BX∗ ,w∗) is a Corson compactum, i.e., it is homeomorphic to some set S ⊂ [−1,1]Γ
(endowed with the product topology) such that for each s ∈ S the set {γ ∈ Γ : s(γ ) 
= 0} is countable. The class
of WLD spaces is strictly bigger than that of WCG spaces and is made up of weakly Lindelöf spaces, see e.g., [9,
Chapter 7] and [10, Chapters 11 and 12]. Every non-separable WLD space admits a PRI as well as a SPRI, see e.g.,
[9, Chapters 6 and 8]. The following folk lemma (which we did not find in print as stated below) will be useful in
Section 3. The proof given here imitates that of [10, Proposition 12.51].

Lemma 2.1. Let {Pα: ω � α � dens(X)} be either a PRI or a SPRI on a non-separable WLD Banach space X. Then
for each x∗ ∈ X∗ the set{

ω � α < dens(X): x∗|(Pα+1−Pα)(X) 
≡ 0
}

is countable.

Proof. Let S be the set of all x∗ ∈ X∗ for which

Γ
(
x∗) := {

ω � α < dens(X): x∗|(Pα+1−Pα)(X) 
≡ 0
}

is countable. It is clear that S is a linear subspace of X∗. We claim that S is w∗-closed. Indeed, by the Banach–
Dieudonné theorem (cf. [10, Theorem 4.44]) it suffices to show that mBX∗ ∩ S is w∗-closed for every m ∈ N. To this
end, fix m ∈ N and take x∗ ∈ mBX∗ ∩ Sw∗

. Since mBX∗ is angelic (cf. [10, Exercise 12.55]), there is a sequence (x∗
n)

in mBX∗ ∩ S which w∗-converges to x∗, so Γ (x∗) ⊂ ⋃∞
n=1 Γ (x∗

n) and therefore x∗ ∈ mBX∗ ∩ S. This shows that S is
w∗-closed.

Now take any x0 ∈ X satisfying x∗(x0) = 0 for every x∗ ∈ S. Since

x0 ∈ span
{
(Pα+1 − Pα)(x0): ω � α < dens(X)

}
and y∗ ◦ (Pα+1 −Pα) ∈ S for every y∗ ∈ (Pα+1 −Pα)(X)∗ and ω � α < card(X), we conclude that x0 = 0. An appeal
to the Hahn–Banach theorem ensures that S = X∗ and the proof is over. �
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The statement “every Corson compactum has property (M)” is undecidable in ZFC: it is true under Martin’s Axiom
and the negation of CH, whereas it is false under CH, see e.g., [26] and references therein. It is known that for a Banach
space X the following implications hold:

WCG ⇒ WLD and
(
BX∗ ,w∗) has property (M) ⇒ WLD



C(BX∗) WLD

and no reverse arrow is true in general, see [2], [9, Chapter 7] and [26].
Throughout this paper we denote by λ the Lebesgue measure on the σ -algebra L of all Lebesgue measurable

subsets of [0,1]. Let X be a Banach space and consider a function f : [0,1] → X. Given A ⊂ [0,1], we write f χA

to denote the X-valued function defined on [0,1] which agrees with f on A and vanishes outside A. Recall that f is
said to be

(i) scalarly null if for each x∗ ∈ X∗ the composition x∗ ◦ f vanishes a.e. (the exceptional set depends on x∗);
(ii) scalarly measurable if x∗ ◦ f is measurable for every x∗ ∈ X∗;

(iii) strongly measurable if it is scalarly measurable and there is E ∈ L with λ(E) = 1 such that f (E) is separable;
equivalently, f is the a.e. limit of a sequence of simple functions, cf. [7, Theorem 2, p. 42];

(iv) Bochner integrable if it is strongly measurable and
∫ 1

0 ‖f ‖dλ < ∞;
(v) Pettis integrable if x∗ ◦ f is integrable for every x∗ ∈ X∗ and for each E ∈ L there is xE ∈ X (the Pettis integral

of f over E) such that∫
E

(
x∗ ◦ f

)
dλ = x∗(xE) for every x∗ ∈ X∗.

