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monotone. The associated boundary conditions are also of monotone type. One shows that,
if A" is a sequence of operators which converges to A in the sense of resolvent and f"

ﬁfﬂfgf 'monomne operator converges to f in a weighted [>-space, then under additional hypotheses, the sequence of
Strongly monotone operator the solutions of the difference inclusion associated to A" and f" is uniformly convergent
The resolvent of an operator to the solution of the original problem.

Yosida approximation © 2009 Elsevier Inc. All rights reserved.

Convergence in the sense of resolvent

1. Introduction

Let H be a real Hilbert space endowed with the scalar product (-,-) and the corresponding norm || - ||. Consider the

boundary value problem
{Ui+1—(1+9i)ui+9iui—1ECiAUi-i-fi, i>1, (1)
up —up € a(up —a), (upiz1 €L, '

where A:D(A) CH — H and «:D(x) € H— H are nonlinear maximal monotone operators (possible multivalued) in H,
with the domains D(A) and D(«), respectively, ae H, fie H, (V)i >1and ¢; >0, 0<6; <1, (V)i > 1 are given sequences.
We have denoted by £ the space [*(H) with the weight sequence (¢i)ixo defined through

_ 1
T 01605 .. 0;’
Therefore, the scalar product in £ is

wo=1, ¥ i>1

o0
(Wpiz1, (vDiz1)= Z‘Pi(ub Vi)
i=1
and the corresponding norm is

1/2

o0
2
[wdiz1| = D eilluil :
i=1
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whenever the two series converge. Since the sequence (¢;)i>o is nondecreasing (1 =¢o < ¢ < - < @ < @ip1 < ---), the
inclusion £ c I>(H) holds both algebraically and topologically.

Existence, uniqueness and asymptotic behavior of the solution for problem (1.1) were investigated in [5,6,22,24], under
different hypotheses on A and «. In the case when A and « are subdifferential mappings, problem (1.1) is equivalent with
an optimization problem [6].

We work under the following conditions, which assure the existence of the solution of problem (1.1).

(1) A:D(A)CH— H, a:D(x) € H— H are nonlinear maximal monotone operators in H, 0 € D(A) N D(«), 0 € (0).

(2) A is strongly monotone, i.e. (I)w > 0 such that

V1= Y2.x1 —X2) Z 0lx1 = X[, (V)x1.%2 € D(A), (V)yi € Ax;, i=1,2.
(3) If A; = (I — (I +2A)~"1)/A is the Yosida approximation of the operator A, then
(Ayx—A,y,2>20, (V)zea(x—y), withx—y e D(x).

In this case we say that A is «-monotone.
(4)0<c<ci,0<6 <1, (M)i=1(c>0is a constant), (fi)i>1 €L, aeH.
The following result is proved in [6]:

Theorem 1.1. If hypotheses (1)-(4) hold, then problem (1.1) has a unique solution u = (u;)i>1 € L.

Recall briefly some definitions and results about maximal monotone operators. The multivalued operator A:D(A) C
H — H is called monotone in the Hilbert space H if for any x1,x, € D(A) and for any y; € Ax;, i =1, 2, we have (y1 — y2,
X1 — X2) > 0. The monotone operator A is maximal monotone if, regarded as a subset of H x H, is not properly included in
any other monotone set of HxH.

The resolvent of the operator A is the single-valued operator J; = (I +AA)~!, A > 0, with the domain D(J,) = H. The
Yosida approximation of A is defined by Ay = (I — (I +1A)~")/A, A > 0, with D(A;) = H. Then A, is monotone, J; is
nonexpansive and A;x € A(J,x), (V)x € H. By the definition of A;, we have

x= hix+2ArAx, (MxeH, Y)A>0. (1.2)

It is known that if A is a maximal monotone operator on H, then there exists a unique semigroup {S(t), t > 0} of
nonlinear contractions on D(A) whose infinitesimal generator is —A® (A is the minimal section of A). Actually, there
exists a one-to-one correspondence between the class of maximal monotone operators on H and the class of semigroups
of nonlinear contractions on closed convex subsets of H (see [13, p. 175]). Further information on maximal monotone
operators and their applications to the study of different classes of evolution equations can be found in the monographs
[13,15,20].

