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c Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 October 2011
Available online 14 February 2012
Submitted by A. Lunardi

Keywords:
Semigroups of operators
Semilinear Cauchy problem
Sectorial operators
Analytic semigroups
Classical solutions
Fractional powers of operators
Real interpolation
Coagulation
Fragmentation
Moment estimates
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lation kernels.
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1. Introduction

Coagulation and fragmentation models are abundant in the natural sciences and engineering, where they describe
processes ranging from animals’ groupings, the evolution of phytoplankton aggregates, blood agglutination, through plan-
etesimals’ formation and rock crushing, to polymerization and de-polymerization. One of the most efficient approaches to
modelling the kinetics of such processes is through a rate equation which describes the evolution of the distribution of
interacting clusters with respect to their size/mass. The first equation of this kind was derived by Smoluchowski [29] to
describe pure coagulation in the discrete case, that is, if the ratio of the mass of the basic building block (monomer) to
the mass of a typical cluster is positive and thus the size of a cluster is a finite multiple of the mass of the monomer. This
equation was extended by Müller [27], to the continuous case, where it was assumed that the clusters can have arbitrary
mass and hence that the mass of a single monomer is negligible. Since, typically, the clusters not only coalesce but also
fragment into smaller clusters, the whole process must be described by a combined coagulation-fragmentation equation.
With Müller’s coagulation term, and with fragmentation modelled by terms introduced in [23] but written in the form
proposed in [22], the full equation reads
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∂t u(x, t) = −a(x)u(x, t) +
∞∫

x

a(y)b(x | y)u(y, t)dy − u(x, t)

∞∫
0

k(x, y)u(y, t)dy

+ 1

2

x∫
0

k(x − y, y)u(x − y, t)u(y, t)dy, (1)

where x ∈ R+ := (0,∞) denotes the mass or size of a particle/cluster. Here u is the density of particles of mass/size x, a is
the fragmentation rate and b describes the distribution of masses x of particles spawned by fragmentation of a particle of
mass y. Further, b � 0 is assumed to be a measurable function of two variables satisfying b(x | y) = 0 for x > y. The local
law of mass conservation requires

y∫
0

xb(x | y)dx = y, y ∈R+, (2)

and the expected number of particles resulting from a fragmentation of a size y parent,

n0(y) :=
y∫

0

b(x | y)dx,

is assumed to satisfy

n0(y) < +∞ (3)

for any fixed y ∈ R+ . Note also that

n0 � 1, (4)

since otherwise we would have

1 >
y

y

y∫
0

b(x | y)dx � 1

y

y∫
0

xb(x | y)dx,

contradicting (2).
In general, the fragmentation rate a is assumed to be a measurable nonnegative function. For the purpose of this pa-

per, we have to impose some control on the growth of the fragmentation coefficients. Namely, we assume that there are
j ∈ (0,∞), l ∈ [0,∞) and a0,b0 ∈ R+ such that, for any x ∈R+ ,

a(x) � a0
(
1 + x j), n0(x) � b0

(
1 + xl). (5)

We note that the reason for assuming j > 0 is that for j = 0 the fragmentation operator becomes bounded and the linear
part of the theory becomes trivial.

The coagulation kernel k(x, y) represents the likelihood of a particle of size x attaching itself to a particle of size y. We
assume that it is a measurable symmetric function such that for some K > 0 and 0 � β � α < 1

0 � k(x, y) � K
((

1 + a(x)
)α(

1 + a(y)
)β + (

1 + a(x)
)β(

1 + a(y)
)α)

(6)

as x, y → ∞. This will suffice to show local in time solvability of (1) whereas to show that the solutions are global in time
we need to strengthen (6) to

0 � k(x, y) � K
((

1 + a(x)
)α + (

1 + a(y)
)α)

(7)

for large x, y and some 0 � α < 1.
In fragmentation and coagulation problems, two spaces are most often used due to their physical relevance. In the space

L1(R+, x dx) the norm of a nonnegative element u, given by
∫ ∞

0 u(x)x dx, represents the total mass of the system, whereas
the norm of a nonnegative element u in the space L1(R+,dx),

∫ ∞
0 u(x)dx, gives the total number of particles in the system.

It is well known that the fragmentation equation, with a fragmentation rate a which is unbounded as x → ∞, has good
properties in L1(R+, x dx) but is ill posed in L1(R+,dx), see [5]. On the other hand, the coagulation operator behaves well
in L1(R+,dx) and in L1(R+, (1 + x)dx) but not in L1(R+, x dx) alone.