Clearly, every scalarly null function is Pettis integrable. Recall also that a function g : [0,1] → X is scalarly equivalent
to f if f − g is scalarly null.

In order to introduce the McShane integral we need some extra terminology. A gauge on [0,1] is a function
δ : [0,1] → R

+. A McShane partition of [0,1] is a finite collection {(Ei, ti)}1�i�p , where the Ei ’s are non-
overlapping closed subintervals such that

⋃p

i=1 Ei = [0,1] and ti ∈ [0,1] for every 1 � i � p. If the condition
“
⋃p

i=1 Ei = [0,1]” is dropped, then {(Ei, ti)}1�i�p is called a partial McShane partition of [0,1]. We say that
{(Ei, ti)}1�i�p is subordinate to δ provided that Ei ⊂ (ti − δ(ti), ti + δ(ti)) for every 1 � i � p. It is an easy ex-
ercise to show that for every gauge δ on [0,1] there is a McShane partition of [0,1] subordinate to δ.

The function f : [0,1] → X is McShane integrable, with McShane integral x ∈ X, if for every ε > 0 there is a
gauge δ on [0,1] such that∥∥∥∥∥

p∑
i=1

λ(Ei)f (ti) − x

∥∥∥∥∥
X

� ε

for every McShane partition {(Ei, ti)}1�i�p of [0,1] subordinate to δ. As we have already mentioned in the introduc-
tion, in this case f is also Pettis integrable (and the respective integrals coincide), see [17, Theorem 2C].

The following two auxiliary results (Lemmas 1 and 2 in [4]) will be helpful when dealing with scalarly null
McShane integrable functions.

Lemma 2.2. Let X be a Banach space and f : [0,1] → X a function. Then f is scalarly null and McShane integrable
if and only if for every ε > 0 there is a gauge δ on [0,1] such that∥∥∥∥∥

p∑
i=1

λ(Ei)f (ti)

∥∥∥∥∥
X

� ε

for every partial McShane partition {(Ei, ti)}1�i�p of [0,1] subordinate to δ.

Lemma 2.3. Let X be a Banach space and fn : [0,1] → X be a sequence of scalarly null McShane integrable
functions converging pointwise to a function f : [0,1] → X. Then f is scalarly null and McShane integrable.
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We stress that the McShane integral can also be set up in the more general case of functions defined on σ -finite
outer regular quasi-Radon measure spaces, see [13]. It is worth pointing out that our results in Section 3 are valid
in this setting as well. However, as in [4], we only work with functions defined on [0,1] in order to avoid some
non-interesting technicalities arising in the general case which would obscure the main ideas.

3. McShane and Pettis integrability for L1(μ)-valued functions

Recall that the �p-sum (1 � p < ∞) of a family (Xi)i∈I of Banach spaces is the linear space(⊕
i∈I

Xi

)
p

:=
{
(xi)i∈I ∈

∏
i∈I

Xi :
∥∥(xi)i∈I

∥∥
(
⊕

i∈I Xi)p
:=

(∑
i∈I

‖xi‖p
Xi

)1/p

< ∞
}
,

which becomes a Banach space when equipped with the norm ‖ · ‖(
⊕

i∈I Xi)p .
Following [4, Corollary 1], we denote by P the class of all Banach spaces X for which every scalarly null function

f : [0,1] → X is McShane integrable. The stability of this class under �p-sums is discussed in Proposition 3.1 below.
Although part (i) can be deduced from Corollary 1(b) and Lemma 5 in [4], we prefer to give here a more direct proof
which advances some of the ideas used later when dealing with L1(μ)-valued functions.

Proposition 3.1. Let (Xi)i∈I be a family of Banach spaces belonging to P .

(i) (
⊕

i∈I Xi)p belongs to P for every 2 � p < ∞.

(ii) If I is countable, then (
⊕

i∈I Xi)p belongs to P for every 1 � p < ∞.

