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This paper deals with a generating function of the Jacobi polynomials that satisfies
the following properties (I) and (II). (I) The generating function is the kernel of an integral
operator that is unitary. (II) The image of the unitary operator is a reproducing kernel
Hilbert space of analytic functions and the reproducing kernel is given as a special value of
the generating function above. A generating function that satisfies (I) is given in Watanabe
(1998) [11]. The purpose of this paper is to give a generating function that satisfies (I)
and (II). From a group theoretical point of view, a similar construction for zonal spherical
functions is given in Watanabe (2006) [12].

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with generating functions that define unitary operators. In our previous paper [11], we constructed
a unitary operator given by an integral operator whose kernel is a generating function of the Jacobi polynomials. Prob-
lems of this kind on classical orthogonal polynomials were discussed first in Bargmann [1]. He dealt with the Hermite
polynomials.

On the other hand, we gave in [12] a general construction of generating functions for zonal spherical functions which
define unitary operators. We shall explain it. Denote by N0 the set of nonnegative integers, and B the unit open disk |z| < 1
in C. Let G be a compact connected Lie group, K a closed subgroup of G , and (G, K ) a Riemannian symmetric pair of
rank � such that G/K is simply connected. And denote by L2(G, K ) the space of square integrable functions on G that are
bi-invariant under K . Then it is known (cf. [8]) that the set of all the zonal spherical functions on (G, K ) is parametrized
by N�

0. (Note that the existence of parametrization by N�
0 is not unique.) Denote the set by {ϕm | m ∈ N�

0}. Further, for each
m ∈ N�

0 we denote by dm the degree of the representation corresponding to ϕm . Then, by [12, Theorem 1], there exists
a generating function of the following form such that it is the kernel of an integral operator on L2(G, K ) which is unitary:∑

m∈N�
0

dmϕm(x)zm, x ∈ G, z ∈ B�, (1)

where zm = zm1
1 · · · zm�

� for z = (z1, . . . , z�) and m = (m1, . . . ,m�). We denote by Φ(z, x) the generating function. Furthermore,
by [12, Lemmas 4 and 6], the image of the unitary operator is a reproducing kernel Hilbert space of analytic functions on B� ,
and the reproducing kernel is given by∑

m∈N�
0

dmzm wm, z, w ∈ B�, (2)

E-mail address: sigeru-w@u-aizu.ac.jp.
0022-247X/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2011.11.056

http://dx.doi.org/10.1016/j.jmaa.2011.11.056
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:sigeru-w@u-aizu.ac.jp
http://dx.doi.org/10.1016/j.jmaa.2011.11.056


S. Watanabe / J. Math. Anal. Appl. 389 (2012) 108–118 109
that is, Φ(zw, e), where zw = (z1 w1, . . . , z�w�) for z = (z1, . . . , z�) and w = (w1, . . . , w�), and e is the identity element
of G . Notice the relation between the generating function and the reproducing kernel:

generating function = Φ(z, x),

reproducing kernel = Φ(zw, e).

Let us return to Jacobi’s case that we constructed in [11]. In this case, there is not a similar relation between the
generating function and the reproducing kernel. Thus, we naturally turned our interest to a construction for Jacobi’s case
which is similar to the general construction described above. The purpose of this paper is to give a construction similar to
the general one for Jacobi’s case. That is, we shall show the following: for the Jacobi polynomials P (α,β)

m (x), m = 0,1,2, . . . ,

there exists a generating function Φα,β(z, x) such that it is the kernel of an integral operator which is unitary. Furthermore,
in the case of α � β � 0, the reproducing kernel of the image of the unitary operator is given by Φα,β(zw,1). In the case
of 0 � α < β , it is given by Φα,β(zw,−1).

The paper is organized as follows. In Section 3 we shall construct a reproducing kernel Hilbert space associated with
the Jacobi polynomials. In Sections 4 and 5 we shall construct a unitary operator associated with a generating function of
the Jacobi polynomials in the case of α � β � 0, and that in the case of 0 � α < β , respectively. In Section 6 we give some
remarks to two special cases: one is for the case of α = β = λ − 1/2 (λ > 0), and the other is for that of α = n − 1 and
β = 0.

