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Wigner-Yanase-Dyson skew information

1. Introduction

Wigner-Yanase skew information

1
Tp(H) = 5 T (i[p". H])"]
=Tr[pH?] - Tr[p'*Hp'/?H]

was defined in [10]. This quantity can be considered as a kind of the degree for non-commutativity between a quantum
state p and an observable H. Here we denote the commutator by [X, Y] = XY — Y X. This quantity was generalized by
Dyson

1
1y (H) = 5 T ([0, H]) (o' H])]
=Tr[pH?] = Tr[p*Hp'"*H], «€[0,1]

which is known as the Wigner-Yanase-Dyson skew information. It is famous that the convexity of I, o (H) with respect to
p was successfully proven by E.H. Lieb in [7]. From the physical point of view, an observable H is generally considered to
be an unbounded operator, however in the present paper, unless otherwise stated, we consider H € B(H) represents the set
of all bounded linear operators on the Hilbert space H, as a mathematical interest. We also denote the set of all self-adjoint
operators (observables) by L£,(H) and the set of all density operators (quantum states) by S(H) on the Hilbert space H.
The relation between the Wigner-Yanase skew information and the uncertainty relation was studied in [9]. Moreover the
relation between the Wigner-Yanase-Dyson skew information and the uncertainty relation was studied in [5,11]. In our
paper [11], we defined a generalized skew information and then derived a kind of an uncertainty relation. In Section 2, we
discuss various properties of the Wigner-Yanase-Dyson skew information. Finally in Section 3, we give our main result and
its proof.
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2. Trace inequalities of Wigner-Yanase-Dyson skew information

We review the relation between the Wigner-Yanase skew information and the uncertainty relation. In quantum mechan-
ical system, the expectation value of an observable H in a quantum state p is expressed by Tr[pH]. It is natural that the
variance for a quantum state p and an observable H is defined by V,(H) =Tr[p(H — TripH1D?1 = Tr[pH?] — TripH%. It is
famous that we have

1 2
Vo(AV,(B) > 4 [TrplA, BI]| 1)
for a quantum state o and two observables A and B (see [4]). The further strong results was given by Robertson and

Schrodinger

1
Vo (A)V,(B) — |Covy (A, BY|? > ;| Tlp14. B]] 2,

where the covariance is defined by Cov, (A, B) =Tr[p(A — Tr[pAll)(B — Tr[pB]I)]. However, the uncertainty relation for the
Wigner-Yanase skew information failed. (See [5,9,11].)

1
1,(A)I,(B) > Z\Tr[p[A, B]]yz.

Recently, S. Luo introduced the quantity U,(H) representing a quantum uncertainty excluding the classical mixture:

2
U, (H) =V (H)2 — (Vo (H) — (), (2.2)
then he derived the uncertainty relation on U,(H) in [8]:
1 2
Up(MU,(B) > 4 [TrplA. BI]|". (23)
Note that we have the following relation
0<Ip(H)<Up(H) < Vp(H). (2.4)

The inequality (2.3) is a refinement of the inequality (2.1) in the sense of (2.4). In this section, we study one-parameter
extended inequality for the inequality (2.3).

Definition 2.1. For 0 < o < 1, a quantum state p and an observable H, we define the Wigner-Yanase-Dyson skew informa-
tion

1
lp.o(H) = > Tr{(i[p", Ho]) (i 0=, Ho])]
=Tr[pH§] — Tr[p*Hop'~*Ho] (2.5)
and we also define
1
Jp.a(H) = Tr[{p", Hol{p'™", Ho}]
=Tr[pH3] + Tr[p*Hop' ~*Ho], (2.6)

where Hg = H — Tr[pH]I and we denote the anti-commutator by {X,Y}= XY + Y X.

Note that we have
1 . o o1— 1 . -
210" HoD)(i[o" . Hol)] = 5 (o, H) (Lo~ H])]
but we have
1 1
S T{p, Hol o' Hol 5 T{p. H} (o', H}].
Then we have the following inequalities:

Ipo(H) <Ip(H) < Jp(H) < Jp,a(H), (2.7)
since we have Tr[p!/2Hp'/2H] < Tr[p*Hp'~*H]. (See [1,2] for example.) If we define

Up,a(H)=\/Vp(H)2 — (Vp(H) _Ip,ot(H))za (2.8)
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as a direct generalization of Eq. (2.2), then we have

0<Ipa(H)<Upo(H) <Up(H) (2.9)
due to the first inequality of (2.7). We also have

Up,ot(H) =4/ Ip,()l(H).]p,Ol(H)-
From the inequalities (2.4), (2.8), (2.9), our situation is that we have

0<Ipa(H)<Ip(H)<Up(H)

and

0<Ipa(H)<Upa(H) <Up(H).

