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1. Introduction

Wigner–Yanase skew information

Iρ(H) = 1

2
Tr

[(
i
[
ρ1/2, H

])2]
= Tr

[
ρH2] − Tr

[
ρ1/2 Hρ1/2 H

]
was defined in [10]. This quantity can be considered as a kind of the degree for non-commutativity between a quantum
state ρ and an observable H . Here we denote the commutator by [X, Y ] = XY − Y X . This quantity was generalized by
Dyson

Iρ,α(H) = 1

2
Tr

[(
i
[
ρα, H

])(
i
[
ρ1−α, H

])]
= Tr

[
ρH2] − Tr

[
ρα Hρ1−α H

]
, α ∈ [0,1]

which is known as the Wigner–Yanase–Dyson skew information. It is famous that the convexity of Iρ,α(H) with respect to
ρ was successfully proven by E.H. Lieb in [7]. From the physical point of view, an observable H is generally considered to
be an unbounded operator, however in the present paper, unless otherwise stated, we consider H ∈ B(H) represents the set
of all bounded linear operators on the Hilbert space H, as a mathematical interest. We also denote the set of all self-adjoint
operators (observables) by Lh(H) and the set of all density operators (quantum states) by S(H) on the Hilbert space H.
The relation between the Wigner–Yanase skew information and the uncertainty relation was studied in [9]. Moreover the
relation between the Wigner–Yanase–Dyson skew information and the uncertainty relation was studied in [5,11]. In our
paper [11], we defined a generalized skew information and then derived a kind of an uncertainty relation. In Section 2, we
discuss various properties of the Wigner–Yanase–Dyson skew information. Finally in Section 3, we give our main result and
its proof.
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2. Trace inequalities of Wigner–Yanase–Dyson skew information

We review the relation between the Wigner–Yanase skew information and the uncertainty relation. In quantum mechan-
ical system, the expectation value of an observable H in a quantum state ρ is expressed by Tr[ρH]. It is natural that the
variance for a quantum state ρ and an observable H is defined by Vρ(H) = Tr[ρ(H − Tr[ρH]I)2] = Tr[ρH2] − Tr[ρH]2. It is
famous that we have

Vρ(A)Vρ(B) � 1

4

∣∣Tr
[
ρ[A, B]]∣∣2

(2.1)

for a quantum state ρ and two observables A and B (see [4]). The further strong results was given by Robertson and
Schrödinger

Vρ(A)Vρ(B) − ∣∣Covρ(A, B)
∣∣2 � 1

4

∣∣Tr
[
ρ[A, B]]∣∣2

,

where the covariance is defined by Covρ(A, B) = Tr[ρ(A − Tr[ρ A]I)(B − Tr[ρB]I)]. However, the uncertainty relation for the
Wigner–Yanase skew information failed. (See [5,9,11].)

Iρ(A)Iρ(B) � 1

4

∣∣Tr
[
ρ[A, B]]∣∣2

.

Recently, S. Luo introduced the quantity Uρ(H) representing a quantum uncertainty excluding the classical mixture:

Uρ(H) =
√

Vρ(H)2 − (
Vρ(H) − Iρ(H)

)2
, (2.2)

then he derived the uncertainty relation on Uρ(H) in [8]:

Uρ(A)Uρ(B) � 1

4

∣∣Tr
[
ρ[A, B]]∣∣2

. (2.3)

Note that we have the following relation

0 � Iρ(H) � Uρ(H) � Vρ(H). (2.4)

The inequality (2.3) is a refinement of the inequality (2.1) in the sense of (2.4). In this section, we study one-parameter
extended inequality for the inequality (2.3).

Definition 2.1. For 0 � α � 1, a quantum state ρ and an observable H , we define the Wigner–Yanase–Dyson skew informa-
tion

Iρ,α(H) = 1

2
Tr

[(
i
[
ρα, H0

])(
i
[
ρ1−α, H0

])]
= Tr

[
ρH2

0

] − Tr
[
ρα H0ρ

1−α H0
]

(2.5)

and we also define

Jρ,α(H) = 1

2
Tr

[{
ρα, H0

}{
ρ1−α, H0

}]
= Tr

[
ρH2

0

] + Tr
[
ρα H0ρ

1−α H0
]
, (2.6)

where H0 = H − Tr[ρH]I and we denote the anti-commutator by {X, Y } = XY + Y X .