2. Notation and preliminaries

2.1. General notation

We shall use the notation N0,R,C for the set of nonnegative integers, the field of real numbers and the field of complex
numbers, respectively. We denote by B the unit open disk in C. For a subset A ⊂ R we denote by A2 the direct product of
A with itself. We shall use the notation [a,b], [a,b) for the interval {x ∈ R | a � x � b}, and the interval {x ∈ R | a � x < b},
respectively. For ζ ∈ C let Re ζ be the real part of ζ , and ζ �→ ζ the usual conjugation in C. We denote the Gamma function
by Γ (x), the hypergeometric function by F (a,b; c; x), and Γ (a+m)/Γ (a) by (a)m . The maximum value of a and b is denoted
by max(a,b). A function is assumed to be complex-valued.

2.2. Jacobi polynomials

We shall describe the definition and some properties of the Jacobi polynomials. For references on the Jacobi polynomials,
see [3,6,9].

For α,β � 0 the Jacobi polynomials P (α,β)
m (x), m = 0,1,2, . . . , are defined by

P (α,β)
m (x) = (−1)m

2mm! (1 − x)−α(1 + x)−β dm

dxm

[
(1 − x)α+m(1 + x)β+m]

.

They have the following orthogonality relation:

1∫
−1

P (α,β)
m (x)P (α,β)

m′ (x)(1 − x)α(1 + x)β dx =
{

2α+β+1

α+β+2m+1
Γ (α+m+1)Γ (β+m+1)

m!Γ (α+β+m+1)
, m = m′,

0, m �= m′.
(3)

The Jacobi polynomials have the following generating function:

∑
m∈N0

(α + β + 2m + 1)(α + β + 1)m

(α + 1)m
P (α,β)

m (x)zm

= (α + β + 1)(z + 1)

(1 − z)α+β+2
F

(
α + β + 2

2
,
α + β + 3

2
;α + 1; 2z(x − 1)

(1 − z)2

)
, −1 � x � 1, z ∈ B. (4)

The maximum value of |P (α,β)
m (x)| in −1 � x � 1 is (q + 1)m/m!, where q = max(α,β). The following numbers d(α,β)

m ,
m = 0,1,2, . . . , play important roles in this paper.

Definition 1. For m ∈ N0 define

d(α,β)
m = (α + β + 2m + 1)(β + 1)m(α + β + 1)m

m!(α + 1)m
.
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3. Reproducing kernel Hilbert space

In this section we shall construct a reproducing kernel Hilbert space associated with the Jacobi polynomials. First of all,
we shall define a measure on the interval [0,1) associated with the sequence {(d(α,β)

m )−1}m∈N0 . Next, making use of the
measure, we define a measure on B and construct a reproducing kernel Hilbert space of analytic functions on B .

3.1. Measure on [0,1) associated with {(d(α,β)
m )−1}m∈N0

Let α,β > 0. For 0 < t < 1 define

ρα,β(t) = t
α+β−1

2

1∫
t

u− α+β+1
2 (1 − u)β−1 du

1∫
t
u

v− β−α+1
2 (1 − v)β−1 dv,

and set

σα,β(t) = βΓ (α + β + 1)

2πΓ (β)Γ (α + 1)
ρα,β(t).

Lemma 1. For α,β > 0 we have∫
B

∣∣zm
∣∣2

σα,β

(|z|2)dz = 1

d(α,β)
m

, m ∈ N0,

where dz is the Lebesgue measure on B induced from the identification C ∼= R2 .

Proof. Exchanging orders of integrals, we obtain

∫
B

∣∣zm
∣∣2

ρα,β

(|z|2)dz = π

1∫
0

tmρα,β(t)dt = π

1∫
0

tm+ α+β−1
2 dt

1∫
t

u− α+β+1
2 (1 − u)β−1 du

1∫
t
u

v− β−α+1
2 (1 − v)β−1 dv

= π

∫∫
0�u,v�1

(1 − u)β−1 vα(1 − v)β−1

[
(uv)−

α+β+1
2

uv∫
0

tm+ α+β−1
2 dt

]
du dv

= 2π

α + β + 2m + 1

∫∫
0�u,v�1

(1 − u)β−1 vα(1 − v)β−1(uv)m du dv

= 2π

α + β + 2m + 1

m!Γ (β)