Our approach is to follow [8] and use the scale of spaces with finite higher moments

Xm = L1(R+,dx) ∩ L1
(
R+, xm dx

) = L1
(
R+,

(
1 + xm)

dx
)
, (8)

where m ∈ M := [1,∞). We extend this definition to X0 = L1(R+). The natural norm in Xm is denoted by ‖ · ‖m , and, to
shorten notation, we define wm(x) := 1 + xm . We note that the continuous injection Xm ↪→ X1, m > 1, means that any
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solution in Xm is also a solution in the basic space X1. Also, due to the nature of the problem, most of our analysis is
carried out in Xm,+ where, for any partially ordered space Z , Z+ denotes the positive cone of Z .

There are two main strategies of approaching continuous coagulation-fragmentation problems (1). The first, introduced
in [30] and later refined in e.g. [10,20] and recently used in [14,16], consists of considering a family of truncated problems,
establishing weak compactness of their solutions and passing to the limit, establishing in this way existence of weak so-
lutions to (1). Uniqueness, however, requires additional assumptions and other techniques. This approach has proved itself
very effective in dealing with pure coagulation problems. However, for the full coagulation–fragmentation equation, the frag-
mentation part is required to be in some way or another subordinated to the coagulation kernel (see the discussion in [7]).
This has meant that the truncation/compactness method has yielded so far results for a very restricted class of fragmenta-
tion rates, see e.g. [15] where in fact the fragmentation is required to be binary with linear growth at x = 0 and x → ∞.
The second strategy, introduced in [1] and further developed in [6–8,24,25], treats (1) as a Lipschitz perturbation of the
linear fragmentation problem. Application of substochastic semigroup theory [4], then enables a wide range of unbounded
fragmentation kernels to be included at a cost, however, of making the coagulation process subordinate to fragmentation.
This approach, apart from being able to include unbounded fragmentation rates, gave classical differentiable solutions to (1)
but, so far, only for bounded coagulation kernels. Recently, [9], the discrete fragmentation semigroup has been proved to
be analytic in spaces of sequences having sufficiently high moments for a large class of fragmentation processes including,
in particular, physically relevant kernels b that are binary and homogeneous or decreasing with respect to the size of the
daughter particles. This allowed local existence and uniqueness of classical solutions to be proved for a certain class of
unbounded coagulation kernels.

Our aim in the present paper is to extend the results of [9] to continuous coagulation–fragmentation equations. In
particular, we provide a simpler and more general proof of analyticity of a class of fragmentation semigroups in the scale of
spaces Xm and show local existence and uniqueness of classical solutions in this scale for coagulation kernels satisfying (6).
Furthermore, we show global solvability if k satisfies (7) and, in addition, α j � 1, see (5).

To illustrate what this means, we note that our approach establishes the global existence of classical solutions for all
coagulation kernels mentioned in [14] such as the shear kernel, [2,28],

k(x, y) = k0
(
x1/3 + y1/3)7/3

,

or the modified Smoluchowski kernel, [19]

k(x, y) = k0
(x1/3 + y1/3)2

x1/3 y1/3 + c
, c > 0,

as long as a(x) � a1xδ , a1 a constant, with δ > 7/9 in the first case and δ > 2/3 in the second case. Note that in the third
example in [14],

k(x, y) = k0
(x1/3 + y1/3)q

1 + (x1/3+y1/3)3

8yc

, 0 � q < 3,

is bounded at infinity and thus yields to the earlier classical solvability results, such as [7]. At the same time, we are able to
handle a wide range of physically relevant daughter particle distribution functions b, including the homogeneous one, while
b(x | y) = (α + 2)xα/yα+1, given as an example of an application in [14], has a physical meaning only when α = 0, that is,
in the binary case, see [4, Subsection 8.2.1].

We would like to emphasize that local classical solvability does not place any restriction on the rate of growth of k as
long as it is controlled by a small power of the fragmentation rate a. This shows that fast fragmentation of large clusters
plays a stabilizing role in the process, which agrees with physical intuition and earlier weak solvability results such as
in [13]. However, our assumptions (6) and (7) seem to display this relation in a more direct way than in [13].

The structure of the paper, and some of the techniques, are similar to the recent paper [9] in which the discrete co-
agulation and fragmentation equation was analysed and thus we have omitted some details. The main difference in the
current paper is that to prove analyticity of the fragmentation semigroup, instead of the direct calculations in [9], we use
the Arendt–Rhandi theorem:

Theorem 1.1. (See [3, Theorem 1.1].) Assume that X is a Banach lattice, (A, D(A)) is a resolvent positive operator which generates an
analytic semigroup and (B, D(A)) is a positive operator. If (λ0 I − (A + B), D(A)) has a nonnegative inverse for some λ0 larger than
the spectral bound s(A) of A, then (A + B, D(A)) generates a positive analytic semigroup.