In the present paper we study the continuous dependence on data for problem (1.1). More exactly, consider a sequence
of maximal monotone operators A" : D(A") € H — H, with the domains D(A"), n€ Z, n > 1, and the sequences (a"), C H,

fr= (fl.”),->1 C L. Similarly to (1.1), consider the sequence of boundary value problems
ul = (A +6)uf + 6l | eciA™ul + fl1, i>1, (13)
ui —ugea(ug—a"), u"=@)iz1€L. .

About A", ™, one imposes some conditions which are analogous to (1)-(4). They assure the existence and the uniqueness
of the solution u" = (u}})i»1 € £ of (1.3). In addition, assume that a” — a in H, f" — f in £ and A" converges to A in the
sense of resolvent, i.e.

(I42A") ' > (I +2A)""E, asn— oo, (VA >0, (V)& € H. (14)

We prove that u}! — u; (as n — oo) in H, uniformly with respect to i > 1.

Problem (1.1) is a discrete variant of the evolution equation
pu’ ) +r@u'(t) € Au(t) + f(t), tel0,00),
u'(0) € a(u(0) — a), ue L2 (0,00 H). (1.5)

Here 7:[0, 00) — R is a weight function given by

t
7(t) = exp [ﬂds , te][0,00),
) p(s)

where p,r:[0, 00) = R belong to W1-°°(0, c0), p(t) = pg > 0, r(t) =19 > 0 (po, ro constants). The space ﬁg/p(o, oo; H) is
the Hilbert space L%(0, co; H) with the weight 7/p. This means that the scalar product in cg/p(o, oo; H) is

(u,v):of %(u(t),v(t))dt
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and the corresponding norm is

o0

r(t) 2
lul = / —|lu®)|” dt,
p(®)
0

whenever the integrals in the right-hand side are convergent.

The existence and the properties of the solution to problem (1.5) were investigated in [4,12,18,21,23]. In the particular
case of the boundary value problem u”(t) € Au(t), t € [0, 00), u(0) =a € D(A), the solution defines a semigroup of nonlinear
contractions on D(A), denoted by {Sq,2(t), t > 0}. Let —A?/z be its infinitesimal generator. Then the unique extension

of A?/z to a maximal monotone operator, denoted by Aq;, is called the square root of the operator A [12,13].
For a finite time interval [0, T], the following problem was analyzed in [1]:

{ pOU”’ () +r)u'(t) € Au(t) + f(t), te€[0,T],
u'(0) ex(u() —a), —u'(T)eBu(T)—Db).

Here o, 8 are maximal monotone operators in H, with the domains D(«), D(B). In the particular case when o« =8 = 9]
is the subdifferential of the convex, proper and lower semicontinuous function j:H — R, j(x) = +oo, for x # 0, j(0) =0,
we have D(dj) = {0} and 9j(0) = H. Therefore, the boundary conditions from (1.6) become u(0) =a, u(T) =b. For such a
problem, the continuous dependence of the solution u on A, a, b, f was proved in [7]. This is a Trotter-Kato type theorem.
More exactly, let u™ and u be the solution of (1.6) corresponding to {A",a", b"} and to {A, a, b}, respectively. It is shown that
if A" converge to A in the sense of resolvent and a" — a, b" — b in H, then u"™(t) — u(t) uniformly on compact intervals
of t. The goal of this paper is to establish a discrete variant of the above result.

Applications of (1.6) to internal schemes of approximation are presented in [9]. The book [8] contains a detailed study of
problems (1.5), (1.6) and their discrete variants, together with some applications to asymptotic approximations. For different
types of convergences and hypertopologies of functions, sets and operators, the reader may consult [2,3,10]. Trotter-Kato
results for different classes of semigroups of operators are proved in [11,14,16,17,19].

The structure of the paper is the following. In Section 2, we state the hypotheses for our work and establish the main
result. Its proof is based on some boundedness lemmas and on some a priori estimates, which are presented in Section 3.
To this end, auxiliary boundary value problems are associated and studied. Last section contains an application to partial-
difference equations.

(1.6)

2. The hypotheses and the main result

In this section we state the main result of the paper, concerning the convergence of the solution u" = (u}')i>»1 of prob-
lem (1.3) to the solution u = (u;)j»1 of problem (1.1) in H, uniformly with respect toieZ, i > 1.