Γ (β + m + 1)

Γ (α + m + 1)Γ (β)

Γ (α + β + m + 1)
,

which implies our assertion. �
Lemma 1 is equivalent to the following∫

[0,1]
tmσα,β(t)dt = 1

πd(α,β)
m

, α,β > 0, m ∈ N0. (5)

Combining this result with Theorem 1 in [5], for α,β > 0 we see that the sequence {(d(α,β)
m )−1}m∈N0 is completely mono-

tonic. On the other hand, for a fixed m ∈ N0 we can regard d(α,β)
m as a continuous function with respect to (α,β) ∈ [0,∞)2.

Hence, for a fixed α > 0, by considering the limit limβ→0 d(α,β)
m = d(α,0)

m , we obtain that the sequence {(d(α,0)
m )−1}m∈N0 is

also completely monotonic. Applying this result to Theorem 1 in [5], it is easy to see that there exists a measure σ̃α,0 on
the interval [0,1] such that∫

[0,1]
tm dσ̃α,0(t) = 1

πd(α,0)
m

, m ∈ N0. (6)

In the same way, we see that there exists a measure σ̃0,β on [0,1] such that∫
tm dσ̃0,β(t) = 1

πd(0,β)
m

, m ∈ N0. (7)
[0,1]
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Further, considering the limit limβ→0 d(0,β)
m = d(0,0)

m , we see that there exists a measure σ̃0,0 on [0,1] such that∫
[0,1]

tm dσ̃0,0(t) = 1

πd(0,0)
m

, m ∈ N0. (8)

For α,β � 0 define a measure τα,β on [0,1] by

dτα,β(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

πσα,β(t)dt, α,β > 0,

π dσ̃α,0(t), α > 0, β = 0,

π dσ̃0,β(t), α = 0, β > 0,

π dσ̃0,0(t), α = β = 0.

Then we can summarize (5), (6), (7) and (8) as follows∫
[0,1]

tm dτα,β(t) = 1

d(α,β)
m

, m ∈ N0. (9)

By the definition of d(α,β)
m we have limm→∞(d(α,β)

m )−1 = 0. Further, by Lebesgue’s convergence theorem the left-hand side
of (9) goes to τα,β({1}) as m → ∞. Thus, we can conclude that τα,β({1}) = 0. Therefore, we can rewrite (9) as follows∫

[0,1)

tm dτα,β(t) = 1

d(α,β)
m

, m ∈ N0. (10)

Let us consider the measure τα,β as a measure on [0,1). Let ([0,1),B) be the measurable space associated with the
measure τα,β . And define the mapping T of [0,1) onto itself by T (t) = √

t and set

B′ = {
E ⊂ [0,1)

∣∣ T −1(E) ∈ B
}
,

τ̃α,β(E) = τα,β

(
T −1(E)

)
, E ∈ B′.

Then ([0,1),B′, τ̃α,β) is a measure space and satisfies∫
[0,1)

h
(
T −1(r)

)
dτ̃α,β(r) =

∫
[0,1)

h(t)dτα,β(t)

for any τα,β -integrable function h. In particular, we have∫
[0,1)

r2m dτ̃α,β(r) =
∫

[0,1)

tm dτα,β(t), m ∈ N0. (11)

3.2. Measure on B and an associated reproducing kernel Hilbert space of analytic functions on B

In this subsection, first we define a measure on B related to the measure τ̃α,β on [0,1) given in the preceding subsection.
Next we define a reproducing kernel Hilbert space associated with the measure on B . The constructions in this step can be
found in [2,4,7]. In what follows, we assume that α,β � 0.