Proof. (i) Set X := (
⊕

i∈I Xi)p . Let f : [0,1] → X be a scalarly null function. We will check that f is McShane
integrable. Note first that we can assume without loss of generality that f is bounded. Indeed, it suffices to bear in
mind Lemma 2.3 and the fact that there is a sequence (fn) of bounded scalarly null functions converging pointwise
to f (take An := {t ∈ [0,1]: ‖f (t)‖X � n} and fn := f χAn for every n ∈ N). Fix M > 0 such that ‖f (t)‖X � M for
every t ∈ [0,1]. We will show that f is the uniform limit of a sequence of scalarly null McShane integrable functions
(an appeal to Lemma 2.3 will then finish the proof).

For each i ∈ I , write πi : X → Xi to denote the canonical projection and set gi := πi ◦ f . Since gi is scalarly null
and Xi belongs to P , we infer that gi is McShane integrable.

Fix ε > 0. For each t ∈ [0,1] there is a finite set I (t) = {i1(t), . . . , in(t)(t)} ⊂ I such that∑
i∈I\I (t)

∥∥gi(t)
∥∥p

Xi
� εp.

Then the function ϕ : [0,1] → X given by

πi

(
ϕ(t)

) =
{

gi(t) if i ∈ I (t),

0 if i /∈ I (t),

satisfies ‖f (t) − ϕ(t)‖X � ε for every t ∈ [0,1]. We claim that ϕ is scalarly null and McShane integrable.
For each n ∈ N we define a function ϕn : [0,1] → X by

πi

(
ϕn(t)

) =
{

gi(t) if n � n(t) and i = in(t),

0 otherwise.

It is clear that ϕ = ∑∞
n=1 ϕn pointwise. By Lemma 2.3, in order to check that ϕ is scalarly null and McShane integrable

it suffices to show that the same holds for each ϕn.
To this end, fix n ∈ N and η > 0. For each i ∈ I , Lemma 2.2 applied to gi ensures the existence of a gauge δi

on [0,1] such that∥∥∥∥∥
J∑

λ(Fj )gi(sj )

∥∥∥∥∥ � ηp
j=1 Xi
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for every partial McShane partition {(Fj , sj )}1�j�J of [0,1] subordinate to δi . Define a gauge δ on [0,1] by δ(t) :=
min{δi(t): i ∈ I (t)} for every t ∈ [0,1].

Now let {(Ek, tk)}1�k�K be a partial McShane partition of [0,1] subordinate to δ. Given i ∈ I , set

A(i) := {
1 � k � K: n � n(tk), i = in(tk)

}
and observe that the collection {(Ek, tk)}k∈A(i) is a partial McShane partition of [0,1] subordinate to δi , hence∥∥∥∥ ∑

k∈A(i)

λ(Ek)gi(tk)

∥∥∥∥
Xi

� ηp.

Therefore,∥∥∥∥∥
K∑

k=1

λ(Ek)ϕn(tk)

∥∥∥∥∥
X

=
(∑

i∈I

∥∥∥∥∥
K∑

k=1

λ(Ek)πi

(
ϕn(tk)

)∥∥∥∥∥
p

Xi

)1/p

=
(∑

i∈I

∥∥∥∥ ∑
k∈A(i)

λ(Ek)gi(tk)

∥∥∥∥p

Xi

)1/p

� η ·
(∑

i∈I

∥∥∥∥ ∑
k∈A(i)

λ(Ek)gi(tk)

∥∥∥∥p−1

Xi

)1/p

. (1)

Since p � 2 and A(i) ∩ A(i′) = ∅ whenever i 
= i′, we have∑
i∈I

∥∥∥∥ ∑
k∈A(i)

λ(Ek)gi(tk)

∥∥∥∥p−1

Xi

� Mp−1 ·
(∑

i∈I

λ

( ⋃
k∈A(i)

Ek

)p−1)

� Mp−1 ·
(∑

i∈I

λ

( ⋃
k∈A(i)

Ek

))
� Mp−1,

which combined with (1) yields∥∥∥∥∥
K∑

k=1

λ(Ek)ϕn(tk)

∥∥∥∥∥
X

� η · M(p−1)/p.

