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We consider closed immersed hypersurfaces in R
3 and R

4 evolving by a special class of
constrained surface diffusion flows. This class of constrained flows includes the classical
surface diffusion flow. In this paper we present a Lifespan Theorem for these flows, which
gives a positive lower bound on the time for which a smooth solution exists, and a small
upper bound on the total curvature during this time. The hypothesis of the theorem is that
the surface is not already singular in terms of concentration of curvature. This turns out to
be a deep property of the initial manifold, as the lower bound on maximal time obtained
depends precisely upon the concentration of curvature of the initial manifold in L2 for
M2 immersed in R

3 and additionally on the concentration in L3 for M3 immersed in R
4.

This is stronger than a previous result on a different class of constrained surface diffusion
flows, as here we obtain an improved lower bound on maximal time, a better estimate
during this period, and eliminate any assumption on the area of the evolving hypersurface.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let f : Mn × [0, T ) → R
n+1 be a family of compact immersed hypersurfaces f (·, t) = ft : Mn → ft(M) = Mt ⊂ R

n+1 with
associated Laplace–Beltrami operator �, unit normal vector field ν , and mean curvature function H . In this paper we study
the constrained surface diffusion flows, where f evolves by

∂

∂t
f = (�H + h)ν, (1)

where h : [0, T ) ⊂ I → R is called the constraint function. The study of the fourth order degenerate parabolic quasilinear
system of Eqs. (1) is motivated primarily by choice of constraint function. The trivial example of h = 0, classical surface
diffusion flow, is instructive and for this paper our chief motivator.

Indeed, there does already exist a large body of work on the classical surface diffusion flow. First proposed by the
physicist Mullins [31] in 1957, it was originally designed to model the formation of tiny thermal grooves in phase interfaces
where the contribution due to evaporation–condensation was insignificant. Some time later, Davì, Gurtin, Cahn and Taylor
[7,10] proposed many other physical models which give rise to the surface diffusion flow. These all exhibit a reduction of
free surface energy and conservation of volume; an essential characteristic of surface diffusion flow. There are also other
motivations for the study of surface diffusion flow. For example, two years later Cahn, Elliot and Novick-Cohen [6] proved
that the surface diffusion flow is the singular limit of the Cahn–Hilliard equation with a concentration dependent mobility.
Among other applications, this arises in the modeling of isothermal separation of compound materials.

Analysis of the surface diffusion flow began slowly, with the first works appearing in the early 80s. Baras, Duchon and
Robert [3] showed the global existence of weak solutions for two-dimensional strip-like domains in 1984. Later, in 1997
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Elliot and Garcke [11] analysed the surface diffusion flow of curves, and obtained local existence and regularity for C4-initial
curves, and global existence for small perturbations of circles. Significantly, Ito [19] showed in 1998 that convexity will not
be preserved under the surface diffusion flow, even for smooth, rotationally symmetric, closed, compact, strictly convex
initial hypersurfaces. In contrast with the case for second order flows such as mean curvature flow, this behaviour appears
pathological. Escher, Mayer and Simonett [12] gave several numerical schemes for modeling surface diffusion flow, and have
also given the only two known numerical examples [26] of the development of a singularity: a tubular spiral and thin-
necked dumbbell. They also provide an example of an immersion which will self-intersect under the flow, a figure eight
knot. In 2001, Simonett [34] used centre manifold techniques to show that for initial data C2,α-close to a sphere, both the
surface diffusion and Willmore flows (Willmore flow in one codimension is ∂t f = �H + ‖Ao‖2 H , where Ao = A − 1

n g H)
exist for all time and converge asymptotically to a sphere.

There have been many important works on fourth order flows of a slightly different character, from Willmore flow of
surfaces to Calabi flow, a fourth order flow of metrics. Significant contributions to the analysis of these flows by the au-
thors Kuwert, Schätzle, Polden, Huisken, Mantegazza and Chruściel [8,21,22,25,32] are particularly relevant, as the methods
employed there are similar to ours here. For the study of constrained flows, we mention the papers [1,2,4,5,9,15,14,16,24,
27–29,38,33,39], which contain a plethora of applications to motivate the study of non-trivial constraint functions h.

The issue of local well-posedness of (1) is delicate, although standard, and overcome with standard techniques as in [12],
with the constraint function causing no additional difficulty. We make no effort to pose an optimal version, although the
interested reader may enjoy [20] for recent progress in this direction.

Theorem 1.1 (Short time existence). For any smooth initial immersion f0 : Mn → R
n+1 and bounded constraint function h : I → R,

with I an interval containing 0, there exists a unique nonextendable smooth solution f : M × [0, T ) → R
n+1 to (1) with f (·,0) = f0 ,

where 0 < T � ∞.

The main issue then becomes global existence. While we do not treat this explicitly here, we do present a result with
applications to singularity analysis, as can be seen in [36]. In our proof, we exploit the fact that for an n-dimensional
immersion the integral∫

M

‖A‖n dμ

is scale invariant. The technique used by Struwe [35] is then relevant, although as with all higher order flows the major
difficulty is in overcoming the lack of powerful techniques unique to the second order case. In particular, we are without
the maximum principle, and this implies that the geometry of the surface could deteriorate, as in [19]. Drawing inspiration
from Kuwert and Schätzle [22] in particular, we use local integral estimates to derive derivative curvature bounds under a
local smallness of curvature assumption. In calculating these estimates it is crucial to only use inequalities which involve
universal constants. Interpolation inequalities similar in nature to those used by Ladyzhenskaya, Solonnikov and Ural’tseva
[23] and Hamilton [13], and the Sobolev inequality of Michael and Simon [30], are invaluable in this regard.