Set U = {e
√−1θ | θ ∈ R}, and let τU be the normalized Haar measure on the compact group U . Further, we denote by

να,β the product measure τ̃α,β × τU on the product set [0,1) × U , and identify B with [0,1) × U . Then a measure on B is
induced from the identification. We shall also denote it by να,β . If f is a να,β -integrable function, the following holds∫

B

f (z)dνα,β(z) =
∫

[0,1)×U

f (ru)d(τ̃α,β × τU )(r, u). (12)

Let L2(B,dνα,β(z)) be the Hilbert space of να,β -measurable functions f on B with

‖ f ‖α,β =
√√√√∫ ∣∣ f (z)

∣∣2
dνα,β(z) < ∞.
B
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The inner product is given by

〈 f , g〉α,β =
∫
B

f (z)g(z)dνα,β(z). (13)

Let F α,β be the space of analytic functions on B which belong to L2(B,dνα,β(z)). The following proposition is a straight-
forward consequence of the results in [2,4,7] to which the interested reader is referred for details.

Proposition 1. The space Fα,β is a closed subspace of L2(B,dνα,β(z)) with orthonormal basis given by u(α,β)
m (z) = (d(α,β)

m )1/2zm,
m ∈ N0 . Moreover, Fα,β is a reproducing kernel Hilbert space with kernel, for z, w ∈ B, given by

g(α,β)
w (z) =

∑
m∈N0

u(α,β)
m (w)u(α,β)

m (z)

=
∑

m∈N0

d(α,β)
m zm wm. (14)

Proof. See [2,4,7]. �
The reader should note the similarity of the above formula for the reproducing kernel to the series (2) and that the

series

∑
m∈N0

d(α,β)
m ζm (15)

is absolutely convergent for |ζ | < 1.

4. Unitary operator – the case of α ��� β ��� 0

In this section we shall construct a unitary operator associated with a generating function of the Jacobi polynomials in
the case of α � β � 0. To do this, we divide this section into three subsections.

4.1. L2-space associated with the Jacobi polynomials

As described in Section 2, the maximum value of |P (α,β)
m (x)| in −1 � x � 1 is equal to (α + 1)m/m!. On the other hand,

it is known that P (α,β)
m (1) = (α + 1)m/m! (cf. [3]). Define

ϕ
(α,β)
m (x) = P (α,β)

m (x)

P (α,β)
m (1)

, m ∈ N0.

Then we have

∣∣ϕ(α,β)
m (x)

∣∣ � ϕ
(α,β)
m (1) = 1 for −1 � x � 1. (16)

Further, we can rewrite the orthogonality relation (3) as follows

1∫
−1

ϕ
(α,β)
m (x)ϕ(α,β)

m′ (x)(1 − x)α(1 + x)β dx =
⎧⎨
⎩

2α+β+1Γ (α+1)Γ (β+1)

Γ (α+β+1)d(β,α)
m

, m = m′,

0, m �= m′.
(17)

Set

dμα,β(x) = Γ (α + β + 1)

2α+β+1Γ (α + 1)Γ (β + 1)
(1 − x)α(1 + x)β dx.
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Then the orthogonality relation (17) results in

1∫
−1

ϕ
(α,β)
m (x)ϕ(α,β)

m′ (x)dμα,β(x) =
{

(d(β,α)
m )−1, m = m′,

0, m �= m′.
(18)

Denote by L2((−1,1),dμα,β(x)) the Hilbert space of Lebesgue measurable functions ϕ on the open interval (−1,1) with

‖ϕ‖α,β =

√√√√√
1∫

−1

∣∣ϕ(x)
∣∣2

dμα,β(x) < ∞.

The inner product is given by

(ϕ,ψ)α,β =
1∫

−1

ϕ(x)ψ(x)dμα,β(x), ϕ,ψ ∈ L2((−1,1),dμα,β(x)
)
.

Set

ψ
(α,β)
m =

√
d(β,α)

m ϕ
(α,β)
m , m ∈ N0.

Then, it follows from (18) that the system {ψ(α,β)
m | m ∈ N0} is a complete orthonormal system of L2((−1,1),dμα,β(x)).

4.2. Generating function similar to the form of (1)

Let us consider a generating function of the Jacobi polynomials which is written as a series similar to the form of (1).
For −1 � x � 1 and z ∈ B define

Φα,β(z, x) = (α + β + 1)(1 − z)

(1 + z)α+β+2
F

(
α + β + 2

2
,
α + β + 3

2
;β + 1; 2z(1 + x)

(1 + z)2

)
.