As η > 0 is arbitrary, ϕn is scalarly null and McShane integrable (by Lemma 2.2). This completes the proof of (i).
(ii) We use the notations X, πi and gi as in the proof of part (i). Enumerate I = {i1, i2, . . .}. For each n ∈ N, the

function fn : [0,1] → X defined by

πi

(
fn(t)

) =
{

gi(t) if i ∈ {i1, . . . , in},
0 otherwise,

is scalarly null and McShane integrable, as can be easily seen (use Lemma 2.2 and the fact that each gi is scalarly null
and McShane integrable). Since fn(t) → f (t) as n → ∞ for every t ∈ [0,1], an appeal to Lemma 2.3 ensures that f

is McShane integrable. The proof is over. �
As an immediate consequence of Proposition 3.1(i) (and the weak measure compactness of Hilbert spaces) we get

the following:

Corollary 3.2 (Di Piazza–Preiss). Let X be a Hilbert space. Then a function f : [0,1] → X is McShane integrable if
and only if it is Pettis integrable.

The previous corollary will be helpful when proving that L1(μ) belongs to P for any finite measure μ (Theorem 3.5
below). Roughly speaking, we will do that by “approximating” L1(μ)-valued scalarly null functions by i(L2(μ))-
valued ones, where i : L2(μ) → L1(μ) is the “inclusion” operator. Every L1(μ)-valued scalarly null function whose
range is contained in i(L2(μ)) is McShane integrable, as a consequence of the following lemma.

Lemma 3.3. Let X be a Banach space and f : [0,1] → X be a scalarly null function. Suppose there exist a Banach
space Y belonging to P and an operator T : Y → X such that T ∗(X∗) is sequentially w∗-dense in Y ∗ and f ([0,1]) ⊂
T (Y ). Then f is McShane integrable.
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Proof. Let g : [0,1] → Y be a function such that T ◦ g = f . It suffices to check that g is McShane integrable. To
this end, we will show that g is scalarly null. Fix y∗ ∈ Y ∗. There is a sequence (x∗

n) in X∗ such that (x∗
n ◦ T ) is

w∗-convergent to y∗. Since each x∗
n ◦f = (x∗

n ◦T )◦g vanishes a.e., the same holds for y∗ ◦g. As y∗ ∈ Y ∗ is arbitrary,
g is scalarly null and the proof is finished. �

Given an infinite ordinal α, we denote by Σα the product σ -algebra on {0,1}α , i.e., the σ -algebra generated by all
the sets of the form

∏
β<α Aβ , where Aβ ⊂ {0,1} and Aβ = {0,1} for all but finitely many β < α. We write λα to

denote the usual product probability on Σα . It is well known that card(α) = dens(L1(λα)) = smallest cardinal κ for
which there is a family C ⊂ Σα with card(C) = κ such that inf{λα(A � C): C ∈ C} = 0 for every A ∈ Σα . For basic
information on the probability space ({0,1}α,Σα,λα) we refer the reader to [14, §254].

Recall that a Schauder basis in a (necessarily separable) Banach space X is a sequence (xn) in X such that every
x ∈ X can be written in a unique way as x = ∑∞

n=1 an(x)xn for some sequence (an(x)) in R. In this case, for each
m ∈ N the mapping x �→ ∑m

n=1 an(x)xn is a bounded linear projection, cf. [10, Lemma 6.4].

Lemma 3.4. Let κ be an uncountable cardinal. Then L1(λκ) admits a SPRI

{Pα: ω � α � κ}
such that, for each ω � α < κ , the subspace (Pα+1 − Pα)(L1(λκ)) has a Schauder basis made up of Σκ -simple
functions.

