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1. Introduction

The Hardy-Littlewood maximal function, fractional maximal function and fractional integrals are important technical
tools in harmonic analysis, theory of functions and partial differential equations. On the real line, the Dunkl operators are
differential-difference operators associated with the reflection group Z; on R. In the works [1,6,8,13] the maximal operator
associated with the Dunkl operator on R were studied. In this work, we study the fractional maximal function (Dunkl-type
fractional maximal function) and the fractional integral (Dunkl-type fractional integral) associated with the Dunkl operator
on R. We obtain the necessary and sufficient conditions for the boundedness of the Dunkl-type fractional maximal operator,
and the Dunkl-type fractional integral operator from the spaces L, (R) to the spaces Ly «(R), 1 < p < q < o0, and from the
spaces Lq,(R) to the weak spaces WLy o (R), 1 <q < o0.

The paper is organized as follows. In Section 2, we give our main results on the boundedness of the Dunkl-type frac-
tional maximal operator and Dunkl-type fractional integral operator. In Section 3, we present some definitions and auxiliary
results. The main result of the paper is the inequality of Hardy-Littlewood-Sobolev type for the Dunkl-type fractional in-
tegral, established in Section 4. We prove that the Dunkl-type fractional maximal operator Mg and Dunkl-type fractional
integral operator Ig are bounded from the spaces L o (R) to the spaces Lq o (R) and from the spaces L1 «(R) to the weak
spaces WLy o (R). We show that the conditions on the parameters ensuring the boundedness cannot be weakened. In the
limiting case p = % we also prove that the operator Mg is bounded from the space L, «(R) to the space Lo o(R),

* Corresponding author at: Institute of Mathematics and Mechanics, Baku, Azerbaijan.
E-mail addresses: vagif@guliyev.com (V.S. Guliyev), yagub52@yandex.ru (Y.Y. Mammadov).
1 V.S. Guliyev's research was partially supported by the grant of BGP II (project ANSF Award AZM1-3110-BA-08), by the grant of Tubitak (TUBITAK,
programme 2221, No. 220.01-619-4889) and by the grant of INTAS (project 05-1000008-8157).

0022-247X/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2008.11.083


http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:vagif@guliyev.com
mailto:yagub52@yandex.ru
http://dx.doi.org/10.1016/j.jmaa.2008.11.083

450 V.S. Guliyev, Y.Y. Mammadov / J. Math. Anal. Appl. 353 (2009) 449-459

and the Dunkl-type modified fractional integral operator Tﬂ is bounded from the space Lp«(R) to the Dunkl-type BMO
space BMOy (R). As applications of these results, we prove that the operators Mg and Ig are bounded from the Dunkl-type

Besov spaces BZe,a(R) to nye,a(R) fori<p<qg<oo, 1/p—1/q=8/QRa+2),1<6<ocand 0<s<1.

2. Main results

Let @ > —1/2 be a fixed number and p, be the weighted Lebesgue measure on R, given by
g (0 == (2% M@ + 1)) ' x4 dx.

For every 1< p < oo, we denote by Lp 4 (R) =Ly (R, duy) the spaces of complex-valued functions f, measurable on R
such that

1/p
||f||p,az||f||Lp<a=(/|f(x>}"dua<x>> <00 ifpell,oo),
R

and

I flloo.a = Il fllL = esssﬂgp!f(x)} if p=oo.

For 1 < p < oo we denote by WLj o (R), the weak L, o(R) spaces defined as the set of locally integrable functions f
with the finite norm

I flwe,, = Sulgr(ua{x eR: |f(o)|> r})l/p~

Note that
Lpa CWLpo and |flw,, <Ifllpe forall felpo(®).