We work under the following hypotheses:

(HI) 0 <c<ci<c* 0<6 <1, (V)i>1(c,c* >0 are given constants), f = (fi)ix1 €L, f"=(Diz1 €L, a,a" € H.

(H2) a:D(x) € H— H are nonlinear maximal monotone operators in H, 0 € D(«), 0 € @ (0).

(H3) A:D(A) CH— H, A":D(A™) C H — H are maximal monotone operators in H with 0 € D(A™) N D(A). In addition,
suppose that A and A" are strongly monotone, i.e. (I)w > 0 such that

2
(Y1 —Y2.X1 —X2) 2 wllx1 — %27,

(Y)x1,x2 € D(A), (YV)y; € Ax;, i=1,2, and also (Y)x1,x2 € D(A"), (V)y; € A"x;, i=1,2.
(H4) A and A" are a-monotone. This means that, if A, = (I — (I+AA)~1)/A and Al =I- (I+xA™~1)/x are the Yosida
approximations of the operators A and A", respectively, then

(Ayx— Ay y,2) >0, (Afx — Aﬁy,z) >0, (M)zea(x—y), withx—ye D).

Hypotheses (H1)-(H4) assure the existence and uniqueness of the solutions of problems (1.1) and (1.3).
In the sequel we impose some additional conditions concerning the convergence of the data:

(H5) @ —ain H, f* — f in £, where f = (fpiz1, f"=(Diz1.

(H6) Sequence A" converges to A in the sense of resolvent, i.e.

(I+2A")'e > (1 +2A)" e, asn— oo, (VA >0, (V)& € H.
The convergence result may now be stated.

Theorem 2.1. If hypotheses (H1)-(H6) hold and u = (u;)i>1, u" = (u?)i>1 are the solutions of the boundary value problems (1.1)
and (1.3) respectively, then uf — u; in H as n — oo, uniformly with respect to i.

The proof of the theorem combines some ideas from [16] and [7] with some techniques used in the proof of the existence
of the solutions [6]. For this purpose, we introduce some auxiliary boundary value problems. Let A} and A, be the Yosida
approximations of A" and A. Consider the problems
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wi — (1 +6)w} +6;w) 1ec,Aw +fi, i>1, 21)
wi—wieawy—y), w=Whiz1€L,
vig — (1 +6)vE+6iv) ]_C,A)\v +fi, i=1, 22)
V'}—VOGOI(VO—YA), vi=(Piz1 €L,
,+1 - (1 +91)w”’\ + oWt e AMWt + fI i1,
- - e (2.3)
W] Feawl —ym), wh=wh)zeL,
1+1 _(1_’_91)‘/% +6;v nk] —CA" nk+fln’ i>1,
. (2.4)
Vit — vt ea (vt —ym), vt =)z €L,
where y;, = (I + +vAA)"'a and y,; = (I + v/AA")~"'a. By hypothesis (H6), it follows that
Yo — yi.  AlE— AE. asn— oo, (YA >0, (V)& € H. (2.5)

In view of Theorem 1.1, all problems (2.1)-(2.4) admit unique solutions. For every n,i € Z, n,i > 1, and A > 0, we can
write

Juf —uill < i = wit [+ [wi™ = v [+ v = v+ vi = wi [+ [ wi =] (2:6)

One shows that each term tends to 0 as n — oo and A — 0. To do this, we first prove some boundedness results for the
solutions of problems (1.3), (2.3), (2.4). Next one obtains some estimates for the terms in the right-hand side of (2.6).

3. The proof of the main result

We start with the boundedness with respect to n of the solution w™ of problem (2.3).

Lemma 3.1. Under the hypotheses of Theorem 2.1, for any fixed % > 0, the solution w™ = (w?*)@] of problem (2.3) is bounded with
respect to n, uniformly in i > 1. More exactly, the following estimates hold:
limsup[wi | < C(llyxll+1). Mi>1
n— 00

. . 1'1)\ 2 2
llr?lsogp;(plﬂw, I” <c(lyal®> +1).