Thanks to this, we can avoid certain resolvent estimates which do not appear to be available in the continuous case. Also,
we have been able to relax some assumptions on k and this allows a more general local solvability result to be obtained.
On the other hand, the continuous case places an additional restriction on the order m of the space Xm in which the
analyticity is available. This follows from the fact that in the continuous case we have to control the zeroth moment which
is redundant in the discrete case. Furthermore, dealing with the relevant moment inequalities is technically more involved.
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2. Formulation of main results

The main results of the paper are:

1. analyticity of the continuous fragmentation semigroups for a wide range of cases including, in particular, power law
and homogeneous fragmentation in Xm for sufficiently large m,

2. application of the analyticity of the fragmentation semigroup to show classical solvability of the full coagulation–
fragmentation equation for a class of unbounded coagulation kernels in Xm .

To formulate these results, we have to introduce specific assumptions and notation. First we define

nm(y) :=
y∫

0

b(x | y)xm dx

for any m ∈M0 := {0} ∪M and y ∈ R+ . Further, let

N0(y) := n0(y) − 1 and Nm(y) := ym − nm(y), m � 1.

It follows from (3) and (4) that

nm(y) � ym

y∫
0

b(x | y)dx = ymn0(y) < +∞ ∀m ∈M0

and N0(y) = n0(y) − 1 � 0. Moreover, by (2),

Nm(y) = ym −
y∫

0

b(x | y)xm dx � ym − ym−1

y∫
0

b(x | y)x dx = 0 (9)

for m � 1 and hence

Nm � 0, m ∈M0, (10)

with N1 = 0.
Next, for any m ∈ M, let (Amu)(x) := a(x)u(x) on

D(Am) = {u ∈ Xm: au ∈ Xm}
and let Bm be the restriction to D(Am) of the integral expression

[Bu](x) =
∞∫

x

a(y)b(x | y)u(y)dy.

Theorem 2.1. Let a,b satisfy (2), (3) and (5), and let m be such that m � j + l if j + l > 1 and m > 1 if j + l � 1.

(a) The closure (Fm, D(Fm)) = (−Am + Bm, D(Am)) generates a positive quasi-contractive semigroup, say (S Fm (t))t�0 , of type at
most 4a0b0 on Xm. Furthermore, if u ∈ D(Fm)+ , then

Nm(x)a(x)u(x) ∈ X0, m ∈M0. (11)

(b) If, moreover, for some m there is cm > 0 such that

lim inf
x→∞

Nm(x)

xm
= cm, (12)

then Fm = −Am + Bm and (S Fm (t))t�0 is an analytic semigroup on Xm.
(c) If (12) holds for some m0 , then it holds for all m � m0 .

We note that (12) cannot hold for m = 1 as N1 = 0.

Example 1. One of the forms of b(x | y) most often used in applications is

b(x | y) = 1
h

(
x
)

(13)

y y
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which is referred to as the homogeneous fragmentation kernel, see e.g. [11]. In this case the distribution of the daughter
particles does not depend directly on their relative sizes but on their ratio. In this case

nm(y) = 1

y

y∫
0

h

(
x

y

)
xm dx = ym

1∫
0

h(z)zm dz =: hm ym.

Since

y = n1(y) = 1

y

y∫
0

h

(
x

y

)
x dx = y

1∫
0

h(z)z dz = h1 y

we have h1 = 1 so that hm < 1 for any m > 1 and Nm(y) = ym(1 − hm). Hence, (12) holds.
On the other hand, fragmentation processes in which daughter particles tend to accumulate close both to 0 and to

the parent’s size may not satisfy (12). Examples of such distribution functions b are given in [9] (discrete case) and [8]
(continuous case).

Next, we introduce a nonlinear operator Cm in Xm defined for u from a suitable subset of Xm by the formula

(Cmu)(x) := −u(x)

∞∫
0

k(x, y)u(y)dy + 1

2

x∫
0

k(x − y, y)u(x − y)u(y)dy

so that the initial value problem for (1) can be written as an abstract semilinear Cauchy problem in Xm

ut = −Amu + Bmu + Cmu, u(0) = ů, (14)

where ut denotes the strong Xm derivative of u. Note that we have used the same symbol u to denote the Xm-valued func-
tion of t , t → u(t). However, as can be seen from the theorem below, this will not cause any misunderstanding. To formulate
the next theorem we have to introduce a new class of spaces which, as we shall see later, is related to intermediate spaces
associated with the fragmentation operator Fm and its fractional powers, [21]. We set

X (α)
m :=

{
u ∈ Xm;

∞∫
0

∣∣u(x)
∣∣(ω + a(x)

)α(
1 + xm)

dx < ∞
}

, (15)

where ω is a sufficiently large constant. Then we have

Theorem 2.2. Assume that a,b,k satisfy (2), (3), (5), (6) and (12) for some m0 > 1, and let m � max{ j + l,m0} hold. Then, for each
ů ∈ X (α)

m,+ , there is τ > 0 such that the initial value problem (14) has a unique nonnegative classical solution u ∈ C([0, τ ], X (α)
m ) ∩

C1((0, τ ), Xm)∩C((0, τ ), D(Am)). Furthermore, there is a measurable representation of u which is absolutely continuous in t ∈ (0, τ )

for any x ∈R+ and which satisfies (1) almost everywhere on R+ × (0, τ ).