Let B(x,t) ={y € R: |y| € Imax{0, |x| — t}, |x| + t[} and B; = B(0,t) =]—t,t[, t > 0. Then
o Br =bat?**2,

where by = 29 (o + DI (o + D]
We denote by BMO,, (R) (Dunkl-type BMO space) the set of locally integrable functions f with finite norm (see [5])

1
I flle = sup / |tx f(¥) — fB, )| dpea (y) < 00,
r>0,xeR Mo B i
where
1
0= / T f () dpta(9).

B
For all x, y, z € R, we put
Wox,y,2) =1 —0xyz+0zxy +0z2yx)Aa(X,y,2)

where

Ry -2
, otherwise

and A, is the Bessel kernel given by

22112 (1x|—yN2Tye—1/2 .
dy, LOXELYD Z]\Z;z\zgﬂ WIDT = i 2] € Ay,

, otherwise,

A()!(Xs y7 Z) = {
where do = (I'(@ + 1))2/Q* /T T (@ + 3)) and Axy =[IIx] — |yll, 1x] + |y[].

Properties 1. (See Rosler [14].) The signed kernel W, is even with respect to all variables and satisfies the following properties

Wox,¥,2) =Wy (y,x,2) = Wy (—X,2,¥),
Woi,y,2) =Wu(=2,y, —X) = Wy (=X, -y, —2)

and

/!Wa<x,y,z>|dua<z) <4.
R
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In the sequel we consider the signed measure vy y, on R, given by

Wex,y,2)dug(2), if x,y eR\ {0},
Vxy = dsx(2), if y=0,
dsy(2), if x=0.

Definition 1. For x, y € R and f a continuous function on R, we put

wf(y) = / f@dvyy(2).
R

The operators 7y, X € R, are called Dunkl translation operators on R and it can be expressed in the following form
(see [14])

T

o f () =Ca / fe(x. y)o)h1(x, y,0)(sin6)** d + ¢4 / fo((x, ¥)o)ha(x, y, 0)(sin6)** do,
0 0

where (x, y)y = \/xz + y2 —2|xy|cos, f = fe+ fo, fo and f. being respectively the odd and the even parts of f, with

_ r 2 _ Noa+1)
Ca = (/(sm@) d9> = —ﬁf(a T2
0

hi(x, y,0) =1 —sgn(xy) cos
and
(x+y)[1—-sgn(xy)cosb]
hz(X,y,O):{W, ffxy;éO,
0, if xy =0.

Using the change of variable z = (x, y)g, we have also (see [3])

rxf<y>=ca/{f((x, V) + (= y)) + Y
0

) [f(x ¥)9) — f(=(x, y)g)]}(l — cos6)(sin0)%* do.

Now we define the Dunkl-type fractional maximal function by

Mg f(0) = igg(uuBr)w%*‘ f ol fl) dua(y), 0<B<2a+2,
By
the Dunkl-type fractional integral by
1500 = [Ty 2 )duaty), 0<p <2042,
R
and the Dunkl-type modified fractional integral by

Tefo = /(rxlylﬂ‘z“‘2 — Iy P ey 0 ) F D dpa). 0<p <20 +2.
R

If 8=0, then M = M is the Hardy-Littlewood maximal operator associated with the Dunkl operator (see [1,6,8,13]).
Theorem 1. (See [1,8,13].)
(1) If f € L1,« (R), then for every B > 0

C
ta{x eR: Mf(x) > B} < Fl flf(x)\dua(x),
R
where Cq > 0 is independent of f.
Q) If felpa®), 1< p < oo, then Mf € Lp o(R) and
IMfllp.e < Call flipas

where Co > 0 is independent of f.
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Corollary 1.If f € LI, (R), then

hm— / [T f (v) = fC0|dpa(y) =

r—0 H,
forae xeR.
Corollary 2. If f € L' (R), then

1
lim B /Txf(Y)dMa(Y):f(X)

=0 Lo By

r

forae xeR.

The following theorem is our main result in which we obtain the necessary and sufficient conditions for the Dunkl-
type fractional integral operator Ig to be bounded from the spaces Lpo(R) to Lgo(R), 1 < p <q < o0, and from the
spaces Lq,(R) to the weak spaces WLy ¢ (R), 1 <q < o0.

Theorem 2. Let 0 < 8 <20 +2and 1 < p < 2"‘;2,

(1) If p =1, then the condition 1 — % = 2aﬂ+2 is necessary and sufficient for the boundedness of g from L1 o (R) to WLg o (R).

) Ifl<p< 2‘)“%2 then the condition % - % = 2045+2 is necessary and sufficient for the boundedness of I from Lp o (R) to Lg o (R).

B)Ifp= % then the operator'f,g is bounded from Lp o (R) to BMOg (R).