Proof. Consider the auxiliary boundary value problem

Wit — A+ oW 4wt = AL W w4 i,
naL nAu map _ AL (3.1)
wy € a(wo —ym), W =Wz e L,

for arbitrary p > 0, where AZ = (I — I+ A"~/ is the Yosida approximation of A™. Theorem 1.1 assures the existence
of a unique solution (w?)‘“)l;l € L for this problem.

We multiply the equation from (3.1) by (piw'i“\“ and sum up from i =1 to i = co. With the aid of the equality ¢;6; = ¢;_1,
one derives that

nML n nku, nk//, nAu, nA/L nip nxu
Z("l i1 — Wi Z‘/" 1 Wi 1, Wi_ Z‘/’l 1w ”

[o.¢]
= YA W) Y P S ), (32)
i=1 i=1 i=1

Without loss of generality, we may assume that 0 € A"0. If this condition is not fulfilled, we can replace A"w ”’\"

by A"w "W — (AM%0 and fI' by fI" + ci(A")°0, where (A™)°0 is the element of minimum norm of A"0. By (H3), we
get

Z% Wi — Wi +chl¢z||w““|| +MZ¢>1||W"”‘||
i=1 i=1

niu nk//. n)»u n nku
=—(wi™ —wy Z‘/’l i»W;
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In v1ew of the monotony of @ and of the inclusion 0 € «(0), the boundary conditions from (3.1) imply that (w"’\”

K —ym) >0, s0
1/2
(erzm - wg“‘ wg'\“) < —(erl'w nm,%u (Z(Pn 1HW —wi ’sz) lynll
and thus

x
D wi - Wi’ +wCZ¢z||W“"||
i= i=1

1/2 . 12 ) 172
(Z‘/)l nML nML ” ) I Vnall + (Z‘Pi ”fin “2) (Z(oi ” W?ML HZ) )
i=1

i=1
Since "= (fl.”),->1 is bounded in £, this implies that

x
> i | Wi — WP < Chllym? + 1),

o0
> i Wi < C(llym i +1),
i=1

199

nip
Wo o,

(3.3)

(3.4)

where Cq, C; > 0 are independent of n, A, x. Consequently, w™"# = (w?'\“)@l and (w?}‘ — w ),>1 are bounded in £

with respect to i > 0. By (3.1) and (3.4) we also have
s 2
A
ZciwiHA;;w? 17 < Calyml® + 1),

Hw”“‘H Ca(lyml +1), i=1,

with C3, C4 > 0 independent of n, A, u, i.

We now show that Wm\u

nku

for ;1 and 5, multiply their difference by ¢;(w; ?M’) and sum up fromi=1toi=o00

o0

nap nan nap nan nap nan nk;t nin nap nxn nap
Y le(wih —witd = wi + w T wi = wiT) — g (wi = Wi — w4 Wit Wi — wi

i+1 i+1 i i i—1° "i-1

i=1

o0 o0
= Zga,-_1 ||w'l.u” — W™ "W +wi” ‘2 + Zciga,-(A”Mw?m - AZW?“’, wH w’?’\”)

i i i
i=1
0
niap nan nau nan
+Z§0i(/¢wi —nwp LWy =Wy )

Since x = Jj;x + uAjx and x = Jpx+nAjpx, (V)x € H, it follows that

nap nan ,u, nan naup niu

(Wl W +wy o wy " —wg)
nap nan nap n nxn nxn
=Zgo,-,1||wi —w T —wi +W +chgo, - ARw Ju — Iywi™")

o0
o AN AL an AN no AL n. nin . nipw nin nip . nAn
+Zc,<p,(AMw,. Aqw A wy nAyw; )+Z<pl(uwi nw;"", wi wi).
i i=1

Using the boundary conditions of problem (3.1) in u and 7, together with the monotonicity of «, one finds
A x 2 3 A A
(WP = W — Wi W W - W) >0,

Since Aﬁx € A”(]Zx), (V)x € H and similarly for n, by the strong monotonicity of A", we have

(AR = A T = Fwi™) > o] Jwi™ = Jw,

(3.5)

