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a b s t r a c t

Let µ be a self-similar measure supported on a self-similar set K with the open set con-
dition. For x ∈ K , let A(D(x)) be the set of accumulation points of Dr (x) =

logµ(B(x,r))
log r as

r ↘ 0. In this paper, we show that for any closed non-singleton subinterval I ⊂ R, the set
of points x for which the set A(D(x)) equals I is either empty or residual.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

Let Si : Rd
→ Rd (i = 1, 2, . . . ,N) be the contracting similarities with contraction ratios ri ∈ (0, 1) and let (p1, . . . , pN )

be a probability vector (i.e. 0 < pi < 1 for all i and
N

i=1 pi = 1). Using the framework of [11] we say that K is a self-similar
set and µ is a self-similar measure if K is the unique non-empty compact subset of Rd such that

K =


i

Si(K),

and µ is the unique Borel probability measure on Rd such that

µ =


i

piµ ◦ S−1
i .

It is well known that the support of µ equals K . We say that the list (S1, . . . , SN) satisfies the open set condition (OSC)
(sometimes we also say that the self-similar measure µ satisfies the OSC) if there exists a non-empty, bounded and open
set U such that Si(U) ⊂ U for all i and Si(U) ∩ Sj(U) = ∅ for all i ≠ j.

Multifractal analysis of the self-similar measure µ refers to the study of the fractal geometry of the sets of the points x
for which the measure µ(B(x, r)) behaves like rα for small r . Here B(x, r) is the closed ball of radius r centered at x. That is,
we study the sets

Kα =


x ∈ Rd

: lim
r→0

logµ(B(x, r))
log r

= α


, α ≥ 0.
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The support of the self-similar measure µ has the following natural decomposition:

K =


α

Kα ∪K ,

where

K =


x ∈ K : lim inf

r→0

logµ(B(x, r))
log r

< lim sup
r→0

logµ(B(x, r))
log r


.

The setK is called the set of divergence points (or irregular set) of the self-similar measure and the elements in the setK are
called divergence points. It is well known that the setK has µ-measure zero, see [21]. In other words, the set of divergence
points of the self-similar measure is negligible from the measure-theoretical point of view. However, there is an extensive
literature showing that the set of divergence points of the self-similarmeasure and other type irregular sets can be large from
the point of view of dimension theory, see [4,5,7,9,14,13,16,18,20,22,23] and references therein. In particular, Barreira and
Schmeling [4] and Chen and Xiong [5] showed that the setK has full Hausdorff dimension for (p1, . . . , pN) ≠ (r s1, . . . , r

s
N),

where s denotes the Hausdorff dimension of K (that is, s is the unique solution of the equation


i r
s
i = 1). We remark that

Chen and Xiong obtained the above result under the assumption that (S1, . . . , SN) satisfies the strong separation condition
(SSC), that is, Si(K)∩ Sj(K) = ∅ for all i, jwith i ≠ j. Very recently, using the technique in [8], Xiao, Wu and Gao [23] proved
that Chen and Xiong’s result remained valid under the OSC. Li andWu [14] studied theHausdorff dimensions of some refined
subsets of the setK under the OSC, and their results unified the above mentioned results as well as some classical results on
the multifractal analysis of the self-similar measure.

The notion of residual set is usually used to describe a set being ‘‘large’’ in a topological sense. Recall that in ametric space
X , a set R is called residual if its complement is of the first category. Moreover, in a complete metric space a set is residual
if it contains a dense Gδ set, see [19]. We say that a set is large from the topological point of view if it is residual. Recently,
some results show that the sets of some kinds of divergence points (or irregular sets) can also be large from the topological
point of view. For example, Albeverio, Pratsiovytyi and Torbin [1], Hyde et al. [12] and Olsen [17] proved that the sets of
some kinds of divergence points associated with integer expansion are residual. Baek and Olsen [2] discussed the set of
extremely non-normal points of self-similar set from the topological point of view. Barreira, Li and Valls [3] proved that the
set of divergence points of the Birkhoff averages of a continuous function is residual. Motivated by these results, we show in
this paper that the setK is large from the topological point of view. Namely, we prove thatK is either empty or residual. In
fact, we show that the set of points for which the function Dr(x) has a prescribed set of accumulation points is also residual.

To state our result, we first introduce some notations. For x ∈ K , let A(D(x)) denote the set of accumulation points of
Dr(x) :=

logµ(B(x,r))
log r as r ↘ 0, that is

A(D(x)) = {y ∈ (0, +∞) : lim
k→∞

Drk(x) = y for some {rk}k ↘ 0}.

Write αmin = mini
log pi
log ri

and αmax = maxi
log pi
log ri

. It was shown in [14] that the set A(D(x)) is either a singleton or a closed
subinterval for any x ∈ suppµ, and KI = ∅ if I is not a closed subinterval of [αmin, αmax].

The following are our main results.

Theorem 1.1. Assume that {Si}Ni=1 satisfies the OSC and I ⊂ [αmin, αmax] is a closed non-singleton subinterval. Then the set

KI = {x ∈ K : A(D(x)) = I}

is residual if it is not empty.

The following result follows immediately from the above theorem.

Corollary 1.2. Assume that {Si}Ni=1 satisfies the OSC. Then the set K is residual if it is not empty.

2. Preliminaries

For n ∈ N, let

Σn
= {1, . . . ,N}

n.