Recall that, for 0 < 8 < 2« + 2, the following inequality hold

__B_
My f(x) <by Z714(f1)().

Hence the boundedness of the Dunkl-type fractional integral operator Ig implies the boundedness of the Dunkl-type frac-
tional maximal operator Mg.

Corollary 3. Let 0 < f <2 +2and 1 < p < 242,

M Ifl<p< 2“+2 , then the condltlon i % = Za‘iz is necessary and sufficient for the boundedness of Mg from L o (R) to Lg o (R).

) Ifp=1, then the condition 1 — q = zaﬁ+2 is necessary and sufficient for the boundedness of Mg from L1 o (R) to WLg o (R).

) Ifp= % then Mg is bounded from Lp o (R) to Loo (R).
For 1< p,0 < oo and 0 <s < 1, the Besov space for the Dunkl operators on R (Besov-Dunkl space) BS , (R) consists of
all functlons fin Lp o(R) so that

1T f () = FOUY e
||f||B;91a:||f||p,u+< MTZ-!—SGPd Mo (X )) < 0.
R

po,a

(1)

Besov spaces in the setting of the Dunkl operators studied by C. Abdelkefi and M. Sifi [2,3], R. Bouguila, M.N. Lazhari and
M. Assal [4], L. Kamoun [10] and Y.Y. Mammadov [9]. In the following theorem we prove the boundedness of the Dunkl-type
fractional integral operator I in the Dunkl-type Besov spaces.

1_1_ _B8

Theorem 3. For 1 < p <q < o0, 7T 9= 1 <60 <ooand0 < s < 1 the Dunkl-type fractional integral operator 15 is bounded
from BS , (R) to B?

0. o, « (R). More precisely, there is a constant C > 0 such that
s fliss, , <CIlFlss,

hold for all f € Bpg o« ®).
Corollary 4. For 1 < p < q < 00, % - % = ZaﬁT 1< 0 <ooand 0 <s <1 the Dunkl-type fractional maximal operator Mg is
bounded from BS, (R) to BS,  (R). More precisely, there is a constant C > 0 such that

po.a qo,a
Mg fllgs, , <Cllfligs,

hold for all f € Bp9 o« R).

Remark 1. Note that Corollary 4 in the case 8 =0 was proved in [9].
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3. Preliminaries

For a real parameter o > —1/2, we consider the Dunkl operator, associated with the reflection group Z, on R:

20+ 1/ f(x) — f(—x)
X 2 ’

d
A (f)) = d—f(X) +
bY
Note that A_1/; =d/dx.
For o > —1/2 and A € C, the initial value problem:
Ag(HH) =2f(x), f(O)=1, xeR,
has a unique solution E,(Ax) called Dunkl kernel [7,11,15] and given by

AX
Eq(AX) = jo (iXX) + ———— ] ixx), xeR,
a(AX) = jo( )+2(a+1)la+l( )

where j, is the normalized Bessel function of the first kind and order « [16], defined by

Ja@ o (—=1)(z/2)*
P —F(d‘f’])gm, zeC.

Ja@=2"T(@+1)

We can write for x e R and A € C (see Résler [14, p. 295])

Ta+1) k

— =T [(1-)*a - et
ra+1/2
VAT (o + /)_1

Eq(—irx) =

Note that E_j/2(Ax) = e**,
The Dunkl transform Fy of a function f € L1 o(R), is given by

FafR) :=/Ea(—i)»X)f(X)dMa(X), LeR.
R

Here the integral makes sense since |E, (ix)| <1 for every x € R [14, p. 295].
Note that F_1,, agrees with the classical Fourier transform F, given by

Ff):= (Zn)’l/z'/e’”"f(x)dx, reR.
R

Proposition 1. (See Soltani [12].)

(i) If f is an even positive continuous function, then ty f is positive.
(i) For all x € R the operator Ty extends to Lp o(R), p > 1, and we have for f € Lp o (R),

ITxfllp,a <4l fllp,a- (3)
(iii) Forallx, A e Rand f € L1 o (R), we have
Fa (T f)(A) = Eq (iAX) Fo f (M).