Following Hamilton [13], we denote polynomials in the iterated covariant derivatives of a tensor T by

P i
j(T ) =

∑
k1+···+k j=i

ck1···k j ∇(k1)T ∗ · · · ∗ ∇(k j)T ,

where ck1···k j ∈ R and ∇(k)T is the k-th iterated covariant derivative of T ; see Section 2 for more details. For a large class of
constrained surface diffusion flows the following theorem applies.

Theorem 1.2 (Lifespan Theorem). (See [38].) Suppose n ∈ {2,3} and let f : Mn × [0, T ) → R
n+1 be a compact immersion with C∞

initial data evolving by (1). Suppose that for some j,k, l ∈ N0 the constraint function h : I ⊃ [0, T ) → R obeys an estimate

h �
∫
M

P 2
j (A) + P 1

k (A) + P 0
l (A)dμ. (2)

Then there are constants ρ > 0, ε0 > 0, and c < ∞ such that∫
f −1(Bρ(x))

‖A‖m dμ

∣∣∣∣
t=0

= ε(x) � ε0, for any x ∈ R
n+1 (3)

where m = max{2k − 2,2 j − k, l,n2 + n − 2}; and there exists an absolute constant C AB ∈ (0,∞) such that

‖Mt‖ � C AB , for 0 � t � 1
ρ4; (4)
c
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then the maximal time T of smooth existence for the flow (1) with initial data f0 = f (·,0) satisfies

T � 1

c
ρ4, (5)

and we have the estimate∫
f −1(Bρ(x))

‖A‖n dμ � cε(x), for 0 � t � 1

c
ρ4. (6)

The result we present here is new for the surface diffusion flow, stronger than Theorem 1.2, and plays a key role in the
analysis of the asymptotic behaviour of the flow. In particular the main theorem of this papers enables one to guarantee that
under certain conditions finite time curvature singularities possess properties which combined with the results on blowups
in [36] allows one to rule out their development entirely. The key improvements are that the assumption on the evolving
surface area (4) is completely removed, and the concentration of curvature assumption (3) is in L2 for two-dimensional
manifolds and additionally in L3 for three-dimensional manifolds.

The reason for these improvements is that we consider only constraint functions which fit into the following natural
class. A constraint function h : [0, T ) ⊂ I → R which satisfies an estimate

‖h‖∞, J � ch < ∞ (7)

on any closed interval J ⊂ [0, T ) with ch = ch( J ) is called simple. Note that this includes constraint functions which are un-
bounded on R, change sign, and so on. The corresponding constrained surface diffusion flow where the constraint function
is simple is called briefly a simple constrained surface diffusion flow. Our main result in this paper is the following.

Theorem 1.3. Suppose n ∈ {2,3} and let f : Mn × [0, T ) → R
n+1 be a simple constrained surface diffusion flow. Then there are

constants ρ > 0, ε0 > 0, and c < ∞ such that∫
f −1(Bρ(x))

‖A‖m dμ

∣∣∣∣
t=0

= ε(x) � ε0, for m = 2,n, any x ∈ R
n+1, (8)

and h is simple on [0, 1
c ρ4], then the maximal time T satisfies

T � 1

c
ρ4, (9)

and we have the estimate∫
f −1(Bρ(x))

‖A‖n + ‖A‖2 dμ � cε(x), for 0 � t � 1

c
ρ4. (10)

There is no easy relationship between the geometrically motivated constraint functions considered in [38] and the simple
constraint functions considered here. Despite the stronger statement Theorem 1.3, one may consider the class of simple
constraint functions as being ‘larger’ than the class of constraint functions which satisfy the geometric growth condition (2).
This is due to the following fact. In [38] we prove that every constraint function satisfying the growth condition (2) and
giving rise to an area bound as in (4) is in fact bounded, given that the concentration of curvature in a high enough L p norm
is sufficiently small. In this sense one may regard those functions as satisfying (7) under the additional condition that (8)
holds for later times in a higher L p norm. Additionally, note that there are constraint functions such as h(t) = et , h(t) = sin t ,
h(t) = 1

1+t , h(t) = −t , which easily satisfy (7) but do not fit into the framework of [38]. These may be of interest to model
expanding, breathing, stabilising and shrinking solutions. Thus we feel that, given the motivating example of classical surface
diffusion flow, one must take both Theorem 1.2 and Theorem 1.3 into account to form a complete picture.

2. Notation and preliminary results

In this section we will collect various general formulae from differential geometry which we will need when performing
the later analysis. We have as our principal object of study a smooth immersion f : Mn → R

n+1 of an n-dimensional
orientable compact hypersurface Mn , and induced metric tensor with components

gij =
(

∂

∂xi
f

∣∣∣∣ ∂

∂x j
f

)
,

so that the pair (M, g) is a Riemannian manifold. In the above equation (·|·) denotes the regular Euclidean inner product,
and ∂

∂xi
is the derivative in the direction of the i-th tangent vector. When convenient we frequently use the abbreviation

∂i = ∂ .