Our concern is to show an uncertainty relation with respect to U, (H) as a direct generalization of the inequality (2.3)
such that

1 2
Upa(AUp«(B) > Z|Tr[p[A,B]]| . (2.10)
On the other hand, we introduced a generalized Wigner-Yanase skew information which is a generalization of the in-
equality (2.10), but different from the Wigner-Yanase-Dyson skew information defined in (2.5) and gave the following

theorem in [3].

Theorem 2.1. For 0 < o < 1, a quantum state p and an observable H, we define a generalized Wigner-Yanase skew information by

o 1-a 2
Kpo(H)= %Tr[(i[%, Hoi|) :|

and we also define

o 1-a 2
Loo(H) = %Tr[(fi %, Ho}) :|,
Woa(H)=/Kpa(H)Lp o(H).

Then for a quantum state p and observables A, B and « € [0, 1], we have

a 1—a\ 2
Wpa(AIW o (B) > %H(%> (A, B]]

and

2

2

3. Main theorem
We give the main theorem as follows;
Theorem 3.1. For a quantum state p and observables A, B and 0 < o < 1, we have
Upa(MUpa(B) > a(l —a)|Tr[p[A, BI]|". (3.1)
We use the several lemmas to prove Theorem 3.1. By spectral decomposition, there exists an orthonormal basis

{¢1, ¢2, ...} consisting of eigenvectors of p. Let A1, Az, ... be the corresponding eigenvalues, where Y 2, A; =1 and 2; > 0.
Thus, p has a spectral representation

p=2_ kildi) (il (3.2)
i=1

Lemma 3.1.

Tpa(H) =" (hi+2j = 2274 = 2 729) (@il Holo;)

i<j

| 2
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Proof. By (3.2),

PHG = Lilei) (il H5.

i=1
Then

Tr{pH3] = Y hildil H3 1) ZA |Holei |
i=1

Since

p“Ho=)_ A1) (¢ilHo

i=1

and
o
P Ho =Y 2 "*|¢i) (il Ho,
i=1
we have
o
p“Hop'"“Ho =Y AAi~%|¢i)(@ilHolg;) (@I Ho.
i,j=1
Thus

Tr[p®Hop'~“Ho] = Z 2925 (@il Hole) (j1Hol i)

Z XN (il Holg ).
From (2.5), (3.3), (3.4),

lpa(H>—Zx||Ho|¢, Zml (il Holoj) |

i=1 i,j=1
[o.¢]
= 3" (ni = 1) (@il Holo )|
i,j=1
=3 (ki + 2= AZA ) (il Holgp). O
i<j

Lemma 3.2.

Joa(H) = Y (hi+ i+ 2801 4+ 21729) (il Holgy) |

i<j

Proof. By (2.6), (3.3), (3.4), we have

Jpa(m—ZAlHHom 0+ Zml (il Holgj)|”

i=1 i,j=1
° 2
= D" (hi+ AR (il Holg)]
i,j=1
o0

=2 ail(@ilHoldn)|* + Y (ki + 22117 (g5l Holgy) |
i=1 i#]

15

(3.4)



16 K. Yanagi / J. Math. Anal. Appl. 365 (2010) 12-18

oo
2 — — 2
=2 " il{gilHole)| "+ D (ki + 2+ AFATY + 4729 [(il Hols) |
i=1 i<j
— — 2
> (i A AT+ AT (il Holp)| " D
i<j
Lemma 3.3. Forany t > 0 and 0 < « < 1, the following inequality holds;
A —2a)%t—1)% — (t* —t'7%)* > 0. (3.5)

Proof. If « =0 or % or 1, then it is clear that (3.5) is satisfied. Now we put

F(t)=(1—2)2(t — 1) — (1% —t'=%)?,

We have

F/(t) =2(1 = 2)%t — 2?1 —2(1 —a)t! 2% 4+ 8 (1 — ).
And we also have

F'(t) =2(1 — 20)? = 202t — Dt** 72 —2(1 — ) (1 — 2c0)t ™2
and

F"(t) =40 (1 — 20)(1 — o)t 2271 — 4(1 — 200)(1 — @)t2* 3

1 1

If % <a <1, then 1+ 2« > 3 — 2. Then it is easy to show that F”/(t) <0 for t <1 and F”'(t) > 0 for t > 1. On the other

hand if 0 <@ < % then 1+ 2« < 3 — 2. Then it is easy to show that F”/(t) <0 for t <1 and F"(t) > 0 for t > 1. Since
F”(1) =0, we can get F”(t) > 0. Since F'(1) =0, we also have F'(t) <0 for t <1 and F'(t) > 0 for t > 1. Since F(1) =0,
we finally get F(t) > 0 for all t > 0. Therefore we have (3.5). O