Let f and g be two continuous functions on R with compact support. We define the generalized convolution %, of f
and g by

[ e g = / Wf (=g dua(y), xeR.
R

The generalized convolution * is associative and commutative [14]. Note that %_1,, agrees with the standard convolution .
Proposition 2. (See Soltani [12].)

(i) If f is an even positive function and g a positive function with compact support, then f %, g is positive.
(ii) Assume that p,q,r € [1, +oo[ satisfying 1/p + 1/q =1+ 1/r (the Young condition). Then the map (f, g) — f * g, defined on
Ec x &, extends to a continuous map from Ly o (R) x Lg o (R) to Ly o (R), and we have

I f *o &llra <4||f“p,a||g||q,a-
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(iii) Forall f € L1 4(R) and g € Ly o (R), we have
Fo(f *a &) = (Faf)(Fad).

We need the following lemma.

Lemma 1. Let 0 < 8 < 2« + 2. Then for 2|x| < |y| the following inequality is valid

|Ty|x|/3—2a—2 _ \Y|ﬂ_2a_2| < 22a+4—ﬁ|y|ﬂ—2a—3|x|' (4)
Proof. We will show that

T
|fy|xlﬂ_2a_2 _ ‘ylﬂ—Za—2| < zca /H(X, y)0|ﬁ*20l*2 _ |y|15—20(—2| sin2a9d9.
0

First estimate
[k, o272 = y1f202).

By the mean value theorem we get

[ v — P22 < p)a| = 1yl] - §P72473,

where min{|(x, y)gl, |¥[} <& <max{|(x, y)ol, |¥]}.
Note that we have

|ﬁ—2a72

3 1
|(x, y)o| < IxI+ 1y < LA | Yol = 1x—y| =yl — x| > 1
and
| yo] — Iyl <Ixl, 1yl =[x 9] <1yl —1x — y| < IXI.

Hence we get 3|y| < |(x, ¥)ol < 31yl and [|(x, y)o| — [¥I] < IxI.
Thus we obtain (4). O

4. Hardy-Littlewood-Sobolev theorem for the Dunkl-type fractional integral

It is easy to show that if p > 2aﬂ+2’ then Iz is not defined for some functions f € Lp o (R).

Examplel. Let xeR, 0 < 8 <20 +2, f(x) = mx% (x), where "B, =R\ By, r > 0 and x is the characteristic function
2
of the set E. For p = 2"‘%2, we have f e L, (R) and Ig f(x) = 4o0.

Example 2. let xe R, 0 < 8 <2a+ 2, f(x) = |X\_ﬂXBB (x). For p > 2“ﬁ+2, we have f e L, (R) and Ig f(x) = +oo.
2

For the Dunkl-type fractional integral the following analogue of Hardy-Littlewood-Sobolev theorem is valid.

Theorem4.let0 < B <2042, felpa(R)and1<p < 2()!;2.

M Ifl<p< 2"‘;2 and % —é: Za"ﬁ,then Igf €Lgo(R) and

g fllg.e < Cpgll fllp,s (5)
where Cpq = 2(C4)'"P/9(C2C3)P/9, C3 = 233 (o + 1) (@ + 1)/(2F — 1), Ca = 4% (@ + 1) (a + 1)q/p") /7.
2)Ifp=1and1-— % = 20[‘% then Ig f € WLy o (R) and
Mg fliwg e < Crgll fll1,es (6)
where C1g = 2(C1C3)1/4.

3) Ifp= 2"‘;2, thenTg f € BMOy (R) and

ITs flls < CIlfllps (7)

where C is independent of f.
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Moreover, if the integral I f exists almost everywhere, then 15 € BMO, (R) and the following inequality is valid

g fllca <Cllifllpas
where C > 0 is independent of f.

Proof. (1) Let fel, ,(R), 1<p< 2"‘%2 Then we write

I,sf(x)=(/+ /)fxf<y)|y|”‘2°“2dua<y>=A<x>+B<x>.
B, cBr

By taking sum with respect to all integer k > 0, we get

|A®)] </rx|f<y>}|y|ﬂ‘2“‘2dua<y>

| FD|IyIP 2 2 dpa(y)

e I ©

By k1, \By—k,

ety [ alrwldkew

By i1, \Byk,

=
Il
_

[o¢]
< barﬂMf(x) Z(z—k)ﬁ—Za—2(2—k+l)2a+2
k=1

o0
=4bor’Mf(x) Y 27 = CarP Mf ().
k=1
Therefore it follows that
|A®)| < C3rPMF ().