Note that we have

1

2
Tr

[(
i
[
ρα, H0

])(
i
[
ρ1−α, H0

])] = 1

2
Tr

[(
i
[
ρα, H

])(
i
[
ρ1−α, H

])]
but we have

1

2
Tr

[{
ρα, H0

}{
ρ1−α, H0

}] �= 1

2
Tr

[{
ρα, H

}{
ρ1−α, H

}]
.

Then we have the following inequalities:

Iρ,α(H) � Iρ(H) � Jρ(H) � Jρ,α(H), (2.7)

since we have Tr[ρ1/2 Hρ1/2 H] � Tr[ρα Hρ1−α H]. (See [1,2] for example.) If we define

Uρ,α(H) =
√

Vρ(H)2 − (
Vρ(H) − Iρ,α(H)

)2
, (2.8)
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as a direct generalization of Eq. (2.2), then we have

0 � Iρ,α(H) � Uρ,α(H) � Uρ(H) (2.9)

due to the first inequality of (2.7). We also have

Uρ,α(H) =
√

Iρ,α(H) Jρ,α(H).

From the inequalities (2.4), (2.8), (2.9), our situation is that we have

0 � Iρ,α(H) � Iρ(H) � Uρ(H)

and

0 � Iρ,α(H) � Uρ,α(H) � Uρ(H).

Our concern is to show an uncertainty relation with respect to Uρ,α(H) as a direct generalization of the inequality (2.3)
such that

Uρ,α(A)Uρ,α(B) � 1

4

∣∣Tr
[
ρ[A, B]]∣∣2

. (2.10)

On the other hand, we introduced a generalized Wigner–Yanase skew information which is a generalization of the in-
equality (2.10), but different from the Wigner–Yanase–Dyson skew information defined in (2.5) and gave the following
theorem in [3].

Theorem 2.1. For 0 � α � 1, a quantum state ρ and an observable H, we define a generalized Wigner–Yanase skew information by

Kρ,α(H) = 1

2
Tr

[(
i

[
ρα + ρ1−α

2
, H0

])2]

and we also define

Lρ,α(H) = 1

2
Tr

[(
i

{
ρα + ρ1−α

2
, H0

})2]
,

and

Wρ,α(H) =
√

Kρ,α(H)Lρ,α(H).

Then for a quantum state ρ and observables A, B and α ∈ [0,1], we have

Wρ,α(A)Wρ,α(B) � 1

4

∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[A, B]
]∣∣∣∣

2

.

3. Main theorem

We give the main theorem as follows;

Theorem 3.1. For a quantum state ρ and observables A, B and 0 � α � 1, we have

Uρ,α(A)Uρ,α(B) � α(1 − α)
∣∣Tr

[
ρ[A, B]]∣∣2

. (3.1)

We use the several lemmas to prove Theorem 3.1. By spectral decomposition, there exists an orthonormal basis
{φ1, φ2, . . .} consisting of eigenvectors of ρ . Let λ1, λ2, . . . be the corresponding eigenvalues, where

∑∞
i=1 λi = 1 and λi � 0.

Thus, ρ has a spectral representation

ρ =
∞∑

i=1

λi |φi〉〈φi|. (3.2)

Lemma 3.1.

Iρ,α(H) =
∑
i< j

(
λi + λ j − λα

i λ1−α
j − λ1−α

i λα
j

)∣∣〈φi|H0|φ j〉
∣∣2

.
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Proof. By (3.2),

ρH2
0 =

∞∑
i=1

λi|φi〉〈φi|H2
0.

Then

Tr
[
ρH2

0

] =
∞∑

i=1

λi〈φi|H2
0|φi〉 =

∞∑
i=1

λi
∥∥H0|φi〉

∥∥2
. (3.3)

Since

ρα H0 =
∞∑

i=1

λα
i |φi〉〈φi|H0

and

ρ1−α H0 =
∞∑

i=1

λ1−α
i |φi〉〈φi|H0,

we have

ρα H0ρ
1−α H0 =

∞∑
i, j=1

λα
i λ1−α

j |φi〉〈φi |H0|φ j〉〈φ j|H0.