∂xi
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The Riemannian metric induces an inner product structure on all tensors, which we define as the trace over pairs of
indices with the metric:〈

T i
jk, Si

jk

〉 = gis g jr gku T i
jk Ss

ru, ‖T ‖2 = 〈T , T 〉,
where repeated indices are summed over from 1 to n. The mean curvature H is defined by

H = gij Ai j = Ai
i,

where the components Aij of the second fundamental form A are given by

Aij = −
(

∂2

∂xi∂x j
f

∣∣∣∣ν
)

=
(

∂

∂x j
f

∣∣∣∣ ∂

∂xi
ν

)
, (11)

where ν is the outer unit normal vector field on M .
The Christoffel symbols of the induced connection are determined by the metric,

Γ k
i j = 1

2
gkl

(
∂

∂xi
g jl + ∂

∂x j
gil − ∂

∂xl
gi j

)
, (12)

so that the covariant derivative on M of a vector X and of a covector Y is

∇ j X i = ∂

∂x j
Xi + Γ i

jk Xk, and

∇ j Y i = ∂

∂x j
Yi − Γ k

i j Yk

respectively.
From the expression (11) and the smoothness of f we can see that the second fundamental form is symmetric; less

obvious but equally important is the symmetry of the first covariant derivatives of A,

∇i A jk = ∇ j Aik = ∇k Aij,

commonly referred to as the Codazzi equation.
The fundamental relations between components of the Riemann curvature tensor, the Ricci tensor and scalar curvature

are given by Gauss’ equation

Rijkl = Aik A jl − Ail A jk,

with contractions

g jl Ri jkl = Rik = H Aik − A j
i A jk, and

gik Rik = R = H2 − ‖A‖2.

We will need to interchange covariant derivatives; for vectors X and covectors Y we obtain

∇i j Xh − ∇ ji Xh = Rh
ijk Xk = (Alj Aik − Alk Aij)ghl Xk,

∇i j Yk − ∇ ji Yk = Rijkl g
lmYm = (Alj Aik − Ail A jk)glmYm,

where ∇i1···in = ∇i1 · · ·∇in . Further, we define ∇(n)T to be the tensor with components ∇i1···in T k1···
j1··· . We also use for tensors T

and S the notation T ∗ S to denote a new tensor formed by summations of contractions of pairs of indices from T and S
by the metric g , with possible multiplication of each summation by a universal constant. The resultant tensor will have
the same type as the other quantities in the equation it appears. Keeping these in mind we also denote polynomials in the
iterated covariant derivatives of these terms by

P i
j(T ) =

∑
k1+···+k j=i

ck1···k j ∇(k1)T ∗ · · · ∗ ∇(k j)T ,

where the constant ck1···k j ∈ R is absolute. As is common for the ∗-notation, we slightly abuse this constant when certain
subterms do not appear in our P -style terms. For example

‖∇ A‖2 = 〈∇ A,∇ A〉
= 1 · (∇(1) A ∗ ∇(1) A) + 0 · (A ∗ ∇(2) A)

= P 2
2(A).

This will occur throughout the paper without further comment.
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The Laplacian we will use is the Laplace–Beltrami operator on Mn , with the components of �T given by

�T i
jk = g pq∇pq T i

jk = ∇ p∇p T i
jk.

Using the Codazzi equation with the interchange of covariant derivative formula given above, we obtain Simons’ identity:

�Aij = ∇i j H + H Ail g
lm Amj − ‖A‖2 Aij

= ∇i j H + H Al
i Alj − ‖A‖2 Aij,

or in ∗-notation

�A = ∇(2)H + A ∗ A ∗ A. (13)

In the coming sections we will be concerned with calculating the evolution of the iterated covariant derivatives of curvature
quantities. The following less precise interchange of covariant derivatives formula (derived from the fundamental equations
above) will be useful to keep in mind:

∇i j T = ∇ ji T + P 0
2(A) ∗ T .

In most of our integral estimates, we will be including a function γ : M → R in the integrand. Eventually, this will be
specialised to a smooth cutoff function between concentric geodesic balls on M . For now however let us only assume that
γ = γ̃ ◦ f , where

0 � γ̃ � 1, and ‖γ̃ ‖C2(Rn+1) � cγ̃ < ∞.

Using the chain rule, this implies Dγ = (Dγ̃ ◦ f )D f and then D2γ = (D2γ̃ ◦ f )(D f , D f ) + (Dγ̃ ◦ f )D2 f (·,·). Using the
expression (12) for the Christoffel symbols to convert the computations above to covariant derivatives, and the Weingarten
relations to convert the derivatives of ν to factors of the second fundamental form with the basis vectors ∂i f , we obtain
the estimates

‖∇γ ‖ � cγ 1, and ‖∇(2)γ ‖ � cγ 2
(
1 + ‖A‖). (14)

At times we will use the set [γ > c] = {p ∈ M: γ (p) > c} or the set [γ = c] = {p ∈ M: γ (p) = c} as the domain of integration.

3. Integral estimates

We now establish the fundamental integral estimates which allow us to exert control upon the curvature and derivatives
of curvature by controlling the concentration of the curvature. Throughout this section we will need various Sobolev and
interpolation inequalities. These are collected in Appendix A for the convenience of the reader.

We begin with the following lemma, whose proof is straightforward, see [18] for example.

Lemma 3.1. For f : Mn × [0, T ) → R
n+1 evolving by ∂t f = Fν the following equations hold:

∂

∂t
gi j = 2F Aij,

∂

∂t
gi j = −2F Aij,

∂

∂t
dμ = (H F )dμ,

∂

∂t
ν = −∇ F ,

∂

∂t
Aij = −∇i j F + F Ap

i Apj,

∂

∂t
H = −�F − F‖A‖2, and

∂

∂t
Ao

i j = −So(∇(2) F ) + F

(
Ap

i Apj + 1

n
gij|A|2 − 2

n
H Aij

)
,

where So(T ) denotes the tracefree part of a symmetric bilinear form T . If F = �H + h then the following evolution equation addition-
ally holds:

∂

∂t
Aij = −�2 Aij + ‖A‖2 Aij + (�H − H + h)Aik Ak

j .