(3.6)

converges in £ to the solution w?A of problem (2.3), as u — 0. To this end, we write (3.1)
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hence
o0
S it W = W W W w3 ] S = S
i=1 1
= M2 2 21 > A2 A2
+ > cii(u] AL wi™ T AW )+ D e (w1 w7
i=1 i=1

oo o
A
< Y e (A wi W) + k) 3wl Wi,
i=1 i=1
It follows with the aid of (3.4) and (3.5) that

o0
3 i | Wi — Wi Wi Wi +wc2¢a\|1u Wi = w2 < CsuAm (lyml? 1), (38)
i= i=1

with C5 > 0 independent of n, A, u, n.
Therefore W"W - w"’\” and Ji,w "“‘ are strongly convergent in £ as yu — 0. Since w"w Ihw "’\” + AT, w ® with

A” nku bounded in £ (see (3.5)), we get the convergence of wi)‘ in £, say wi A

mequallty

[wi™ —wi|? Z%IIW"“‘

— wi in £, as 4 — 0. In view of the

Mi>1

we deduce that w'.1 H w'7 in H as u — 0, uniformly with respect to i > 1. Obviously, ]" i B w?’\ in £ and H.

n)\/L

Inequality (3.5) implies also the boundedness of A" in H, uniformly with respect to i € Z, i > 1. Hence

A;‘Lw?w - glm (weakly in H) as p — 0. Passing to the llmlt as 4 — 0 in the inclusion A”ﬂw?w € A”(]"MW?A“). one

arrives at gi* € A"w™ and w™ € D(AM), (V)i > 1

Now we may pass to the limit as g — 0 in (3.1) and deduce that w™ = (w’l?’\)@] is the unique solution of problem (2.3).
The boundary conditions from (2.3) follow with the aid of the monotonicity of «. Taking the limit as @ — 0 in (3.4), (3.6)
we get

Zw, |wi™ ) < Co(llyml® + 1), (3.9)

H w“ | <Ca(lymll +1), Wix1. (3.10)
The claim follows via (2.5), by passing to the superior limit as n — oo in (3.9) and (3.10).

Analogously we can find estimates for the solutions of the problems (1.3), (2.1), (2.2) and (2.4). O

Lemma 3.2. Under assumptions (H1)-(H5), the solution u™ = (u}')i>»1 of problem (1.3) is bounded in H, uniformly with respect to i.
More exactly,

limsup|ul | <C(llall +1), Mix>1. (3.11)
n—oo
Lemma 3.3. If (H1)-(H6) are satisfied, then for each \ > 0, the solution v = (v")‘),>1 of (2.4) is bounded with respect to n,
uniformly ini > 1, namely
limsup|[vi*| < C(Iyall +1). ™i=>1, (312)
n—
llmsupZ(p, vt || C(llyall* +1). (3.13)
i=1

In addition,
limsup| ATvI* | < C(lly2ll +1), Wi>1. (3.14)
n—oo

Lemma 3.4. Under hypotheses (H1)-(H4), the solution of problem (2.1) satisfies the estimate
[wi <c(lyall+1), Mi=1, (Hr>0. (3.15)
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In what follows, we analyze the convergence of each term from the right-hand side of (2.6) and (2.7).

Lemma 3.5. If (H1)-(H®6) hold, then for all A > 0,
limsup|ul — wi*|| < Cilla—y:ll, (Wix1. (3.16)
n—oo
Proof. Multiplying the difference between Egs. (1.3) and (2.3) by ¢;(u} — w’,.“), we get

o0

n ni i n na n na n ni
ZQ"' i+1 —uf + wit, uf — w] )_Z¢l—1(”i—wi —ul A+ wityuf - wit)
i=1

n,n n. nix .n ni
:Zciqo,-(A uf — A"wi, ul — wit).
i=1

Here A™uf and A"w’i“\ denote two arbitrary elements of the sets A"ul and A”w?k, respectively. By the strong monotonicity
of A", this implies that

° e 9}
D proalluf = wit —uly 4wt [P+ e 2] - wi
i=1 i=1
< —(uf — wit —uf + wg, ug — w). (317)
The boundary conditions from (1.3) and (2.3), together with the monotonicity of «, provide us with the inequality
(uf — Wi —uf + wg’, uf — an — wg" + ym) >0,

SO

n ni n ni nA n ni n ni
—(u = wi* —ug+ wgh, ug — wg') < —(uf — wi* —ug + wg", an — yna)