Thus

Tr
[
ρα H0ρ

1−α H0
] =

∞∑
i, j=1

λα
i λ1−α

j 〈φi|H0|φ j〉〈φ j|H0|φi〉

=
∞∑

i, j=1

λα
i λ1−α

j

∣∣〈φi|H0|φ j〉
∣∣2

. (3.4)

From (2.5), (3.3), (3.4),

Iρ,α(H) =
∞∑

i=1

λi
∥∥H0|φi〉

∥∥2 −
∞∑

i, j=1

λα
i λ1−α

j

∣∣〈φi|H0|φ j〉
∣∣2

=
∞∑

i, j=1

(
λi − λα

i λ1−α
j

)∣∣〈φi|H0|φ j〉
∣∣2

=
∑
i< j

(
λi + λ j − λα

i λ1−α
j − λ1−α

i λα
j

)∣∣〈φi|H0|φ j〉
∣∣2

. �

Lemma 3.2.

Jρ,α(H) �
∑
i< j

(
λi + λ j + λα

i λ1−α
j + λ1−α

i λα
j

)∣∣〈φi|H0|φ j〉
∣∣2

.

Proof. By (2.6), (3.3), (3.4), we have

Jρ,α(H) =
∞∑

i=1

λi
∥∥H0|φi〉

∥∥2 +
∞∑

i, j=1

λα
i λ1−α

j

∣∣〈φi|H0|φ j〉
∣∣2

=
∞∑

i, j=1

(
λi + λα

i λ1−α
j

)∣∣〈φi|H0|φ j〉
∣∣2

= 2
∞∑

λi
∣∣〈φi|H0|φi〉

∣∣2 +
∑(

λi + λα
i λ1−α

j

)∣∣〈φi|H0|φ j〉
∣∣2
i=1 i �= j
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= 2
∞∑

i=1

λi
∣∣〈φi|H0|φi〉

∣∣2 +
∑
i< j

(
λi + λ j + λα

i λ1−α
j + λ1−α

i λα
j

)∣∣〈φi|H0|φ j〉
∣∣2

�
∑
i< j

(
λi + λ j + λα

i λ1−α
j + λ1−α

i λα
j

)∣∣〈φi|H0|φ j〉
∣∣2

. �

Lemma 3.3. For any t > 0 and 0 � α � 1, the following inequality holds;

(1 − 2α)2(t − 1)2 − (
tα − t1−α

)2 � 0. (3.5)

Proof. If α = 0 or 1
2 or 1, then it is clear that (3.5) is satisfied. Now we put

F (t) = (1 − 2α)2(t − 1)2 − (
tα − t1−α

)2
.

We have

F ′(t) = 2(1 − 2α)2t − 2αt2α−1 − 2(1 − α)t1−2α + 8α(1 − α).

And we also have

F ′′(t) = 2(1 − 2α)2 − 2α(2α − 1)t2α−2 − 2(1 − α)(1 − 2α)t−2α

and

F ′′′(t) = 4α(1 − 2α)(1 − α)t−2α−1 − 4α(1 − 2α)(1 − α)t2α−3

= 4α(1 − 2α)(1 − α)

(
1

t1+2α
− 1

t3−2α

)
.

If 1
2 < α < 1, then 1 + 2α > 3 − 2α. Then it is easy to show that F ′′′(t) < 0 for t < 1 and F ′′′(t) > 0 for t > 1. On the other

hand if 0 < α < 1
2 , then 1 + 2α < 3 − 2α. Then it is easy to show that F ′′′(t) < 0 for t < 1 and F ′′′(t) > 0 for t > 1. Since

F ′′(1) = 0, we can get F ′′(t) > 0. Since F ′(1) = 0, we also have F ′(t) < 0 for t < 1 and F ′(t) > 0 for t > 1. Since F (1) = 0,
we finally get F (t) � 0 for all t > 0. Therefore we have (3.5). �
Proof of Theorem 3.1. We put t = λi

λ j
in (3.5). Then we have

(1 − 2α)2
(

λi

λ j
− 1

)2

−
((

λi

λ j

)α

−
(

λi

λ j

)1−α)2

� 0.

And we get

(1 − 2α)2(λi − λ j)
2 − (

λα
i λ1−α

j − λ1−α
i λα

j

)2 � 0

and

(λi − λ j)
2 − (

λα
i λ1−α

j − λ1−α
i λα

j

)2 � 4α(1 − α)(λi − λ j)
2

and

(λi + λ j)
2 − (

λα
i λ1−α

j + λ1−α
i λα

j

)2 � 4α(1 − α)(λi − λ j)
2. (3.6)

Since

Tr
[
ρ[A, B]] = Tr

[
ρ[A0, B0]