Lemma 3.2. Let f : Mn × [0, T ) → R
n+1 be a constrained surface diffusion flow. Then the following equation holds:

∂

∂t
∇(k) A = −�2∇(k) A + hPk

2(A) + Pk+2
3 (A).
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Corollary 3.3. Let f : Mn × [0, T ) → R
n+1 be a constrained surface diffusion flow. Then the following equation holds:

∂

∂t
‖∇(k) A‖2 = −2

〈∇(k) A,∇ p�∇p∇(k) A
〉 + [

hPk
2(A) + Pk+2

3 (A)
] ∗ ∇(k) A.

Integration by parts gives us our most basic localised integral estimate.

Corollary 3.4. Let f : Mn × [0, T ) → R
n+1 be a constrained surface diffusion flow, and γ as in (14). Then for any s � 0,

d

dt

∫
M

‖∇(k) A‖2γ s dμ + 2
∫
M

‖∇(k+2) A‖2γ s dμ

=
∫
M

‖∇(k) A‖2(∂tγ
s)dμ + 2

∫
M

〈(∇γ s)(∇(k) A),�∇(k+1) A
〉
dμ − 2

∫
M

〈(∇γ s)(∇(k+1) A),∇(k+2) A
〉
dμ

+
∫
M

γ s[(Pk+2
3 (A) + hPk

2(A)
) ∗ ∇(k) A

]
dμ.

Combining the above with standard integral estimates and interpolation inequalities as in [22] gives the following propo-
sition.

Proposition 3.5. Let f : Mn × [0, T ) → R
n+1 be a simple constrained surface diffusion flow with γ a cutoff function as in (14). Then

for a fixed θ > 0 and s � 2k + 4,

d

dt

∫
M

‖∇(k) A‖2γ s dμ + (2 − θ)

∫
M

‖∇(k+2) A‖2γ s dμ

� (c + ch)

∫
M

‖A‖2γ s−4−2k dμ + ch

∫
M

(∇(k)[A ∗ A] ∗ ∇(k) A
)
γ s dμ

+ c

∫
M

([
Pk+2

3 (A) + Pk
5(A)

] ∗ ∇(k) A
)
γ s dμ,

where c depends on cγ 1 , cγ 2 , s, k, ch([0, T )), and θ .

We now use the above and specialised multiplicative Sobolev inequalities to demonstrate that small concentration of
curvature along the flow allows one to control the L2 norm of first and second derivatives of curvature.

Proposition 3.6. Let n ∈ {2,3}. Suppose f : Mn × [0, T ∗] → R
n+1 is a simple constrained surface diffusion flow and γ a cutoff

function as in (14). Then there is an ε0 depending on cγ 1 , cγ 2 , and ch([0, T ∗]) such that if

ε = sup
[0,T ∗]

∫
[γ >0]

‖A‖n dμ � ε0 (15)

then for any t ∈ [0, T ∗] we have

∫
[γ =1]

‖A‖2 dμ +
t∫

0

∫
[γ =1]

(‖∇(2) A‖2 + ‖A‖2‖∇ A‖2 + ‖A‖6)dμdτ

�
(
1 + (n − 2)t

) ∫
[γ >0]

‖A‖2 dμ

∣∣∣∣
t=0

+ c
(
t + (n − 2)et)ε 2

n , (16)

where c depends on cγ 1 , cγ 2 , and ch([0, T ∗]).

Proof. The idea of the proof is to integrate Proposition 3.5, and then use the multiplicative Sobolev inequality Lemma A.1.
This will introduce a multiplicative factor of ‖A‖n,[γ >0] in front of several integrals, which we can then absorb on the left.

Setting k = 0, s = 4 and θ = 1 in Proposition 3.5 we have
2
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d

dt

∫
M

‖A‖2γ 4 dμ + 3

2

∫
M

‖∇(2) A‖2γ 4 dμ

� (c + ch)

∫
[γ >0]

‖A‖2 dμ + ch

∫
M

([A ∗ A] ∗ A
)
γ 4 dμ + c

∫
M

([
P 2

3(A) + P 0
5(A)

] ∗ A
)
γ 4 dμ. (17)

First we estimate the P -style terms:∫
M

([
P 2

3(A) + P 0
5(A)

] ∗ A
)
γ 4 dμ

� c

∫
M

([‖A‖2 · ‖∇(2) A‖ + ‖∇ A‖2 · ‖A‖ + ‖A‖5]‖A‖)γ 4 dμ

� c

∫
M

[‖A‖3 · ‖∇(2) A‖ + ‖∇ A‖2 · ‖A‖2 + ‖A‖6]γ 4 dμ

� θ

∫
M

‖∇(2) A‖2γ 4 dμ + cθ

∫
M

(‖A‖6 + ‖∇ A‖2‖A‖2)γ 4 dμ.

We use Lemma A.1 to estimate the second integral and obtain for n = 2∫
M

([
P 2

3(A) + P 0
5(A)

] ∗ A
)
γ 4 dμ

� θ

∫
M

‖∇(2) A‖2γ 4 dμ + cθ

∫
[γ >0]

‖A‖2 dμ

∫
M

(‖∇(2) A‖2 + ‖A‖6)γ 4 dμ

+ cθ

( ∫
[γ >0]

‖A‖2 dμ

)2

, (18)

and for n = 3∫
M

([
P 2

3(A) + P 0
5(A)

] ∗ A
)
γ 4 dμ

� θ

∫
M

‖∇(2) A‖2γ 4 dμ + cθ‖A‖
3
2
3,[γ >0]

∫
M

(‖∇(2) A‖2 + ‖A‖6)γ 4 dμ

+ cθ (cγ 1)
3(‖A‖3

3,[γ >0] + ‖A‖
9
2
3,[γ >0]