By (4) the function Φα,β(z, x) is equal to

∑
m∈N0

(α + β + 2m + 1)(α + β + 1)m

(β + 1)m
P (β,α)

m (−x)(−z)m.

Considering the relation P (α,β)
m (−x) = (−1)m P (β,α)

m (x), we can rewrite the function Φα,β(z, x) as follows

Φα,β(z, x) =
∑

m∈N0

(α + β + 2m + 1)(α + β + 1)m

(β + 1)m
P (α,β)

m (x)zm

=
∑

m∈N0

d(β,α)
m

m!
(α + 1)m

P (α,β)
m (x)zm

=
∑

m∈N0

d(β,α)
m ϕ

(α,β)
m (x)zm (19)

=
∑

m∈N0

u(β,α)
m (z)ψ(α,β)

m (x). (20)

The function Φα,β(z, x) is a generating function of the Jacobi polynomials P (α,β)
m (x), m = 0,1,2, . . . , and by (19) it is written

as a series similar to the form of (1).

Remark 1. By (14), (16) and (19), we obtain the following relation

g(β,α)
w (z) = Φα,β(zw,1).
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4.3. Unitary operator constructed by the generating function Φα,β(z, x)

A unitary operator on L2((−1,1),dμα,β(x)) to Fβ,α is defined as follows. For ϕ ∈ L2((−1,1),dμα,β(x)) set

(Φα,βϕ)(z) =
1∫

−1

Φα,β(z, x)ϕ(x)dμα,β(x), z ∈ B. (21)

Then Φα,βϕ ∈ Fβ,α and Φα,β is unitary.

Theorem 1. The operator Φα,β on L2((−1,1),dμα,β(x)) to Fβ,α is unitary.

Proof. Let ϕ be an element of L2((−1,1),dμα,β(x)). First of all, we show Φα,βϕ ∈ Fβ,α . As we remarked in the series (15),∑
m d(β,α)

m |z|m converges for z ∈ B . It follows from this fact and (16) that for a fixed z ∈ B the series (19) converges uniformly
on [−1,1]. Then by (20) we see

(Φα,βϕ)(z) =
∑

m∈N0

(
ϕ,ψ

(α,β)
m

)
α,β

u(β,α)
m (z). (22)

Since
∑

m |(ϕ,ψ
(α,β)
m )α,β |2 < ∞ and

∑
m |u(β,α)

m (z)|2 < ∞ (z ∈ B), the right-hand side of (22) converges absolutely on B and
converges with respect to the norm of Fβ,α . These imply Φα,βϕ ∈ Fβ,α . Next we show that Φα,β is unitary. Applying the
Parseval formula to (22), we obtain

‖Φα,βϕ‖2
β,α =

∑
m∈N0

∣∣(ϕ,ψ
(α,β)
m

)
α,β

∣∣2 = ‖ϕ‖2
α,β,

which means Φα,β is an isometry. Further, let us take ϕ = ψ
(α,β)
m in (22). Then we obtain

Φα,βψ
(α,β)
m = u(β,α)

m , m ∈ N0,

which means Φα,β is surjective. This completes the proof. �
Therefore, we obtain the desired result:

generating function = Φα,β(z, x),

reproducing kernel = Φα,β(zw,1).

5. Unitary operator – the case of 0 ��� α < β

In this section we shall construct a unitary operator associated with a generating function of the Jacobi polynomials in
the case of 0 � α < β .

5.1. L2-space associated with the Jacobi polynomials

As described in Section 2, the maximum value of |P (α,β)
m (x)| in −1 � x � 1 is equal to (β + 1)m/m!. On the other hand,

it is known that P (α,β)
m (−1) = ((−1)m(β + 1)m)/m! (cf. [3]). Define

ϕ
(α,β)
m (x) = P (α,β)

m (x)

P (α,β)
m (−1)

, m ∈ N0.