Finally, for global in time solvability we need to restrict the growth rate of k. Namely, we have

Theorem 2.3. Let the assumptions of Theorem 2.2 hold with β = 0, that is, let k satisfy (7). Furthermore, let the constant j from
assumption (5) be such that α j � 1. Then any local solution of Theorem 2.2 is global in time.

3. Proof of Theorem 2.1

We shall fix m satisfying m � j + l if j + l > 1 and m > 1 otherwise; see (5).
The proof of part (a) depends on bringing together several results that are scattered in the literature and thus

some standard calculations are omitted. First we show that Bm := B|D(Am) is well defined. For this we establish that if
0 � u ∈ D(Am), then

‖Bu‖m =
∞∫

0

a(y)
(
nm(y) + n0(y)

)
u(y)dy < +∞. (16)

Indeed, calculations as in [7,8] give

∞∫ ( ∞∫
a(y)b(x | y)u(y)dy

)
xm dx �

∞∫
a(y)u(y)ym dy < ∞ (17)
0 x 0
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and, by (5),

∞∫
0

( ∞∫
x

a(y)b(x | y)u(y)dy

)
dx � a0b0

∞∫
0

(
1 + y j)(1 + yl)u(y)dy � 4a0b0

∞∫
0

wm(y)u(y)dy < +∞, (18)

where we have used the fact that(
1 + y j)(1 + yl) � 4wm(y) (19)

if m � j + l. Hence, (16) follows by adding the above integrals.
Next, direct integration utilizing (17) and (18) gives

∞∫
0

(−Am + Bm)u(x)wm(x)dx = −φm(u) :=
∞∫

0

(
N0(x) − Nm(x)

)
a(x)u(x)dx, u ∈ D(Am). (20)

If the term N0(x) > 0 had not been present, then (20) would have allowed a direct application of the substochastic semi-
group theory, [4, Section 6.2]. Nevertheless, the inequalities in (5) allow us to proceed as in e.g. [7, Theorem 1.1]. Indeed, for
u ∈ D(Am)+ we have, by (9),

−φm(u) �
∞∫

0

N0(y)a(y)u(y)dy � 4a0b0

∞∫
0

u(x)wm(x)dx =: η‖u‖m,

where we have used

0 � N0(y)a(y)

1 + ym
� n0(y)a(y)

1 + ym
� 4a0b0, (21)

by (10), (5) and (19). Then we have φ̃m(u) := φm(u) + η
∫ ∞

0 u(x)wm(x)dx � 0 for 0 � u ∈ D(Am) and the operator

( Ãm, D(Am)) := (Am + ηI, D(Am)) satisfies

∞∫
0

(− Ãm + Bm)u(x)wm(x)dx = −φ̃m(u) � 0.

Since (− Ãm, D(Am)) also generates a positive semigroup of contractions, by [4, Corollary 5.17], an extension F̃m of − Ãm + Bm
generates a substochastic semigroup (G F̃m

(t))t�0. Arguing as in [4, Proposition 9.29], we see that there is an extension Fm of

(−Am + Bm, D(Am)) given by (Fm, D(Fm)) = ( F̃m +ηI, D( F̃m)) generating a positive semigroup (G Fm (t))t�0 = (eηt G F̃m
(t))t�0

on Xm .
Furthermore, by [4, Theorem 6.8], φ̃m extends to D(Fm) by monotone limits of elements of D(Am). Note that this does

not require the assumption that φ̃m is an integral functional with a positive kernel, introduced in [4] (see also the discussion
in [26, Remark 1.2]) as here φ̃m is a combination of positive and negative integral functionals and therefore the monotonic
limit of each of them (finite or infinite) always exists. Thus, let u ∈ D(Fm)+ with D(Am) 
 un ↗ u. Then

lim
n→∞

∞∫
0

N0(x)a(x)un(x)dx =
∞∫

0

N0(x)a(x)u(x)dx < ∞,

lim
n→∞

∞∫
0

un(x)wm(x)dx =
∞∫

0

u(x)wm(x)dx < ∞,

where each right-hand side is well defined by (5), m � j + l and D(Fm) ⊂ Xm . But then the fact that φ̃m(un) tends to a finite
limit shows that also the negative term of φ̃m(un) tends to a finite limit. Hence

lim
n→∞

∞∫
0

Nm(x)a(x)un(x)dx =
∞∫

0

Nm(x)a(x)u(x)dx < +∞.