)
. (19)

We add the integrals
∫

M ‖A‖6γ 4 dμ and
∫

M ‖∇ A‖2‖A‖2γ 4 dμ to (17) and obtain

d

dt

∫
M

‖A‖2γ 4 dμ + 3

2

∫
M

(‖∇(2) A‖2 + ‖A‖2‖∇ A‖2 + ‖A‖6)γ 4 dμ

� (c + ch)

∫
[γ >0]

‖A‖2 dμ + ch

∫
M

([A ∗ A] ∗ A
)
γ 4 dμ

+ c

∫
M

(‖A‖2‖∇ A‖2 + ‖A‖6)γ 4 dμ + c

∫
M

([
P 2

3(A) + P 0
5(A)

] ∗ A
)
γ 4 dμ

� c
(
1 + h2) ∫

[γ >0]
‖A‖2 dμ + c

∫
M

(‖A‖3‖∇(2) A‖ + ‖A‖2‖∇ A‖2 + ‖A‖6)γ 4 dμ.

For n = 2, we use the estimate (18) above and obtain



692 G. Wheeler / J. Math. Anal. Appl. 375 (2011) 685–698
d

dt

∫
M

‖A‖2γ 4 dμ + 3

2

∫
M

(‖∇(2) A‖2 + ‖A‖2‖∇ A‖2 + ‖A‖6)γ 4 dμ

� c
(
1 + h2) ∫

[γ >0]
‖A‖2 dμ + θ

∫
M

‖∇(2) A‖2γ 4 dμ

+ cθ

∫
[γ >0]

‖A‖2 dμ

∫
M

(‖∇(2) A‖2 + ‖A‖6)γ 4 dμ + cθ

( ∫
[γ >0]

‖A‖2 dμ

)2

.

For n = 3, we use instead (19) to obtain

d

dt

∫
M

‖A‖2γ 4 dμ + 3

2

∫
M

(‖∇(2) A‖2 + ‖A‖2‖∇ A‖2 + ‖A‖6)γ 4 dμ

� c
(
1 + h2) ∫

[γ >0]
‖A‖2 dμ + θ

∫
M

‖∇(2) A‖2γ 4 dμ

+ cθ‖A‖
3
2
3,[γ >0]

∫
M

(‖∇(2) A‖2 + ‖A‖6)γ 4 dμ

+ cθ (cγ 1)
3(‖A‖3

3,[γ >0] + ‖A‖
9
2
3,[γ >0]

)
.

Absorbing, we obtain for n = 2

d

dt

∫
M

‖A‖2γ 4 dμ + (3 − 2θ − 2cθ ε0)
1

2

∫
M

(‖∇(2) A‖2 + ‖A‖2‖∇ A‖2 + ‖A‖6)γ 4 dμ

� cθ

(
1 + ε0 + ‖h‖2∞,[0,T ∗]

)
ε

� cθ ε,

and for n = 3

d

dt

∫
M

‖A‖2γ 4 dμ + (3 − 2θ − 2cθ

√
ε0 )

1

2

∫
M

(‖∇(2) A‖2 + ‖A‖2‖∇ A‖2 + ‖A‖6)γ 4 dμ

� cθ

(
1 + ‖h‖2∞,[0,T ∗]

) ∫
[γ >0]

‖A‖2 dμ + cθ

(
ε

1
3

0 + ε
5
6

0

)
ε

2
3 .

For θ , ε0 small enough we have

d

dt

∫
M

‖A‖2γ 4 dμ +
∫
M

(‖∇(2) A‖2 + ‖A‖2‖∇ A‖2 + ‖A‖6)γ 4 dμ

� cε
2
n + c(n − 2)

∫
[γ >0]

‖A‖2 dμ,

with c depending on ε0, ch([0, t∗]), cγ 1, and cγ 2. Integrating, we have for n = 2

∫
[γ =1]

‖A‖2γ 4 dμ +
t∫

0

∫
[γ =1]

(‖∇(2) A‖2 + ‖A‖2‖∇ A‖2 + ‖A‖6)dμdτ

�
∫

[γ >0]
‖A‖2 dμ

∣∣∣∣
t=0

+ cεt,

where we used the fact [γ = 1] ⊂ [γ > 0] and 0 � γ � 1. For n = 3 we use a covering argument and Gronwall’s inequality
after integrating to obtain
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∫
[γ =1]

‖A‖2γ 4 dμ +
t∫

0

∫
[γ =1]

(‖∇(2) A‖2 + ‖A‖2‖∇ A‖2 + ‖A‖6)dμdτ

�
∫

[γ >0]
‖A‖2 dμ

∣∣∣∣
t=0

+ cε
2
3 t + c

t∫
0

( ∫
[γ >0]

‖A‖2 dμ

∣∣∣∣
t=0

+ cε
2
3 τ

)
e
∫ t
τ c dν dτ

= (1 + ct)

∫
[γ >0]

‖A‖2 dμ

∣∣∣∣
t=0

+ cε
2
3 t + cε

2
3

t∫
0

τec(t−τ ) dτ

� (1 + ct)

∫
[γ >0]

‖A‖2 dμ

∣∣∣∣
t=0

+ c
(
t + et)ε 2

3 .

This finishes the proof. �
We now move on to obtaining estimates for the higher derivatives of curvature in L∞ . The first issue is in dealing with

the P -style terms from Proposition 3.5. These are easily interpolated as in [22] with the extra terms involving the constraint
function presenting little difficulty.