Proof of Theorem 3.1. We put t = i—; in (3.5). Then we have
5 )\i 2 )Li o )\i 1—ay 2
aQ1-2a0)f—-1) —(|—) —|— > 0.
Aj Aj Aj
And we get
2 2 1- 1- 2
(1=20)% (i = Ap)* = (A7 =2 "2§)" >0

and
_ _ 2
i = 2> = (AAY =4 7929)" 2 da(1 =) (ki — 1))
and
G+ A% = (A1 +21709)% > dar(1 — en(ai — )2, (3.6)
Since

Tr[p[A, B]] = Tr[ p[ Ao, Bol]

=2ilmTr[pAopBo]
=2iImy (A — A){¢il Aoldy) (¢l Bolpi)
i<j
= ZiZ(Ai — Aj) Im(eil Aolg;){@j|Bolgi),
i<j
|Tr[plA, B]]| =2 Z(M — Aj) Im(dilAolg;j) (¢l Boldi)
i<j

<2 |xi — Ajl|Im(@il Aolgj) (1Bolei) -

i<j
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Then we have

2
T pLA. BI]|)* < 4{ > i - x;||1m<¢,-|Ao|¢>j><¢>j|o|¢,-><} :

i<j

By (3.6) and Schwarz inequality,

2
a(1—a)|TrplA, B1]|® <4a(l —oz){ 3 1 —Aj|\1m<¢i|Ao|¢j><¢j|Bo|¢i>\}

i<j

2
=1 Y 2/a(d—a)lhi - xj|!1m<¢,-|Ao|¢j><¢f|Bo|¢i>!}

i<j
2
< 22\/0l(1—Ol)|)»i—Aj||(¢i|A0|¢j>|}<¢j|30|¢i>|}
i<j
271/2 2
<3 DG+ a2 = (el 4l |<¢i|A0|¢j>||<¢j|Bo|¢,->|}
i<j
<3 (ki A — AR 20 0%) (gl Aol )|
i<j
xS (ki A AR £ A1) (il Bolg )|
i<j

Then we have

Ipa(A) ] pa(B) > a(l —a)|Tr[plA, BI]|.

We also have

Ip.a(B) ] p.a(A) > a(l —a)|Tr[plA, BI]|*.

Hence we have the final result (3.1). O

Remark 3.1. We remark that (2.3) is derived by putting o« = 1/2 in (3.1). Then Theorem 3.1 is a generalization of the result
of Luo [8].

Remark 3.2. We remark that Conjecture 2.3 in [3] does not hold in general. The conjecture is (2.10). A counterexample is
given as follows. Let

3 .
z 0 0 i 0 1 1
_ | 4 — — P
() e ()
We have
Ip.a(A) ] p,a(B) =15 a(B)],o(A) =0.22457296. ..
and |Tr[p[A, B11|?> = 1. These imply
1
Up.a(A)Up,a(B)=022457296. .. < 7 |Tr[plA, B]]|” = 0.25.
On the other hand we have

Up.o (AU, o(B) > a(l —a)|Tr[plA, B]]|> =02222222....

We also give a counterexample for Conjecture 2.10 in [3]. The inequality

o 1—a\ 2
Tr[<7p e )[A,B]]

is not correct in general, because LHS = 0.22457296..., RHS = 0.23828105995....

1 2

Up,a(AUp,a(B) > I
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Remark 3.3. In the recent literature another generalization for inequality (2.3) has been proved in [6] as follows; for any p,
A, Band 0<a <1

1
UpaAUpa(B) > 4[T(p — p** )14, BI]|.

However we gave the counter example for this inequality. Let

@ 0 0 0 i 0 010 3
p:Oll—GO,A:—iOO,leoo,a:Z.
0o 0 2 0 00 000

Then we have
Up,a (AU, «(B) =0.00170898.. .,

%|Tr[(,o — p22=11\A, B]]|* = 0.00610351...
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