. 1/2
2
< (2%4 fulf — wi —ul + wi | ) lan — ynx .
i=1

This, together with (3.17), leads to

o0

A |2 2
E Vi-1 Huf —wi* —ul | +wiy H < llan — ynall
i=1

and therefore,
Juf —wit|® Z@ Jul — wi™ |* < Cllan = ym I,
Passing to the superior limit as n — oo and using (H5) and (2.5), one arrives at (3.16). O

Lemma 3.6. For every A > 0 and i > 1, the solutions of problems (2.3) and (2.4) verify the estimate

limsup|w™ — vI*| < C2v/h. (3.18)

n—oo

Proof. As above, we multiply the difference between Egs. (2.3) and (2.4) by (pi(w’;" — v’;") and use the monotonicity of «,
to find that

[o¢]
D WP P T D A ) <0 (319

where s} is the element [w}, — (1+6)w!™ 4+ 6;w*, — f']/c; of the set A"w}*. Since s7* € A"w!™, AlvI* € AM(JTvi*)
and A" is a monotone operator, we have

(9 = ARV Wi — 1IvP) > of wi = v
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ni

Introducing this, together with the equality v* = JTvI* + 1ATvI* in (3.19), we get

o0 o0 o0
S i Wi — v — w4 v P oY | wi — P <Y cigi (s — AVI% ATV
i=1 i=1 i=1

This implies

2, A>0, neN.

o o0 oo
2 2
dogimt|wit = vt —wity vt T wc ) ei|wi - T <a ) i)
i=1 i=1 i=1
But s} is bounded with respect to n in £ (via Lemma 3.1). So there exists a constant m > 0 such that
o
> i wi — v P <mi, A>0,neN (3.20)
Qi || W; Vi < ) ) . .
i=1
From the estimate [w* — vi*|| < (322, cigillwi* — JRvIH )12 4 4| ATVI*|, i > 1, A > 0, n € N, it follows in view of (3.20)
and (3.14) that

[wi — v | < KVa(lyal +1),

where K is independent of i, n, A. Since y; = (I + +v/AA)"!a is convergent as A — 0, there is a constant C3 > 0 such that
(3.18) holds. O

Lemma 3.7. Under hypotheses (H1)-(H®6), the solutions of problems (2.2) and (2.4) satisfy the equality
lim [[vi* —v}| =0, (MAr>0, (V)ix1. (321)
n—oo

Proof. By (2.2) and (2.4), we can easily obtain

o0 o0

(yMA A N A onh A . ni _ A _ NA A nx _ A
Zwl("m Vi — Vit v vt =) Z‘/’l—l("i vi =it iy, vt —vp)
i=1 i=1

o0 o0
=D (A = A v = Vi) + D el = fi vt =),
i=1 i=1
It is known from [1] that if A" is w-monotone, then A} is 1/(1+ Aw)-monotone. This leads to
(ALVI — Ay}, VI — ) = (ALY — ALV VI — V) + (ALVE = v, Vi — )
< 1
"1+ rw

v = vE)® + (ALvi = Auv vt = v,
Then,
o0 o0
eVt = v vt v PR v - v
i=1 i=1
SO v e )

00 1/2 00 1/2 00 1/2
+ [(Zc?(piuAﬁv;‘—Aw?HZ) + (Zgoin,-"—fin> }(Z@”V?A_V%HZ> ) (3.22)
i=1 i=1 i=1

The boundary conditions and the monotonicity of o imply

PO ALk ok
(Vi = vl = vo" 4+ V5, vg" — Vg — Ym + Y1) =0,
SO
PR AL oA oA ) PO AL A
—(vVi* = v = vgt +vg, vgt = vp) < |[vit = vi = vgt g - Iy — yall

le’s) , 1/2
A A A A
< (Zfﬂi—l Jvit = vE — v v ) 1ynx — vl
i=1

Thus (3.22) leads to
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o 1/2
(Zfﬂi—l [vi* = vi —vi% vy “2>