Proposition 3.7. Suppose f : Mn × [0, T ] → R
n+1 is a constrained surface diffusion flow and γ a cutoff function as in (14). Then, for

s � 2k + 4 the following estimate holds:

d

dt

∫
M

‖∇(k) A‖2γ s dμ +
∫
M

‖∇(k+2) A‖2γ s dμ

� c‖A‖4∞,[γ >0]
∫
M

‖∇(k) A‖2γ s dμ + c‖A‖2
2,[γ >0]

(
1 + ‖A‖4∞,[γ >0]

)

+ ch

(
h

1
3

∫
M

‖∇(k) A‖2γ s dμ + (
1 + h

1
3
)‖A‖2

2,[γ >0]
)

. (20)

We now prove that controlling the concentration of curvature in a ball gives pointwise bounds on all derivatives of
curvature in that ball.

Proposition 3.8. Let n ∈ {2,3}. Suppose f : Mn × [0, T ∗] → R
n+1 is a simple constrained surface diffusion flow and γ is as in (14).

Then there is an ε0 depending on the constants in (14) and ch([0, T ∗]) such that if

sup
[0,T ∗]

∫
[γ >0]

‖A‖n dμ � ε0, (21)

we can conclude

‖∇(k) A‖2∞,[γ =1] � c (22)

where c depends on k, T ∗ , cγ 1 , cγ 2 , ch([0, T ∗]), and α0(k + 2). The latter is defined by

α0(k) =
k∑

j=0

‖∇( j) A‖2,[γ >0]
∣∣∣∣
t=0

.

Proof. As before, the idea is to use our previous estimates and then integrate. The ε0 which we will use is exactly the
same as that in Proposition 3.6. We fix γ and consider cutoff functions γσ,τ which will allow us to combine our previous
estimates. Define for 0 � σ < τ � 1 functions γσ,τ = ψσ,τ ◦ γ satisfying γσ,τ = 0 for γ � σ and γσ,τ = 1 for γ � τ . The
function ψσ,τ is chosen such that γσ,τ satisfies (14), although with different constants. Acceptable choices are

cγσ,τ 1 = ‖∇ψσ,τ ‖∞ · cγ 1, and cγσ,τ 2 = max
{

c2 ‖∇(2)ψσ ,τ ‖∞, cγ 2‖∇ψσ,τ ‖∞
}
.
γ 1
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Using the cutoff function γ0, 1
2

instead of γ in Proposition 3.6 gives

∫
[γ

0, 1
2
=1]

‖A‖2 dμ +
T ∗∫

0

∫
[γ

0, 1
2
=1]

‖∇(2) A‖2 + ‖A‖6 dμdτ � cε
2
n

0 T ∗ + ‖A‖2
2,[γ >0]

∣∣
t=0

which is for n = 2

∫
[γ � 1

2 ]
‖A‖2 dμ +

T ∗∫
0

∫
[γ � 1

2 ]
‖∇(2) A‖2 + ‖A‖6 dμdτ � c

(
1 + T ∗)ε0 (23)

and for n = 3

∫
[γ � 1

2 ]
‖A‖2 dμ +

T ∗∫
0

∫
[γ � 1

2 ]
‖∇(2) A‖2 + ‖A‖6 dμdτ � c

(
1 + T ∗)(δ + ε

2
3

0

)
,

where δ = ‖A‖2
2,[γ >0]|t=0. Note that we do not need any smallness of δ.

Recall the multiplicative Sobolev inequality Proposition A.2:

‖T ‖4∞,[γ =1] � c‖T ‖4−n
2,[γ >0]

(‖∇(2)T ‖n
2,[γ >0] + ‖T A2‖n

2,[γ >0] + ‖T ‖n
2,[γ >0]

)
. (A.2)

Using this with γ 1
2 , 3

4
and (23) above we obtain for n = 2

T∫
0

‖A‖4
∞,[γ � 3

4 ] dτ � cε0
(
cε0

(
1 + T ∗) + ε0T ∗)

� cε0. (24)

For n = 3 we similarly obtain

T∫
0

‖A‖4
∞,[γ � 3

4 ] dτ �
√

c
(
1 + T ∗)(δ + ε

2
3

0

)[
c
(
1 + T ∗)(δ + ε

2
3

0

)] 3
2

� c
(√

δ + ε
1
3

0

)
, (25)

where c depends on ch([0, T ∗]), cγ 1, cγ 2, T ∗ , n, and ε0.
We now use (20) with γ 3

4 , 7
8

. Factorising, we have

d

dt

∫
M

‖∇(k) A‖2γ s
3
4 , 7

8
dμ � c‖A‖4

∞,[γ 3
4 , 7

8
�0]

∫
M

‖∇(k) A‖2γ s
3
4 , 7

8
dμ

+ c‖A‖2
2,[γ 3

4 , 7
8
�0]

(
1 + h + ‖A‖4

∞,[γ 3
4 , 7

8
�0]

)

+ ch
4
3

(∫
M

‖∇(k) A‖2γ s
3
4 , 7

8
dμ + ‖A‖2

2,[γ 3
4 , 7

8
�0]

)

� c
(‖A‖4

∞,[γ � 3
4 ] + h

4
3
)∫

M

‖∇(k) A‖2γ s
3
4 , 7

8
dμ

+ c‖A‖2
2,[γ � 3

4 ]
(
1 + ‖A‖4

∞,[γ � 3
4 ] + h + h

4
3
)
.