]
= 2i Im Tr[ρ A0 B0]
= 2i Im

∑
i< j

(λi − λ j)〈φi|A0|φ j〉〈φ j|B0|φi〉

= 2i
∑
i< j

(λi − λ j) Im〈φi|A0|φ j〉〈φ j|B0|φi〉,

∣∣Tr
[
ρ[A, B]]∣∣ = 2

∣∣∣∣∑
i< j

(λi − λ j) Im〈φi|A0|φ j〉〈φ j|B0|φi〉
∣∣∣∣

� 2
∑

|λi − λ j|
∣∣Im〈φi|A0|φ j〉〈φ j|B0|φi〉

∣∣.

i< j
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Then we have

∣∣Tr
[
ρ[A, B]]∣∣2 � 4

{ ∑
i< j

|λi − λ j|
∣∣Im〈φi|A0|φ j〉〈φ j|0|φi〉

∣∣}2

.

By (3.6) and Schwarz inequality,

α(1 − α)
∣∣Tr

[
ρ[A, B]]∣∣2 � 4α(1 − α)

{ ∑
i< j

|λi − λ j|
∣∣Im〈φi|A0|φ j〉〈φ j|B0|φi〉

∣∣}2

=
{ ∑

i< j

2
√

α(1 − α)|λi − λ j|
∣∣Im〈φi|A0|φ j〉〈φ j|B0|φi〉

∣∣}2

�
{ ∑

i< j

2
√

α(1 − α)|λi − λ j|
∣∣〈φi|A0|φ j〉

∣∣∣∣〈φ j|B0|φi〉
∣∣}2

�
{ ∑

i< j

{
(λi + λ j)

2 − (
λα

i λ1−α
j + λ1−α

i λα
j

)2}1/2∣∣〈φi|A0|φ j〉
∣∣∣∣〈φ j|B0|φi〉

∣∣}2

�
∑
i< j

(
λi + λ j − λα

i λ1−α
j − λ1−α

i λα
j

)∣∣〈φi|A0|φ j〉
∣∣2

×
∑
i< j

(
λi + λ j + λα

i λ1−α
j + λ1−α

i λα
j

)∣∣〈φi|B0|φ j〉
∣∣2

.

Then we have

Iρ,α(A) Jρ,α(B) � α(1 − α)
∣∣Tr

[
ρ[A, B]]∣∣2

.

We also have

Iρ,α(B) Jρ,α(A) � α(1 − α)
∣∣Tr

[
ρ[A, B]]∣∣2

.

Hence we have the final result (3.1). �
Remark 3.1. We remark that (2.3) is derived by putting α = 1/2 in (3.1). Then Theorem 3.1 is a generalization of the result
of Luo [8].

Remark 3.2. We remark that Conjecture 2.3 in [3] does not hold in general. The conjecture is (2.10). A counterexample is
given as follows. Let

ρ =
( 3

4 0
0 1

4

)
, A =

(
0 i
−i 0

)
, B =

(
0 1
1 0

)
, α = 1

3
.

We have

Iρ,α(A) Jρ,α(B) = Iρ,α(B)Iρ,α(A) = 0.22457296 . . .

and |Tr[ρ[A, B]]|2 = 1. These imply

Uρ,α(A)Uρ,α(B) = 0.22457296 . . . <
1

4

∣∣Tr
[
ρ[A, B]]∣∣2 = 0.25.

On the other hand we have

Uρ,α(A)Uρ,α(B) > α(1 − α)
∣∣Tr

[
ρ[A, B]]∣∣2 = 0.2222222 . . . .

We also give a counterexample for Conjecture 2.10 in [3]. The inequality

Uρ,α(A)Uρ,α(B) � 1

4

∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[A, B]
]∣∣∣∣

2

is not correct in general, because LHS = 0.22457296 . . . , RHS = 0.23828105995 . . . .
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Remark 3.3. In the recent literature another generalization for inequality (2.3) has been proved in [6] as follows; for any ρ ,
A, B and 0 � α � 1

Uρ,α(A)Uρ,α(B) � 1

4

∣∣Tr
[(

ρ − ρ|2α−1|)[A, B]]∣∣2
.

However we gave the counter example for this inequality. Let

ρ =
⎛
⎝

1
64 0 0
0 1

16 0
0 0 59

64

⎞
⎠ , A =

( 0 i 0
−i 0 0
0 0 0

)
, B =

( 0 1 0
1 0 0
0 0 0

)
, α = 3

4
.

Then we have

Uρ,α(A)Uρ,α(B) = 0.00170898 . . . ,

1

4

∣∣Tr
[(

ρ − ρ|2α−1|)[A, B]]∣∣2 = 0.00610351 . . . .
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