Thus, by [4, Theorem 5.2], there exists an extension (Fm, D(Fm)) of the operator (−Am + Bm, D(Am)) which generates a
positive quasi-contractive semigroup, say (G Fm (t))t�0, with the growth rate (type) not exceeding η = 4a0b0 and (11) is
satisfied. That the extension is, in fact, the closure, can be proved by standard application of the Arlotti extensions, [4,
Theorem 6.22], as in, e.g., [9, Theorem 2.1]. Since, however, this fact will not be used in the sequel, we shall skip the details
of the calculations.
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To prove part (b), we begin by observing that inequality (9) implies that 0 � Nm(x) � xm . This, together with the as-
sumption, yields cmxm/2 � Nm(x) � xm for large x which, by (11), establishes that if u ∈ D(Fm), then au ∈ Xm or, in other
words, that D(Fm) ⊂ D(Am). Since (Fm, D(Fm)) is an extension of (−Am + Bm, D(Am)), we see that D(Fm) = D(Am).

It is clear that the semigroup generated by −Am is bounded. Furthermore, if λ = r + is then |λ + a(x)|2 = (r + a(x))2 +
s2 � s2 and therefore

∥∥R(r + is,−Am) f
∥∥

m =
∞∫

0

∣∣∣∣ 1

r + is + a(x)

∣∣∣∣∣∣ f (x)
∣∣(1 + xm)

dx � 1

|s| ‖ f ‖m, ∀r > 0.

The analyticity of the fragmentation semigroup then follows from Theorem 1.1.
The statement (c) that (12) holds for all m � m0 provided it holds for m0 follows as in [9, Theorem 2.1]. �

4. Intermediate spaces associated with Fm

Throughout this section, we shall assume that the size distribution function b is such that (12) is satisfied. It then
follows from Theorem 2.1 that (Fm, D(Fm)) = (−Am + Bm, D(Am)) is the infinitesimal generator of an analytic semigroup
(S Fm (t))t�0 of type at most 4a0b0 on Xm , and consequently we can define intermediate spaces related to Fm , see [21]. As
it is more convenient to deal with an invertible generator, we examine the operator Fm,ω defined by

Fm,ω := Fm − ωI, D(Fm,ω) = D(Fm) = D(Am), (22)

where ω > 4a0b0 is a fixed constant. The abstract Cauchy problem associated with the fragmentation equation then takes
the form

ut = ωu + Fm,ωu = ωu − Am,ωu + Bmu, u(0) ∈ D(Am),

where Am,ω := Am + ωI and D(Am,ω) = D(Am). The operators (Fm,ω, (D(Am)) and (−Am,ω, D(Am)) generate analytic semi-
groups (S Fm,ω (t))t�0 = (e−ωt S Fm (t))t�0 and (S−Am,ω (t))t�0 = (e−ωt S−Am (t))t�0 on Xm . Moreover, the fact that each operator
is invertible, means that the norms ‖u‖m,A := ‖Am,ωu‖m and ‖u‖m,F := ‖Fm,ωu‖m , u ∈ D(Am) are equivalent to each other
and also to the corresponding graph norms on D(Am), see [18, Remark 1.5, p. 191].

If (G, D(G)) is the infinitesimal generator of an analytic semigroup (SG(t))t�0 on a Banach space X , one can construct
a family of intermediate spaces, DG(α, r), 0 < α < 1, 1 � r � ∞ in the following way:

DG(α, r) := {
x ∈ X: t → v(t) := ∥∥t1−α−1/r G SG(t)x

∥∥
X ∈ Lr( J )

}
, (23)

‖x‖DG (α,r) := ‖x‖X + ∥∥v(t)
∥∥

Lr( J ), (24)

where J := (0,1); see [21, p. 45]. From [21, Corollary 2.2.3], these spaces do not depend explicitly on G , but only on D(G)

and its graph norm. If we apply this theory to the specific cases G = Fm,ω and G = −Am,ω then, in view of the above
discussion, we have (up to equivalence of the respective norms)

D Fm,ω (α, r) = D−Am,ω (α, r). (25)

We find it most convenient to use D−Am,ω (α,1) which, by [21, Proposition 2.2.2], equals the real interpolation space
(Xm, D(Am,ω))α,1. By [31, Section 1.18.5] we have(

Xm, D(Am,ω)
)
α,1 = X (α)

m , (26)

see (15), which hereafter we equip with the norm

‖u‖(α)
m :=

∞∫
0

∣∣u(x)
∣∣(ω + a(x)