i=1

~ 1/2 0 1/2
<G |:||}/n)\ —yall + (Zc?wiHARv? —Axv?\f) + (Z%Hf,-" —fi ”2) }
i=1

i=1
and

00 1/2 00 1/2 1/2
(Z%”V;u_va) «Z[nm—w(zc%qua?—Awﬂf) (ana ) }
i=1

i=1
We can prove now that the series ) 2, cizgoi”AKv?‘ - A)LV?‘HZ is uniformly convergent with respect to n. Indeed, since
Mux=x— Jyx and J{0= J,0=0, where [;x=(I + 2A)"1x, we have the estimate
A ) s Y
|A%vi = Awvi | = | 13vi = v/ < [ 13vi = 150 + [ Javi = 1:0] ]/
But J7 and J, are nonexpansive mappings. This implies that [|A? v} — A; v}| < 2||v}|/A, for any n and i. Since ¢; is bounded,
it follows that Y72, c2¢;[|v} |2 < oo, so the series Y70, c2¢;[|Alv} — A, v}|? is uniformly convergent with respect to n.
Next, we use the second part of (2.5) to conclude that Y 7°; cZ¢;[| A7 v} — A, v} > — 0 as n — oc. By virtue of (H5), one

de((iuces) that limy— e Y jo; @iV — v}|> =0, (V) > 0 and since [[vI* — v} < (32, gillvI™ — vEI2)V/2, (V)i > 1, we arrive
at (3.21). O

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Passing to the superior limit (as n — oo) in (2.6), we obtain (for each fixed A > 0) with the aid of
Lemmas 3.5-3.7:

limsup|[uf —ui| < Cilla—yill + CovVa+ |vi —wH| + | w} —ui, (MAr>0, (W)i=>1. (3.23)
n—oo
We can also find estimates for the last two terms, which are similar to those from Lemmas 3.5 and 3.6, namely
[wk —ui| <Csla—ysll,  |vi—wH]|<CaVA, MHA>0, Vix1

where C3, C4 > 0 are independent of A and i. Therefore, by (3.23) we get
1imsup||u;1 —ui| <Cslla— yill +Cev'A,  (V)A >0,

uniformly with respect to i > 1. Passing to the limit as A — 0 in the above inequality and using the convergence y, — a as
A — 0, we derive that u — u; in H (as n — o0o), uniformly with respect to i > 1. This completes the proof. O

4. An example

Let £2 be an open bounded subset of RY, d > 1, with the boundary 32 smooth enough. We work in the Hilbert spaces
H=1%(2) and £ = L(L23(£2)). Let B:D(B) CR — R, B":D(B") CR — R be a sequence of maximal monotone operators
in R such that 0 € D(8) N D(B"). Then the operators

Au=—Au+ B(u),
D(A) = {ue HX(2)NH{(2), Qv e [*(£2), v(x) € B(u(x)) a.e.x € 2}
and
A'u=—Au+ 8" (),
D(A") ={u e HX () NH(2), Qv e L*(2), v(x) € B"(u(x)) a.e.x € 2}

are maximal monotone and strongly monotone in H = L2(£2) [13, p. 89]. If ™7 — B, then A" converges to A in the sense of
the resolvent.

Assume that the operator o : D(a) € L?(£2) — L?(£2) is maximal monotone in L%(£2), such that 0 € D(c), 0 € «(0) and
condition (3) holds for both A and A". If 0 <c <c¢; <c* 0<6; <1, (V)i >1 are given sequences and a,a" € L2(£2), then
we compare the solutions of the boundary value problems

Uit1(x) — (1 +6)ui(x) + Oiui—1(x) € —ciAu;(x) + B(ui(x)), x€ 52,
uj(x) =0, xedsf2, (4.1)
ui(x) — up(x) € (uo(x) —a(x)), X€ 8, Wiz € LIL*($2))
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and
ufl (0 — (1 +0)ui (x) + Giuf (%) € —ciAuf(x) + " (U] (%), x€ 2,
u?(x) =0, Xe€os2, (4.2)
uf (%) —ug(x) € a(ujx) —a"(x)), xe 2, Wiz € L(L2(£2)).

As a consequence of Theorem 1.1, we first remark that these problems admit unique solutions u = (u;)ix1, u" =
(ul)i»1 € L. By virtue of Theorem 2.1, we have the following continuous dependence on data result.

Corollary 4.1. Suppose that in addition to the above hypotheses, a® — a in H = L2(§2) and B" — B in the sense of the resolvent. Then,
u! — u; asn — oo in H, uniformly with respect to i.
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