Integrating,
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∫
M

‖∇(k) A‖2γ s
3
4 , 7

8
dμ −

∫
M

‖∇(k) A‖2γ s
3
4 , 7

8
dμ

∣∣∣∣
t=0

� c

t∫
0

[(‖A‖4
∞,[γ � 3

4 ] + h
4
3
)∫

M

‖∇(k) A‖2γ s
3
4 , 7

8
dμ

]
dτ

+ c

t∫
0

[‖A‖2
2,[γ � 3

4 ]
(
1 + ‖A‖4

∞,[γ � 3
4 ] + h + h

4
3
)]

dτ . (26)

Now from our earlier calculation (24) we have

t∫
0

(‖A‖4
∞,[γ � 3

4 ] + h
4
3
)

dτ � c,

and, using our assumption (21)

c

t∫
0

[‖A‖2
2,[γ � 3

4 ]
(
1 + ‖A‖4

∞,[γ � 3
4 ] + h + h

4
3
)]

dτ � c.

Also, we have∫
M

‖∇(k) A‖2γ s
3
4 , 7

8
dμ

∣∣∣∣
t=0

� cα0(k),

where α0 is as in the statement of the proposition. Therefore, Eq. (26) is of the form

α(t) � β(t) +
t∫

c

λ(τ )α(τ )dτ ,

where

α(t) =
∫
M

‖∇(k) A‖2γ s
3
4 , 7

8
dμ,

β(t) =
∫
M

‖∇(k) A‖2γ s
3
4 , 7

8
dμ

∣∣∣∣
t=0

+ c

t∫
0

[‖A‖2
2,[γ � 3

4 ]
(
1 + ‖A‖4

∞,[γ � 3
4 ] + h + h

4
3
)]

dτ ,

and

λ(t) = ‖A‖4
∞,[γ � 3

4 ] + h
4
3 .

Noting that β and
∫

λdτ are bounded by the constants shown above, we can invoke Gronwall’s inequality and conclude

∫
[γ � 7

8 ]
‖∇(k) A‖2 dμ � β(t) +

t∫
0

β(τ )λ(τ )e
∫ t
τ λ(ν)dν dτ � c

(
k,α0(k)

)
.

Trivially, we also have∫
[γ � 7

8 ]
‖∇(k+2) A‖2 dμ � c

(
k + 2,α0(k + 2)

)
.

Therefore using (A.2) with γ 7
8 , 15

16
, and taking into account the n = 3 statement of Lemma A.1 we can bound ‖A‖∞ on a

smaller ball:

‖A‖4
∞,[γ � 15

16 ] � c
(
0,α0(0)

) 4−n
2

(
c
(
2,α0(2)

) n
2 + c

(
0,α0(0)

) n
2
)
� c.

Finally, using (A.2) with T = ∇(k) A and γ = γ 15 we obtain

16 ,1
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‖∇(k) A‖4∞,[γ =1] � c‖∇(k) A‖4−n
2,[γ > 15

16 ]
(‖∇(k+2) A‖n

2,[γ > 15
16 ] + (‖A‖2n

∞,[γ > 15
16 ] + 1

)‖∇(k) A‖n
2,[γ > 15

16 ]
)

� c
(
k,α0(k + 2)

)
.

This completes the proof. �
4. Proof of the Lifespan Theorem

We begin by scaling f̃ (x, t) = 1
ρ f (x,ρ4t). Note that ‖A‖n

n is scale invariant, and so we may assume ρ = 1. Note that
h may scale in a non-invariant fashion but this introduces a single change in the constant ch only, and certainly a scaled
simple h (we only perform this rescaling once) remains simple. We make the definition

η(t) = sup
x∈R3

∫
f −1(B1(x))

‖A‖n dμ. (27)

By covering B1 with several translated copies of B 1
2

there is a constant cη such that

η(t) � cη sup
x∈R3

∫
f −1(B 1

2
(x))

‖A‖n dμ. (28)

Note that cη = 4n+1 is sufficient.
By short time existence we have that f (M ×[0, t]) is compact for t < T and so the function η : [0, T ) → R is continuous.

We now define

t(n)
0 = sup

{
0 � t � min(T , λn): η(τ ) � 3cησ (n) for 0 � τ � t

}
, (29)

where

σ(n) =
{

ε0 for n = 2,

cP 8c∗(δ + ε
2/3
0 ) for n = 3

with δ = supx∈R4 ‖A‖2
2, f −1(B1(x))

|t=0, λn a parameter to be specified later and

c∗ = cP 8 + c0cηecP 5/c0cη .

The constant cP 8 is the maximum of 1 and the constant from Proposition 3.8, and c0 is the maximum of all the constants
on the right-hand side of Proposition 3.6. Note that the ε0 on the right-hand side of the inequality is from Eq. (8). Unlike
earlier in Proposition 3.8, we require δ small as described in the statement of Theorem 1.3.

The proof continues in three steps. First, we show that it must be the case that t(n)
0 = min(T , λn). Second, we show that

if t(n)
0 = λn , then we can conclude Theorem 1.3. Finally, we prove by contradiction that if T �= ∞, then t(n)

0 �= T . We label
these steps as

t(n)
0 = min(T , λn), (30)

t(n)
0 = λn �⇒ Theorem 1.3, (31)

T �= ∞ �⇒ t(n)
0 �= T . (32)

The three statements (30), (31), (32) together imply Theorem 1.3. We expand the sketch of the argument given above as
follows: first notice that by (30) t(n)

0 = λn or t(n)
0 = T , and if t(n)

0 = λn then by (31) we have Theorem 1.3. Also notice that if

t(n)
0 = ∞ then T = ∞ and Theorem 1.3 follows from estimate (35) below (used to prove statement (31)). Therefore the only

remaining case where Theorem 1.3 may fail to be true is when t(n)
0 = T < ∞. But this is impossible by statement (32), so

we are finished.
We now give the proof of the first step, statement (30). From the assumption (8),