Proof. We divide the proof into several steps. The first one is an easy observation.
Step 1. Let α and β be infinite ordinals with card(α) = card(β). Then there is an isometric isomorphism from

L1(λα) onto L1(λβ) which maps Σα-simple functions to Σβ -simple ones.
Step 2. Construction of a PRI on L1(λκ). For each ordinal ω < α � κ , let Fα be the σ -algebra on {0,1}κ generated

by the family {πβ : β < α}, where πβ : {0,1}κ → R stands for the βth coordinate projection. It is clear that Fα is
exactly the family of all subsets of the form A × {0,1}κ\α , where A ∈ Σα . Let Qα : L1(λκ) → L1(λκ) be the norm 1
linear projection that maps each f ∈ L1(λκ) to its conditional expectation with respect to Fα , usually denoted by
E(f |Fα), cf. [7, Lemma 3, p. 122]. In particular, Qκ is the identity on L1(λκ). Set Qω ≡ 0. The basic properties of
conditional expectations and martingales ensure that the collection {Qα: ω � α � κ} is a PRI on L1(λκ). Indeed:

• From the definitions it follows that Qα ◦ Qβ = Qβ ◦ Qα = Qα whenever ω � α � β � κ .
• dens(Qα(L1(λκ))) � card(α) for every ω < α � κ . To check this, take C ⊂ Σα with card(C) = card(α) such that

inf{λα(A � C): C ∈ C} = 0 for every A ∈ Σα . Since span{χC×{0,1}κ\α : C ∈ C} is dense in Qα(L1(λκ)), we get
the desired inequality.

• For each ω < α � κ , the set
⋃

ω�β<α Qβ+1(L
1(λκ)) is dense in Qα(L1(λκ)). To prove this, fix f ∈ Qα(L1(λκ))

and note that

Qβ+1(f ) = E
(
Qβ ′+1(f )|Fβ+1

)
for every ω � β � β ′ < α.

So (Qβ+1(f ), Fβ+1)β∈T is a martingale, where T is the directed set [ω,α). Since f ∈ L1(λκ) satisfies
E(f |Fβ+1) = Qβ+1(f ) for every β ∈ T and the σ -algebra generated by

⋃
β∈T Fβ+1 is Fα , we can apply [7,

Corollary 2, p. 126] to conclude that Qβ+1(f ) → E(f |Fα) = f in L1(λκ).

Step 3. Fix ω � α < κ . We claim that

(Qα+1 − Qα)
(
L1(λκ)

) = {
(χEα − 1/2)f : f ∈ Qα

(
L1(λκ)

)}
, (2)

where Eα = π−1
α ({1}). Indeed, since Fα+1 is exactly the σ -algebra generated by Fα ∪ {Eα}, it is easy to see that

Fα+1 = {
(B ∩ Eα) ∪ (B ′ \ Eα): B,B ′ ∈ Fα

}
.

The previous equality, the fact that Fα+1-simple (respectively Fα-simple) functions are dense in Qα+1(L
1(λκ)) (re-

spectively Qα(L1(λκ))) and the equality Qα(χEα ) = 1/2 allow us to deduce that (2) holds.
Notice that there is an isometric isomorphism

φα : L1(λα) → Qα

(
L1(λκ)

)
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such that φα(χC) = χC×{0,1}κ\α for every C ∈ Σα . Thus, in view of (2), we can define an isomorphism

ϕα : L1(λα) → (Qα+1 − Qα)
(
L1(λκ)

)
, ϕα(f ) := (χEα − 1/2)φα(f ).

Step 4. The case κ = ω1. Then {Qα: ω � α � ω1} is a SPRI on L1(λω1). Let us check that it satisfies the required
property. Let f ∈ L1(λω) be the function defined by f (z) := 1 if π0(z) = 0, f (z) := −1 if π0(z) = 1. For each n ∈ N

and each z0, . . . , zn−1 ∈ {0,1}, define f(z0,...,zn−1) ∈ L1(λω) by

f(z0,...,zn−1)(z) :=
⎧⎨⎩

1 if πk(z) = zk for every 0 � k < n and πn(z) = 0,

−1 if πk(z) = zk for every 0 � k < n and πn(z) = 1,

0 otherwise.

It is well known that the sequence of Σω-simple functions

1, f, f(0), f(1), f(0,0), f(0,1), f(1,0), f(1,1), . . .

(with this order!) is a Schauder basis of L1(λω): it is just the Haar basis of L1[0,1] (cf. [10, p. 164]) viewed through
the usual measure space isomorphism between ([0,1], L, λ) and ({0,1}ω,Σω,λω) (cf. [14, 254K]).