By Hoélder’s inequality and the inequality (3) we have

1/p’
|B(x)| < erlflllp,a(/ |y|(B=2e=2p d,U«a(_V))
c

By

10
<4\|f||p,a< / |y|(P-2e=2P dua(y)) ! = Car™ DY £ .
Cp,
Consequently, we get
|BCO| < Car™ 2/ £l g
Thus, from the inequalities (8) and (9), we have
|15 f (0] < C3rP MF () + Car™ @2/ £l o
The minimum value of the right-hand side is attained at
r=[(CsMf®) ™ Call fllp.a
and hence
|15 £ <2(C3MF0)™ (Call Fllp.a) "7,

By Theorem 1, we have

]p/(ZoH-Z)

5

/ 15 f | dea(y) <29(Call fllp.a)” " f (CMf ) dpta(y)
R R
<29(CIP(CLL)PI IS -

455
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Then we get

5 fllg.a <2(Ca)'PUCLC3)P fllpa-
(2) Let f € L1 «(R). We have

palxeR: |Igf (0] > 220} < pafxeR: |[AX)| > A} + pa{xeR: [B(x)| > A}.

Taking into account the inequality (8) and applying Theorem 1 we have

Mia{xeR: |AX)| > 2} <A / dite ()
{xeR: C3rPMf (x)>A}
A
:A/J,a{xeR: Mf(x) > C37}
<G| flha
and

|B(x)| < / | F VP22 dpa ()

Cp,

<rf-2a=2 / | fW)]dpa (y)

Cp,

_ 2042 — 242
<4 /}f(x)|d,ua(x)=4r Tl
R
_ 2042
If4r~ 9 | fll1,« =, then |[B(x)| < A, and hence
pa{xeR: [B(x)|>21}=0.
Then we get

pa{xeR: |Igf(X)] > 20} < pofxeR: [AX)| > A} + pa{x €R: [B(x)| > 1}

C1C3 2042
< Trﬁ Ifll.q=CiC3rPT7a

_ C1C3
= (10322 = (103 q||f||[11,a =

I1£11S o
and hence

g f IWtge < 2(C1C)Y fl110-

(3)Let felpo@) and p= 2“‘%2 For given t > 0, put

fito=F0xs,(®) and  fr(x) = fx) = fi(0).
Then

Tgf ) =Tpfr(x) +Tp f2(0 = F1(X) + Fa(x),
where

F1(0 = / (Ty P22 — P22 20, () F) dita (),
Bat

Fao = [ (12072 < P2, () F9)dma(y)
%5y

Note that the function f; has compact (bounded) support and thus

a=- / Y202 f (y) dpa(y)
B2t \Bmin(1,2t}

is finite.

(10)
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Note also that
Fi(x) —a1 = / Ty IXIP20 2 f(y)dpta (y)
B¢
- / IyIP2*=2 f(y)dpa (y)
B2t \Bmin{1,2t}
+ / IyIP2%=2 f(y)dpta (y)

B2t \Bmin{1,2t}

= / Ty X222 f1 () dita (v) = 15 f1().
R

Therefore

|F1(0) —a1] < / IVIP722 1y f1 (0 | dpa ()
R

= [ WP ] da),
B(x,2t)
Further, for x € B;, ¥ € B(x, 2t) we have

|yl < |x| 4+ 2t < 3t.

Consequently

Fio —ar| < / P22, £ 00| djta (), (11)
B3t
if x € By.
By Theorem 1, and inequalities (3), (8) and (11) for Bp = 2« + 2
(LB ™! / |T2F1(%) — a1| dpe (2) <bg't=2472 / ( / IyIP=2 21,1, | f (%) dua(y)> dpa(2)
Bt Bt B3t
< C3by'Bofr2e2. / M (T, f)(x) djig (2)
B¢
: ) 1/p
< C3by /Pef=20-2 Ga2)/p ( f (M(tzf)(X))dea(2)>
Bt
<Csby P M )], o < C2C3b P IT fllpa
<4C;C3b P fllp.a-
Therefore
|F1(0) —a1| <4C2C3b5 P [ fllp.a- (12)
Denote
o= / P22 F(y) dpr (9).
Bmax{1,2t}\ Bar

Now we estimate |F,(x) — ay| for x € B¢

|Fa(x) —az| < / |f )] [Ty %P 72272 — 1y /P22 | d g ().