η(0) � ε0 <

{
3cηε0, for n = 2,

3cP 8cηc∗(δ + ε
2/3
0 ), for n = 3,

and therefore (29) implies t(n)
0 > 0. Assume for the sake of contradiction that t(n)

0 < min(T , λn). Then from the definition

(29) of t(n)
0 and the continuity of η we have

η
(
t(n)

0

) =
{

3cηε0, for n = 2,

3c c c∗(δ + ε
2/3

), for n = 3,
(33)
P 8 η 0
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so long as ε0 � 1 and cP 8 � 1. Recall Proposition 3.6. We will now set γ to be a cutoff function as in (14) such that

χB 1
2
(x) � γ̃ � χB1(x),

for some x ∈ f (M, t). Choosing a small enough ε0 (by varying ρ in (8)), definition (29) implies that the smallness condi-
tion (15) is satisfied on [0, t(n)

0 ). Therefore we have satisfied all the requirements of Proposition 3.6, and so we conclude∫
f −1(B 1

2
(x))

‖A‖2 dμ

�
(
1 + (n − 2)t

) ∫
f −1(B1(x))

‖A‖2 dμ

∣∣∣∣
t=0

+ c
(
t + (n − 2)et)cηε

2
n

�
{

2ε0, for n = 2 and λ2 = 1
c0cη

,

2cP 8c∗(δ + ε
2/3
0 ), for n = 3 and λ3 = cP 8

1
c0cη

,
(34)

for all t ∈ [0, t∗], where t∗ < t(n)
0 . Thus Eq. (34) above is true for all t ∈ [0, t(n)

0 ). We combine this with (28) to conclude

η(t) � cn−2
P 8 cη sup

x∈R3

∫
f −1(B 1

2
(x))

‖A‖n dμ �
{

2cηε0, for n = 2,

2cP 8cηc∗(δ + ε
2/3
0 ), for n = 3,

(35)

where 0 � t < t(n)
0 . Since η is continuous, we can let t → t(n)

0 and obtain a contradiction with (33). Therefore, with the

choice of λn in Eq. (34), the assumption that t(n)
0 < min(T , λn) is incorrect. Thus we have shown (30). We have also proved

the second step (31). Observe that if t(n)
0 = λn then by the definition (29) of t(n)

0 ,

T � λn,

which is (9). Also, (35) implies (10). That is, we have proved if t(n)
0 = λn , then the Lifespan Theorem holds, which is the

second step (31). It only remains to prove Eq. (32).
We assume

t(n)
0 = T �= ∞;

since if T = ∞ then (9) holds automatically and again (35) implies (10). Note also that we can safely assume T < λn , since
otherwise we can apply step two to conclude the Lifespan Theorem.

Our strategy is to show that in this case the flow exists smoothly up to and including time T , allowing us to extend the
flow, thus contradicting the finite maximality of T . Since h is simple, it presents no difficulty, and for finite T , h satisfies the
requirements of short time existence. To show that the immersion f (·, T ) satisfies the requirements of short time existence,
we use Proposition 3.8 to obtain pointwise bounds for the higher derivatives of curvature everywhere on f (·, T ) and follow
a standard proof such as that found in [22] or [17]. Therefore we can extend the flow, contradicting the maximality of T .
This establishes (32) and the theorem is proved.

Acknowledgments

This work forms part of the author’s PhD thesis under Dr. James McCoy and Prof. Graham Williams, supported by an Australian Postgraduate Award
and the University of Wollongong. He is grateful for their advice and for many helpful discussions on this topic.

Appendix A. Sobolev and interpolation inequalities

Here we state the multiplicative Sobolev and interpolation inequalities we have used in the paper. We have generalised
the inequalities in [22] to the case of three intrinsic dimensions. Although the proofs are long and involved, they are
straightforward and standard and so we have omitted them, referring the reader to the appendix in [22] or [37] instead.

Lemma A.1. Let γ be as in (14). Then for an immersed surface f : M2 → R
3 we have∫

M

‖A‖6γ s dμ +
∫
M

‖A‖2‖∇ A‖2γ s dμ

� c

∫
[γ >0]

‖A‖2 dμ

∫
M

(‖∇(2) A‖2 + ‖A‖6)γ s dμ + c(cγ 1)
4
( ∫

[γ >0]
‖A‖2 dμ

)2

,
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and for an immersion f : M3 → R
4 ,∫

M

‖A‖6γ s dμ +
∫
M

‖A‖2‖∇ A‖2γ s dμ

� θ

∫
M

‖∇(2) A‖2γ s dμ + c‖A‖
3
2
3,[γ >0]

∫
M

(‖∇(2) A‖2 + ‖A‖6)γ s dμ

+ c(cγ 1)
3(‖A‖3

3,[γ >0] + ‖A‖
9
2
3,[γ >0]

)
,

where θ ∈ (0,∞) and c is an absolute constant depending on s and θ .

Proposition A.2. Let n ∈ {2,3}. Then for any tensor T and γ as in (14),

‖T ‖4∞,[γ =1] � c‖T ‖4−n
2,[γ >0]

(‖∇(2)T ‖n
2,[γ >0] + ‖T A2‖n

2,[γ >0] + ‖T ‖n
2,[γ >0]

)
,

where c depends on cγ 1 , and n. Assume T = A. Then there exists an ε0 depending on cγ 1 , cγ 2 , and n such that if

‖A‖n
n,[γ >0] � ε0

we have

‖A‖8n−12
∞,[γ =1] � cε0

(‖∇(2) A‖2n2−3n
2,[γ >0] + ε0

)
,

with c depending on cγ 1 , cγ 2 , n, and ε0 .
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