)α(
1 + xm)

dx. (27)

In other words, there is a constant c1 � 1 such that

c−1
1 ‖u‖(α)

m � ‖u‖D Fm,ω (α,1) � c1‖u‖(α)
m , ∀u ∈ D Fm,ω (α,1). (28)

Remark 1. For the purpose of the forthcoming analysis, one could use any suitable intermediate space between Xm and
D(Am,ω), see [21, Chapter 7], such as the domains of fractional powers of Fm,ω , see [9]. Such a choice, however, seems to
require some additional analysis which is missing in [9]. The choice of (Xm, D(Am,ω))α,1 simplifies the calculations, also in
the discrete case, without altering the final result.
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5. Local solvability – proof of Theorem 2.2

In this section we assume that a and b satisfy the assumptions of Theorem 2.1 b) so that, in particular, (12) holds for
some m � j + l or m > 1 if j + l � 1. Furthermore, the coagulation kernel is such that (6) is satisfied. To shorten notation,
for any constant c we define ac(x) := c + a(x) and aα

c (x) := (c + a(x))α and fix a constant ω > max{4a0b0,1}. Then we get
easily

aα
ω(x)

ωα
� aα

1 (x) � aα
ω(x). (29)

We consider the following modified version of (1)

∂t u(x, t) = −(
aω(x) + γ aα

ω(x)
)
u(x, t) +

∞∫
x

a(y)b(x | y)u(y, t)dy

+ (
γ aα

ω(x) + ω
)
u(x, t) − u(x, t)

∞∫
0

k(x, y)u(y, t)dy + 1

2

x∫
0

k(x − y, y)u(x − y, t)u(y, t)dy, (30)

where γ is a constant to be determined and α is the index appearing in (6).
If we define an operator Aα

ω by(
Aα

ωu
)
(x) := aα

ωu(x), D
(

Aα
ω

) := {
u ∈ Xm: Aα

ωu ∈ Xm
}
,

then we clearly have D(Aα
ω) = X (α)

m . Therefore, from [21, Proposition 2.4.1], (Fγ , D(Fγ )) := (Fm,ω − γ Aα
m, D(Am)) generates

an analytic semigroup, say (S Fγ (t))t�0, on Xm . Since (S Fm,ω (t))t�0 and (S−γ Aα
m
(t))t�0 are positive and contractive, we can

use the Trotter product formula, [12, Corollary III.5.8] to deduce that (S Fγ (t))t�0 is also a positive contraction on Xm .
Furthermore, since clearly S−γ Aα

m
(t) � I for t � 0, using again the Trotter formula

S Fγ (t)u � S Fm,ω (t)u, u ∈ Xm,+. (31)

Thus, since X (α)
m is a Banach lattice with order inherited from Xm , we obtain for u ∈ X (α)

m

∥∥S Fγ (t)u
∥∥(α)

m �
∥∥S Fm,ω (t)u

∥∥(α)

m � c1

(∥∥S Fm,ω (t)u
∥∥

m +
1∫

0

s1−α
∥∥Fm,ω S Fm,ω (s)S Fm,ω (t)u

∥∥
m ds

)

� c1

(
‖u‖m +

1∫
0

s1−α
∥∥Fm,ω S Fm,ω (s)u

∥∥
m ds

)
= c1‖u‖D Fm,ω (α,1) � c2

1‖u‖(α)
m . (32)

Next consider the set

U = {
u ∈ X (α)

m,+: ‖u‖(α)
m � 1 + b

}
, (33)

for some arbitrary fixed b > 0. For u ∈ U we obtain

∞∫
0

k(x, y)u(y)dy � K

(
aα

1 (x)

∞∫
0

aβ

1 (y)u(y)dy + aβ

1 (x)

∞∫
0

aα
1 (y)u(y)dy

)
� 2Kaα

1 (x)‖u‖(α)
m � 2Kaα

ω(x)(1 + b),

for any x > 0. Thus, on setting

γ = 2K (b + 1), (34)

we have

(Cγ u)(x) := −u(x)

∞∫
0

k(x, y)u(y)dy + (
γ

(
aα
ω(x) + ω

))
u(x) + 1

2

x∫
0

k(x − y, y)u(x − y)u(y)dy

�
(−2Kaα

ω(x)(1 + b) + 2Kaα
ω(x)(1 + b) + ω

)
u(x) + 1

2

x∫
0

k(x − y, y)u(x − y)u(y)dy � 0 (35)

for all u ∈ U . Note also that, for u, v ∈ X (α)
m , we have ‖γ Aα

ωu + ωu‖m � (ω + γ )‖u‖(α)
m ,
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∞∫
0

∣∣u(x)
∣∣( ∞∫

0

k(x, y)
∣∣v(y)