C
Bae

Applying Lemma 1 and Hoélder inequality we obtain instead of we have
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|F2(x) —az| <224 P / [FD|Iy1P72* 3 dpg ()
c

Bt
1/p 1/p’
<22‘”“*ﬁ|x|( / }f(y)l”dua(w) ( f |y|<ﬂ*2“*3“”dua(y))
DBz[ cBZr

p—1-2012 -1
< Clx|t Pl fllpe <CIXIET 1 fllpe <Clflip.e-
Note that if |x| <t, |z| < 2t, then 7,|x| < |x| 4+ |z| < 3t. Thus for 8p = 2« + 2 we obtain
|T2F2(x) — az| < 2| F2(x) — az2| < Cll flIp.a- (13)
Denote
a=ata= [ WG duaw)
Bmax{1,2t}

Finally, from (12) and (13) we have

sup(jucBo)”" / 17,75 £ (%) — | dpa () < Cllfllpar
, ]

Thus

ITg fllsa < 2sutpwa3t)‘1 / |tyTs f(x) —ag|dita(y) < Clifllp.a-
X,
Bt

Therefore the proof of Theorem 4 is completed. O

Proof of Theorem 2. Sufficiency part of the proof follows from Theorem 4.
Necessity. (1) Let 1 < p < 2252 f € L, ,(R) and assume that the inequality

g fllg.e < Cllfllp.c (14)

holds, where C depends only on p, q and «.
Define f;(x) := f(rx), then

_ 2042
Ifrllpe=1""7 lIfllp.e

and

—p—2t2
Mg fillge=T1 “ |gfllga-
By the inequality (14)

2042 2042
q

g fllga <CrPT 0 =50 I fllpa
B

If % > %+ sz, then for all f € Ly o(R) we have |14 f|lg.« =0 as r — 0, which is impossible. Similarly, if % < %—f— %
then for all f € Ly (R) we obtain ||Ig f|lg,« =0 as r — oo, which is also impossible.
1_1 J
Therefore we get s =71 %

Necessity. Let Ig be bounded from L1 (R) to WLy «(R). We have

_p[_20+2
g frliwige =770 g fllwge-

By the boundedness of Ig from L1 o (R) to WL (R) it follows

2042
g flwege =170 1l frliwiga

2042 20+2
<SP fllng = CrP T T T p

where C depends only on q and «.
If1< % + 3477 then for all f € L1 o(R) we have |Igfllw,, =0 as r — 0. Similarly, if 1 > % + 20{‘% then for all
f €L1.o(R) we obtain ||Ig fllwi,, =0 as r— oo.

Hence we get 1= % + 20{% Thus the proof of Theorem 2 is completed. O
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Proof of Corollary 3. Sufficiency part of the proof follows from Theorem 4 and the inequality
1-_ B
Mpfx) <by *Ig(1f)®), 0<B<2a+2.
Necessity. (1) Let Mg be bounded from Ly 4 (R) to Lgo(R) for 1 <p < 21;% 1 < p <q < oo. Then we have
Mg fr(0) =P Mg f (%),
,ﬁ,M
IMg frllga =T 4 |IMg fllg,«
1

and by the same argument as in Theorem 2 we obtain % =77 2aﬂ+2.

(2) Let Mg be bounded from L1 4 (R) to WLg o (R). Then we have

_ 2042
B q

Mg frllwig, =1
and the inequality

Mg fliga <Cllfllp.a-

. _ 1 ﬂ .
Hence, the equality 1= 7T am follows easily.