Then we have∣∣ϕ(α,β)
m (x)

∣∣ � ϕ
(α,β)
m (−1) = 1 for −1 � x � 1. (23)

Further, we can rewrite the orthogonality relation (3) as follows

1∫
−1

ϕ
(α,β)
m (x)ϕ(α,β)

m′ (x)(1 − x)α(1 + x)β dx =
⎧⎨
⎩

2α+β+1Γ (α+1)Γ (β+1)

Γ (α+β+1)d(α,β)
m

, m = m′,

0, m �= m′.
(24)
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Set

dμα,β(x) = Γ (α + β + 1)

2α+β+1Γ (α + 1)Γ (β + 1)
(1 − x)α(1 + x)β dx.

Then the orthogonality relation (24) results in

1∫
−1

ϕ
(α,β)
m (x)ϕ(α,β)

m′ (x)dμα,β(x) =
{

(d(α,β)
m )−1, m = m′,

0, m �= m′.
(25)

Denote by L2((−1,1),dμα,β(x)) the Hilbert space of Lebesgue measurable functions ϕ on the open interval (−1,1) with

‖ϕ‖α,β =

√√√√√
1∫

−1

∣∣ϕ(x)
∣∣2

dμα,β(x) < ∞.

The inner product is given by

(ϕ,ψ)α,β =
1∫

−1

ϕ(x)ψ(x)dμα,β(x), ϕ,ψ ∈ L2((−1,1),dμα,β(x)
)
.

Set

ψ
(α,β)
m =

√
d(α,β)

m ϕ
(α,β)
m , m ∈ N0.

Then, it follows from (25) that the system {ψ(α,β)
m | m ∈ N0} is a complete orthonormal system of L2((−1,1),dμα,β(x)).

5.2. Generating function similar to the form of (1)

Let us consider a generating function of the Jacobi polynomials which is written as a series similar to the form of (1).
For −1 � x � 1 and z ∈ B define

Φα,β(z, x) = (α + β + 1)(1 − z)

(1 + z)α+β+2
F

(
α + β + 2

2
,
α + β + 3

2
;α + 1; 2z(1 − x)

(1 + z)2

)
.

By (4) we can rewrite the function Φα,β(z, x) as follows

Φα,β(z, x) =
∑

m∈N0

(α + β + 2m + 1)(α + β + 1)m

(α + 1)m
P (α,β)

m (x)(−z)m

=
∑

m∈N0

d(α,β)
m

m!
(−1)m(β + 1)m

P (α,β)
m (x)zm

=
∑

m∈N0

d(α,β)
m ϕ

(α,β)
m (x)zm (26)

=
∑

m∈N0

u(α,β)
m (z)ψ(α,β)

m (x). (27)

The function Φα,β(z, x) is a generating function of the Jacobi polynomials P (α,β)
m (x), m = 0,1,2, . . . , and by (26) it is written

as a series similar to the form of (1).

Remark 2. By (14), (23) and (26), we obtain the following relation

g(α,β)
w (z) = Φα,β(zw,−1).
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5.3. Unitary operator constructed by the generating function Φα,β(z, x)

A unitary operator on L2((−1,1),dμα,β(x)) to Fα,β is defined as follows. For ϕ ∈ L2((−1,1),dμα,β(x)) set

(Φα,βϕ)(z) =
1∫

−1

Φα,β(z, x)ϕ(x)dμα,β(x), z ∈ B. (28)

Then Φα,βϕ ∈ Fα,β and Φα,β is unitary.

Theorem 2. The operator Φα,β on L2((−1,1),dμα,β(x)) to Fα,β is unitary.

Proof. The definition (28) corresponds to (21). Similarly, the formulae (23), (26) and (27) correspond to (16), (19) and (20),
respectively. Therefore, in the same way as in the proof of Theorem 1, we obtain the unitarity of Φα,β defined by (28). �

Therefore, we obtain the desired result:

generating function = Φα,β(z, x),

reproducing kernel = Φα,β(zw,−1).

6. Some remarks to special cases

6.1. The case of α = β = λ − 1/2

Let λ > 0. The Gegenbauer polynomials Cλ
m(x), m = 0,1,2, . . . , are defined as the Jacobi polynomials with α = β =

λ − 1/2 (cf. [3]):

Cλ
m(x) = (2λ)m

(λ + 1/2)m
P (λ−1/2,λ−1/2)

m (x).