Fix ω � α < ω1. In view of the preceding paragraph and the observation isolated in Step 1, L1(λα) has a Schauder
basis made up of Σα-simple functions. Since the isomorphism ϕα of Step 3 maps Σα-simple functions to Σω1 -simple
ones, we conclude that (Qα+1 − Qα)(L1(λω1)) has a Schauder basis made up of Σω1 -simple functions. This finishes
the proof of the case κ = ω1.

Step 5. We prove the statement of the lemma by transfinite induction on κ . The case κ = ω1 has already been
considered in Step 4. So assume that κ > ω1 and that for every cardinal ω1 � κ ′ < κ the space L1(λκ ′) admits a SPRI
{Qκ ′

β : ω � β � κ ′} such that all the subspaces (Qκ ′
β+1 − Qκ ′

β )(L1(λκ ′)) have a Schauder basis made up of Σκ ′ -simple

functions. It is now clear (by Steps 1 and 3) that for every ω1 � α < κ the space (Qα+1 −Qα)(L1(λκ)) admits a SPRI
{P α

β : ω � β � card(α)} such that, for each ω � β < card(α), the subspace(
P α

β+1 − P α
β

)(
(Qα+1 − Qα)

(
L1(λκ)

))
(3)

has a Schauder basis made up of Σκ -simple functions. By [9, Proposition 6.2.7], the whole space L1(λκ) admits a
SPRI {Pα: ω � α � κ}. Moreover, a glance at the proof of [9, Proposition 6.2.7] reveals that for each ω � α < κ the
subspace (Pα+1 − Pα)(L1(λκ)) coincides with a space of the form (3) and so it has the required property. The proof
of the lemma is now complete. �

As a consequence of Maharam’s theorem on the classification of measure algebras, for any finite measure μ the
space L1(μ) is isometrically isomorphic to(

�1(Γ ) ⊕
(⊕

i∈I

L1(λκi
)

)
1

)
1

where Γ and I are countable (maybe empty) sets, each κi is an infinite cardinal and κi 
= κi′ whenever i 
= i′, cf. [20,
Theorem 9, p. 127]. Bearing in mind this fact, we are now ready to prove the main result of this section.

Theorem 3.5. Let μ be a finite measure. Then a function f : [0,1] → L1(μ) is McShane integrable if and only if it is
Pettis integrable.

Proof. Since L1(μ) is WCG, it is weakly measure compact and so it suffices to show that L1(μ) belongs to P .
Moreover, in view of the comments preceding the theorem and Proposition 3.1(ii), we can suppose without loss of
generality that μ = λκ for some uncountable cardinal κ (recall that all separable Banach spaces belong to P ).

Fix a scalarly null function f : [0,1] → L1(λκ). By Lemma 2.3, in order to prove that f is McShane integrable we
only have to check that f is the pointwise limit of a sequence of scalarly null McShane integrable functions. In fact,
we will show that for each ε > 0 there is a scalarly null McShane integrable function g : [0,1] → L1(λκ) such that
‖f (t) − g(t)‖L1(λ ) � ε for every t ∈ [0,1].
κ
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According to Lemma 3.4, L1(λκ) admits a SPRI {Pα: ω � α � κ} such that, for each ω � α < κ , the subspace
(Pα+1 − Pα)(L1(λκ)) has a Schauder basis (xα

n ) made up of elements of i(L2(λκ)), where i : L2(λκ) → L1(λκ) is
the “inclusion” operator. Write Rα := Pα+1 − Pα and let

Rα,m : Rα

(
L1(λκ)

) → L1(λκ)

be the canonical projection onto span{xα
1 , . . . , xα

m} for every m ∈ N.
Fix ε > 0. For each t ∈ [0,1] there exist a finite set {α1(t), . . . , αn(t)(t)} ⊂ κ and real numbers a1(t), . . . , an(t)(t)

such that∥∥∥∥∥f (t) −
n(t)∑
i=1

ai(t)Rαi(t)

(
f (t)

)∥∥∥∥∥
L1(λκ )

� ε.