∣∣dy

)
wm(x)dx � K

(‖u‖(α)
m ‖v‖(β)

0 + ‖u‖(β)
m ‖v‖(α)

0

)
� 2K‖u‖(α)

m ‖u‖(α)
m (36)

and, in a similar way,

∞∫
0

( x∫
0

k(x − y, y)
∣∣u(y)

∣∣∣∣v(x − y)
∣∣dy

)
wm(x)dx =

∞∫
0

∞∫
0

k(x, y)
∣∣u(y)

∣∣∣∣v(x)
∣∣wm(x + y)dx dy

� 2m+2 K‖u‖(α)
m ‖v‖(α)

m , (37)

where we used ω > 1 and β � α.
Therefore, using the definition of γ , on U we have

‖Cγ u‖m � (ω + γ )(1 + b) + 2K (b + 1)2 + 2m+1 K (b + 1)2 � ω max
{

1,2K (1 + b)
}
(b + 1)

(
2m + 3

)
. (38)

If we now investigate the Lipschitz continuity of Cγ , then we observe that the linear component γ Aα
ω + ωI satisfies∥∥(

γ Aα
m + ωI

)
u − (

γ Aα
m + ωI

)
v
∥∥

m � (ω + γ )‖u − v‖(α)
m

and, by (36) and (37),

‖Cγ u − Cγ v‖m �
(
ω + γ + 2K

(‖u‖(α)
m + ‖v‖(α)

m
)(

1 + 2m))‖u − v‖(α)
m , u, v ∈ U . (39)

Now, let us take ů ∈ X (α)
m,+ satisfying ‖ů‖(α)

m � c−2
1 b, for b of (33) and c1 from (32) and use the contraction mapping method

for

(T u)(t) = S Fγ (t)ů +
t∫

0

S Fγ (t − s)Cγ u(s)ds

on Y = C([0, τ ],U), with U defined by (33) and the metric induced by the norm ‖u(t)‖Y := sup0�t�τ ‖u(t)‖(α)
m . Having

established the above estimates, the calculations that, for some τ > 0, T is a contraction on Y , follow [21, Theorem 7.1.2]
(with Xα of [21] equal to X (α)

m ) and, for regularity, [21, Proposition 7.1.10 (iii)]. Therefore, for any ů ∈ X (α)
m,+ , there is a unique

mild solution u to (14) in X (α)
m,+ which, moreover, satisfies u ∈ C1((0, τ ), Xm) ∩ C((0, τ ), D(Am)).

To complete the proof, we note that Xm is a space of type L, see [17, pp. 69–71] or [4, pp. 38–41] and thus any
u ∈ C1((0, τ ), Xm) has a measurable representation R+ × (0, τ ) 
 (x, t) → ū(x, t) which, moreover, is absolutely continuous
in t for any x and such that the partial derivative ∂t ū exists almost everywhere on R+ × (0, τ ) with ∂t ū(·, t) = ut(t) for
almost any t ∈ (0, τ ). Since D(Am) ⊂ D(γ Aα

m) ⊂ Xm , we see that all terms in (30) are separately well defined and thus the
solution u has a representation which satisfies (1) almost everywhere on R+ × (0, τ ). �
6. Global solvability – proof of Theorem 2.3

The local solution, constructed in the previous section, can be extended in a usual way to the maximal forward interval
of existence [0, τmax(ů)). By [21, Proposition 7.1.8] and the remark below it, if τmax(ů) < +∞, then ‖u(t)‖(α)

m is unbounded
as t → τmax(ů). Thus, to show that u is globally defined, we need to show that ‖u(t)‖(α)

m is a priori bounded uniformly in
time.

Noting that for any constant D > 1 we have

D + y

1 + y
� D, y � 0

and, by elementary calculus, for any v, w > 0(
1 + xv)(

1 + xw)
� 2

(
1 + xv+w)

, x � 0,

we obtain

‖u‖(α)
m � aα

0

∞∫
0

∣∣u(x)
∣∣(1 + xm)(

1 + ωa−1
0 + x j)α dx � 21+α(a0 + ω)α

∞∫
0

∣∣u(x)
∣∣(1 + xm+ jα)

dx, (40)

where a0 was defined in (5). For r ∈M0, let us denote by Mr the rth moment of u,

Mr(u) :=
∞∫

xru(x)dx,
0
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so that (40) can be written as

‖u‖(α)
m � Lα

(
M0(u) + Mm+ jα(u)