(3) Let p= % f €Ly« @), then applying Holders inequality together with inequality (3) we obtain

1M f lIwig o

B 4.1 1/p
(uasoﬁ”/rxww)ldua(y) < (HaBrn =2 (/(tx\f(wl)”duu(y))

=t flpa <4l flp.a-

Thus the proof of Corollary 3 is completed. O

Proof of Theorem 3. For x € R, let 74 be the generalized translation by x. By definition of the Dunkl-type Besov spaces it
suffices to show that

HTxIﬂf - Iﬂf”p,a <Clltaf — f||p,a~

It is easy to see that ty commutes with Ig, i.e. TxIg f = Ig(7x f). Hence we have

ltxlgf —1gf1=|Ig(tf) — I f| < Ip(Itef — f1).

Taking Lq« (R) norm on both ends of the above inequality, by the boundedness of Ig from Lp o(R) to Lg 4 (R), we obtain
the desired result. Theorem 3 is proved. 0O

Acknowledgments

The authors would like to express their thanks to Prof. A. Serbetci for many helpful discussions on this subject. Also the authors wish to thank the
referee for carefully checking the manuscript, and for his/her valuable comments and suggestions.

References

[1] C. Abdelkefi, M. Sifi, Dunkl translation and uncentered maximal operator on the real line, Int. J. Math. Math. Sci. 2007 (2007), doi:10.1155/2007/87808,
Article ID 87808, 9 pp.
[2] C. Abdelkefi, M. Sifi, On the uniform convergence of partial Dunkl integrals in Besov-Dunkl spaces, Fract. Calc. Appl. Anal. 9 (1) (2006) 43-56.
[3] C. Abdelkefi, M. Sifi, Characterization of Besov spaces for the Dunkl operator on the real line, JIPAM. J. Inequal. Pure Appl. Math. 8 (3) (2007) 1-21,
Article 73.
[4] R. Bouguila, M.N. Lazhari, M. Assal, Besov spaces associated with Dunkl’s operator, Integral Transforms Spec. Funct. 18 (8) (2007) 545-557.
[5] V.S. Guliyev, On maximal function and fractional integral, associated with the Bessel differential operator, Math. Inequal. Appl. 6 (2) (2003) 317-330.
[6] V.S. Guliyev, Y.Y. Mammadov, Function spaces and integral operators for the Dunkl operator on the real line, Khazar J. Math. 2 (4) (2006) 17-42.
[7] C.E. Dunkl, Differential-difference operators associated with reflections groups, Trans. Amer. Math. Soc. 311 (1989) 167-183.
[8] Y.Y. Mammadov, On maximal operator associated with the Dunkl operator on R, Khazar J. Math. 2 (4) (2006) 59-70.
[9] Y.Y. Mammadov, On the boundedness of the maximal operator associated with the Dunkl operator on R on the Besov-Dunkl spaces, in: Proc. of NAS
of Azerbaijan. Embedding Theorems, Harmonic Analysis 26 (34) (XIII) (2007) 244-257.
[10] L. Kamoun, Besov-type spaces for the Dunkl operator on the real line, ]. Comput. Appl. Math. 199 (2007) 56-67.
[11] M. Sifi, F. Soltani, Generalized Fock spaces and Weyl relations for the Dunkl kernel on the real line, J. Math. Anal. Appl. 270 (2002) 92-106.
[12] F. Soltani, LP-Fourier multipliers for the Dunkl operator on the real line, J. Funct. Anal. 209 (2004) 16-35.
[13] E Soltani, Littlewood-Paley operators associated with the Dunkl operator on R, J. Funct. Anal. 221 (2005) 205-225.
[14] M. Roésler, Bessel-type signed hypergroups on R, in: H. Heyer, A. Mukherjea (Eds.), Probability Measures on Groups and Related Structures, XI, Ober-
wolfach, 1994, World Scientific, River Edge, NJ, USA, 1995, pp. 292-304.
[15] K. Trimeche, Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators, Integral Transforms Spec. Funct. 13 (2002) 17-38.
[16] G.N. Watson, A Treatise on Theory of Bessel Functions, Cambridge University Press, Cambridge, 1966.


http://dx.doi.org/10.1155/2007/87808

	On fractional maximal function and fractional integrals associated  with the Dunkl operator on the real line
	Introduction
	Main results
	Preliminaries
	Hardy-Littlewood-Sobolev theorem for the Dunkl-type fractional integral
	Acknowledgments
	References