Set g(t) := ∑n(t)
i=1 ai(t)Rαi(t)(f (t)) for every t ∈ [0,1]. We will see that the function g : [0,1] → L1(λκ) is scalarly

null and McShane integrable.
Fix n ∈ N and consider the function fn : [0,1] → L1(λκ) given by

fn(t) =
{

an(t)Rαn(t)(f (t)) if n(t) � n,

0 if n(t) < n.

Claim. fn is scalarly null and McShane integrable.

Indeed, fix m ∈ N and define a function fn,m : [0,1] → L1(λκ) by

fn,m(t) =
{

an(t)(Rαn(t),m ◦ Rαn(t))(f (t)) if n(t) � n,

0 if n(t) < n.

We next prove that fn,m is scalarly null. To this end, fix x∗ ∈ L1(λκ)∗. According to Lemma 2.1, the set {ω � α < κ:
x∗|Rα(L1(λκ )) 
≡ 0} is countable, so we can enumerate it as {α1, α2, . . .}. For each l ∈ N, set

Bl := {
t ∈ [0,1]: n(t) � n, αn(t) = αl

}
.

Then (x∗ ◦ fn,m)χBl
vanishes a.e., because f is scalarly null and(

x∗ ◦ fn,m

)
(t) = an(t)

(
x∗ ◦ Rαl,m ◦ Rαl

◦ f
)
(t) for every t ∈ Bl.

Writing B := ⋃∞
l=1 Bl , we infer that (x∗ ◦ fn,m)χB vanishes a.e. Since x∗ ◦ fn,m vanishes on [0,1] \ B , we conclude

that x∗ ◦ fn,m vanishes a.e., as required.
Since fn,m is scalarly null and fn,m([0,1]) ⊂ i(L2(λκ)), an appeal to Lemma 3.3 establishes that fn,m is McShane

integrable (bear in mind that i∗ has norm dense range and that L2(λκ) belongs to P , by Corollary 3.2). Finally, the
fact that fn,m → fn pointwise as m → ∞ allows us to apply Lemma 2.3 to infer that fn is scalarly null and McShane
integrable, as claimed.

Since g(t) = ∑∞
n=1 fn(t) for every t ∈ [0,1], another appeal to Lemma 2.3 ensures us that g is scalarly null and

McShane integrable. The proof is over. �
Theorem 3.5 can be seen as an strengthening of the equivalence of McShane and Pettis integrability in Hilbert

spaces (Corollary 3.2), because �2(κ) is isomorphic to a closed subspace of L1(λκ) for any infinite cardinal κ , see
e.g., [10, Theorem 6.28] (case κ = ω) and [20, Theorem 12, p. 128] (general case).

Observe that the conclusion of Theorem 3.5 is also valid when μ is σ -finite, since in this case L1(μ) is isometrically
isomorphic to L1(μ′) for some finite measure μ′.

4. Another example of a scalarly null function which is not McShane integrable

As we mentioned in the introduction, the following example involves the WLD Banach space whose dual unit ball
fails property (M) constructed (under CH) by G. Plebanek and O. Kalenda [26].

Recall (see e.g., [15, §311]) that the Stone space of a Boolean algebra A is the set Ult(A) of all ultrafilters on A,
equipped with the compact Hausdorff topology generated by the sets of the form Â = {U ∈ Ult(A): A ∈ U }, where
A ∈ A.
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Example 4.1 (Under CH). There exist a WLD Banach space X, a scalarly null function h : [0,1] → X and an abso-
lutely summing operator u from X to another Banach space Y such that u ◦ h : [0,1] → Y is not Bochner integrable.
In particular, h is not McShane integrable.

Proof. Let A ⊂ Σω1 be the sub-algebra constructed in the proof of [26, Theorem 3.1]. It is shown there that A satisfies
the following properties:

(a) K := Ult(A) is a Corson compactum.

(b) λω1(A) > 0 for every non-empty A ∈ A.

(c) A = ⋃
α<ω1

Aα , where each Aα is a sub-algebra and Aα ⊂ Aξ whenever α < ξ < ω1.