)
,

where Lα = 21+α(a0 + ω)α . Thus, to prove the theorem it is enough to show that the moments M0(u(·)) and Mm+α j(u(·))
do not blow up in finite time. Though for a given m, Theorem 2.2 does not ensure the differentiability of Mm+α j , it is

valid in the scale of spaces Xr with r � m provided, of course, ů ∈ X (α)
r . Since the embedding X (α)

r ⊂ X (α)
m is continuous for

r � m, the solutions emanating from the same initial value ů ∈ X (α)
r ⊂ X (α)

m in each space, by construction, must coincide.
Hence, let ů ∈ X (α)

m+ jα ⊂ Xm+ jα ⊂ X (α)
m , where the last inclusion is due to (5) and (40), so that u ∈ C([0, τmax(ů)), X (α)

m+ jα) ∩
C1((0, τmax(ů)), Xm+ jα) ∩ C((0, τmax(ů)), D(Am+ jα)), with possibly different, but still nonzero, τmax(ů). This, in particular,
yields differentiability of ‖u(·)‖0 = M0(u(·)) and, consequently, of Mm+ jα(u(·)). Since for 1 � r � m + jα we have

∞∫
0

∣∣u(x)
∣∣xr dx �

1∫
0

∣∣u(x)
∣∣xr dx +

∞∫
1

∣∣u(x)
∣∣xr dx �

∞∫
0

∣∣u(x)
∣∣dx +

∞∫
0

∣∣u(x)
∣∣xm+ jα dx = ‖u‖m+ jα, (41)

we see that all lower order moments Mr(u(·)) are also differentiable on (0, τmax(ů)) and (Mr(u(t)))t = Mr(ut(t)). Further,
all rth moments with 1 � r � m + jα of every term on the right-hand side of (1) exist and are continuous on (0, τmax(ů)).
To get the moment estimates we use the inequality

(x + y)r − xr − yr �
(
2r − 1

)(
xr−1 y + yr−1x

) =: Gr
(
xr−1 y + yr−1x

)
, (42)

for r � 1, x, y ∈ R+ , established in [7]. Standard calculations, similar to (36) and (37) but for u ∈ X (α)
m+ jα,+ , 1 < r � m + jα,

and (40) with ω = 1, give

∞∫
0

xr(Cm+ jαu)(x)dx =
∞∫

0

∞∫
0

(
(x + y)r − xr − yr)k(x, y)u(x)u(y)dx dy

� Gr K

∞∫
0

∞∫
0

(
xr−1 y + xyr−1)((1 + a(x)

)α + (
1 + a(y)

)α)
u(x)u(y)dx dy

� Gr K Lα

2

∞∫
0

∞∫
0

(
xr−1 y + xyr−1)(2 + x jα + y jα)

u(x)u(y)dx dy

� Gr K Lα(Mr+ jα−1M1 + Mr−1M1+ jα + 2Mr−1M1). (43)

For the particular cases r = 0 and r = 1 we obtain

∞∫
0

(Cm+ jαu)(x)dx = −1

2

∞∫
0

k(x, y)u(x, t)u(y, t)dx dy � 0,

∞∫
0

x(Cm+ jαu)(x)dx = 0.

Hence, using (20) and (21) for the linear part, we obtain on (0, τmax(ů))

M0,t � 4a0b0(M1 + Mm),

M1,t = 0,

Mm+ jα,t � Gm+ jα K Lα

(
Mm+2 jα−1M1 + Mm+ jα−1(M1+ jα + 2M1)

)
. (44)

Arguing as in (41), we see that if 1 � r � r′ , then

Mr � M1 + Mr′ (45)

as xr � x on [0,1] and xr � xr′
on [1,∞). Thus, we see that in order for the moment system (44) to be closed, we must

assume that jα � 1. This allows us to re-write (44) as

M0,t � 4a0b0(2M1 + Mm+ jα),

Mm+ jα,t � Gm+ jα K Lα

(
(Mm+ jα + M1)M1 + (Mm+ jα + M1)(M2 + 3M1)

)
, (46)
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where M1 is constant and where we used jα � 1. To find the behaviour of M2, again we use (20) and (43), with an obvious
simplification of (42), to get the estimate for M2 as

M2,t � 4K Lα

(
M1+ jαM1 + M2

1

)
� 4K Lα

(
M2M1 + 2M2

1

)
.

Hence, M2 is bounded on its interval of existence. Then, from the second inequality in (46), we see that Mm+ jα satisfies
a linear inequality with bounded coefficients and thus it also is bounded on (0, τmax(ů)). This in turn yields the boundedness
of M0. Hence, by (40), ‖u(·)‖(α)

m is bounded and hence u exists globally. To ascertain global existence of solutions emanating
from any initial datum ů ∈ X (α)

m we observe that since X (α)
m+ jα is dense in X (α)

m , finite blow-up of such a solution would
contradict the theorem on continuous dependence of solutions on the initial data, [21, Theorem 7.1.2]. �
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