Notice the formula (1) in [10]:∫
B

|z|2mρλ

(|z|2)dz = πm!
(m + λ)Γ (m + 2λ)

, m ∈ N0,

where

ρλ(t) =
⎧⎨
⎩

1
Γ (2λ−1)

tλ−1
∫ 1

t s−λ(1 − s)2λ−2 ds, λ > 1/2,

tλ−1(
Γ (1−λ)
Γ (λ)

− 1
Γ (2λ−1)

∫ t
0 s−λ(1 − s)2λ−2 ds), 0 < λ � 1/2.

Combining this formula with Proposition 1, we see that the measure dνα,β(z) for α = β = λ − 1/2 is equal to

Γ (2λ)

2π
ρλ

(|z|2)dz.

Therefore, the construction for α = β = λ − 1/2 in this paper is equivalent to that in [10].
On the other hand, the generating function Φα,β(z, x) for α = β = λ − 1/2 is∑

m∈N0

d(λ−1/2,λ−1/2)
m ϕ

(λ−1/2,λ−1/2)
m (x)zm,

where

ϕ
(λ−1/2,λ−1/2)
m (x) = P (λ−1/2,λ−1/2)

m (x)

P (λ−1/2,λ−1/2)
m (1)

= m!
(2λ)m

Cλ
m(x),

d(λ−1/2,λ−1/2)
m = 2(λ + m)(2λ)m

m! .

Thus, the generating function Φα,β(z, x) for α = β = λ − 1/2 can be rewritten as follows

2
∑

(λ + m)Cλ
m(x)zm = 2λ

1 − z2

(1 − 2zx + z2)λ+1
, (29)
m∈N0
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where we use the following formula (cf. [3]):∑
m∈N0

Cλ
m(x)zm = (

1 − 2zx + z2)−λ
.

Set x = 1 and replace z by zw in (29). Considering Remark 1, we can obtain the explicit expression for the reproducing
kernel g(λ−1/2,λ−1/2)

w of Fλ−1/2,λ−1/2:

g(λ−1/2,λ−1/2)
w (z) = 2λ

1 + zw

(1 − zw)2λ+1
.

The measure dν0,0(z) corresponding to the Legendre polynomials Pm(x), m ∈ N0, which are the Gegenbauer polynomials
with λ = 1/2, is given by

dν0,0(z) = 1

2π |z| dz.

The reproducing kernel g(0,0)
w of the space F0,0 is given by

g(0,0)
w (z) = 1 + zw

(1 − zw)2
.

6.2. The case of α = n − 1 and β = 0

Let n be a positive integer. Consider the Jacobi polynomials P (n−1,0)
m (x), m = 0,1,2, . . . . By (19), the associated generating

function Φn−1,0(z, x) is equal to∑
m∈N0

d(0,n−1)
m ϕ

(n−1,0)
m (x)zm,

where

ϕ
(n−1,0)
m (x) = P (n−1,0)

m (x)

P (n−1,0)
m (1)

, d(0,n−1)
m = (n + 2m)((n)m)2

(m!)2
.

On the other hand, as is well known (cf. [8]), the functions ϕ
(n−1,0)
m , m = 0,1,2, . . . , are the zonal spherical functions on

the n-dimensional complex projective space SU (n + 1)/S(U (1) × U (n)), where U (n) is the unitary group of degree n and
SU (n + 1) is the special unitary group of degree n + 1. Set G = SU (n + 1) and K = S(U (1) × U (n)). Then the pair (G, K ) is
a Riemannian symmetric pair of rank 1 such that G/K is simply connected. Thus, by Theorem 2 in [12], the pair (G, K ) has
a generating function associated with itself. By Example 4 in [12], the generating function is given as follows: let dm denote
the degree of the spherical representation corresponding to ϕ

(n−1,0)
m , which is given by

dm = (n + 2m)((n)m)2

n(m!)2
,

that is,

ndm = d(0,n−1)
m .

Then the generating function associated with the pair (G, K ) is given by

∑
m∈N0

dmϕ
(n−1,0)
m (x)zm = 1

n

∑
m∈N0

d(0,n−1)
m ϕ

(n−1,0)
m (x)zm.

Therefore, the construction for α = n − 1 and β = 0 in this paper is equivalent to that in [12].
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