(d) For each ξ < ω1 there exist H 0
ξ ,H 1

ξ ∈ Aξ non-empty and disjoint such that

λω1

(
C ∩ H 0

ξ

) = λω1

(
C ∩ H 1

ξ

)
for every C ∈

⋃
α<ξ

Aα.

(e) Define gξ := χ
Ĥ 0

ξ

− χ
Ĥ 1

ξ

∈ C(K) for every ξ < ω1. Then for each Radon probability ν on K the set {ξ < ω1:∫
K

gξ dν 
= 0} is countable.

Let μ be the unique Radon probability on K satisfying μ(Â) = λω1(A) for every A ∈ A, cf. [16, Proposition 416Q].
As shown in the proof of [26, Theorem 3.1], property (d) ensures that L1(μ) is non-separable. In fact, a similar
computation yields the following property:

(f) No uncountable subset of {gξ : ξ < ω1} is ‖ · ‖L1(μ)-separable.

Indeed, observe first that for each α < ξ < ω1 we have |gα − gξ | � 1 on Ĥ 0
α � Ĥ 0

ξ , hence (d) can be applied to get∫
K

|gα − gξ |dμ � μ
(
Ĥ 0

α � Ĥ 0
ξ

) = μ
(
Ĥ 0

α \ Ĥ 0
ξ

) + μ
(
Ĥ 0

ξ \ Ĥ 0
α

)
� μ

(
Ĥ 0

α ∩ Ĥ 1
ξ

) + μ
(
Ĥ 0

ξ \ Ĥ 0
α

) = μ
(
Ĥ 0

α ∩ Ĥ 0
ξ

) + μ
(
Ĥ 0

ξ \ Ĥ 0
α

) = μ
(
Ĥ 0

ξ

)
. (4)

In order to prove (f), fix I ⊂ ω1 such that {gα: α ∈ I } is ‖ · ‖L1(μ)-separable. Take J ⊂ I countable such that
{gα: α ∈ J } is ‖ · ‖L1(μ)-dense in {gα: α ∈ I }. Since J is countable, there is ξ ′ < ω1 such that α < ξ ′ for every
α ∈ J . In view of (4), we have

inf
α∈J

∫
K

|gα − gξ |dμ � μ
(
Ĥ 0

ξ

)
> 0 for every ξ ′ � ξ < ω1,

thus gξ /∈ {gα: α ∈ J }‖·‖L1(μ) for every ξ ′ � ξ < ω1. It follows that I ⊂ ξ ′, so I is countable and the proof of (f) is
finished.

Let X := span{gξ : ξ < ω1} ⊂ C(K). Kalenda proved in [26, Corollary 4.4] that X is a WLD Banach space such
that (BX∗ ,w∗) fails property (M).

Fix any bijection ϕ : [0,1] → ω1 and set

h : [0,1] → X, h(t) := gϕ(t).

Let i : X → C(K) be the inclusion operator and j : C(K) → L1(μ) the “identity” operator (that sends each function
to its equivalence class). It is well known that j is absolutely summing (see e.g., [6, 2.9]), hence the same holds for
the composition u = j ◦ i : X → L1(μ). We claim that h and u satisfy the required properties.

Clearly, in order to check that h is scalarly null we only have to show that for each Radon probability ν on K we
have

∫
K

h(t) dν = 0 for a.e. t ∈ [0,1]. Given such a ν, property (e) ensures that the set {t ∈ [0,1]: ∫
K

gϕ(t) dν 
= 0} is
countable (bear in mind that ϕ is a bijection) and so it has Lebesgue measure 0, as required.
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On the other hand, u ◦ h : [0,1] → L1(μ) is not Bochner integrable. Indeed, take any Ω ∈ L with λ(Ω) = 1. Since
Ω is uncountable and ϕ is a bijection, the set (u ◦ h)(Ω) = {gϕ(t): t ∈ Ω} is not ‖ · ‖L1(μ)-separable, by property (f).
It follows that u ◦ h is not strongly measurable and, therefore, it is not Bochner integrable.

Finally, since the composition of a McShane integrable function with an absolutely summing operator is always
Bochner integrable (see [22, Theorem 5] or [28, Theorem 3.13]), h cannot be McShane integrable. The proof is
complete. �
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