Let Σ∗
=


n Σn and Σ = {1, . . . ,N}
N. We equip Σ with the distance defined by

d(ω, ω′) = 2−n, ω = (ωi)i∈N, ω′
= (ω′

i)i∈N,

where n is the smallest integer such that ωn ≠ ω′
n. It is well known that (Σ, d) is a compact metric space. For ω =

(ω1 . . . ωn) ∈ Σn, we denote by |ω| = n the length ofω. Forω = (ω1 . . . ωn) ∈ Σn and apositive integermwithm ≤ n, or for
ω = (ω1, ω2, . . .) ∈ Σ and a positive integer m, let ω|m = (ω1 . . . ωm). For ω = (ω1 . . . ωn) ∈ Σn and ω′

= (ω′

1 . . . ω′
m) ∈

Σm, we let ωω′
= (ω1 . . . ωnω

′

1 . . . ω′
m) ∈ Σn+m. Analogously, for ω = (ω1 . . . ωn) ∈ Σn and ω′

= (ω′

1, ω
′

2, . . .) ∈ Σ , we
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let ωω′
= (ω1 . . . ωnω

′

1ω
′

2 . . .) ∈ Σ . Moreover, if ω ∈ Σ∗ we define the cylinder [ω] generated by ω by

[ω] = {ωσ : σ ∈ Σ}.

Furthermore, for ω ∈ Σ∗, X, X1, . . . , Xm ⊂ Σ∗ and a positive integer n, we write

ωX = {ωη : η ∈ X}

and

X1 . . . Xm = {ω1 . . . ωm : ωi ∈ Xi}, Xn
= {ω1 . . . ωn : ωi ∈ X}.

We denote the cardinality of a set A by #A. Define Π : Σ∗
→ RN by

Π(ω) = (Π1(ω), . . . , ΠN(ω))

=


#{1 ≤ i ≤ n : ωi = 1}

n
, . . . ,

#{1 ≤ i ≤ n : ωi = N}

n


. (1)

Let

∆ =


q = (q1, . . . , qN) ∈ RN

: qi ≥ 0,


i

qi = 1


.

The following simple lemma is taken directly from [18]. We reproduce the proof for the reader’s convenience.

Lemma 2.1. Let ω1, ω2 ∈ Σ∗ and q1, q2 ∈ ∆. Then

|Π(ω1ω2) − q2| ≤ |Π(ω1) − q1| + |Π(ω2) − q2| + |q1 − q2|.

Proof. Write

q =
|ω1|

|ω1| + |ω2|
q1 +

|ω2|

|ω1| + |ω2|
q2.

It is easy to check that

Π(ω1ω2) =
|ω1|

|ω1| + |ω2|
Π(ω1) +

|ω2|

|ω1| + |ω2|
Π(ω2).

Hence,

|Π(ω1ω2) − q2| ≤ |Π(ω1ω2) − q| + |q − q2|

≤
|ω1|

|ω1| + |ω2|
|Π(ω1) − q1| +

|ω2|

|ω1| + |ω2|
|Π(ω2) − q2| +

|ω1|

|ω1| + |ω2|
|q1 − q2|

≤ |Π(ω1) − q1| + |Π(ω2) − q2| + |q1 − q2|.

The proof of the lemma is completed. �

Also, for ω ∈ Σ let A(Π(ω|n)) denote the set of accumulation points of the sequence {Π(ω|n)}n.

Theorem 2.2. Assume that {Si}Ni=1 satisfies the OSC and C ⊂ ∆ is a closed and connected subset that is not a singleton. The set

ΣC := {ω ∈ Σ : A(Π(ω|n)) = C}

is residual if it is not empty.

Proof. We will construct a dense Gδ set E ⊂ Σ such that E ⊂ ΣC .
For each q ∈ ∆, n ∈ N and ε > 0, define

F(q, n, ε) =


ω|n : ω ∈ Σ∗, |Π(ω) − q| < ε and rω ≤

1
Nn

< rω|ω|−1


. (2)

Note that rmin ≤ 1/N since {Si}Ni=1 satisfies the OSC. Therefore, |ω| ≥ n if rω ≤
1
Nn < rω|ω|−1. This implies that the above

definition is reasonable. Given ε > 0, we have F(q, n, ε) ≠ ∅ for each q ∈ ∆ and any sufficiently large n, see [18].
Now for each k ∈ N choose numbers qk,1, . . . , qk,ℓk ∈ C such that

C ⊂

ℓk
i=1

B

qk,i, 1/k


(3)



432 J. Li, M. Wu / J. Math. Anal. Appl. 404 (2013) 429–437

and

|qk,i+1 − qk,i| <
1
k

for i = 0, . . . , ℓk − 1, |qk,ℓk − qk+1,1| <
1
k
. (4)

Moreover, let ε1 > ε2 > · · · be a sequence of positive numbers decreasing to zero with εk < 1/k and let

n1,1 < n1,2 < · · · < n1,ℓ1 < n2,1 < n2,2 < · · · < n2,ℓ2 < · · ·

be positive integers such that

F(qk,i, nk,i, εk) ≠ ∅ for k ∈ N, 1 ≤ i ≤ ℓk.

Let Ω0 = Σ∗. For each ω ∈ Ω0, we take rapidly increasing integers {Nk,i(ω)}k∈N,i=1,...,ℓk such that if

η ∈ ωF(q1,1, n1,1, ε1)
N1,1(ω)

· · · F(q1,ℓ1 , n1,ℓ1 , ε1)
N1,ℓ1 (ω)

F(q2,1, n2,1, ε2)
N2,1(ω)

· · · F(q2,ℓ2 , n2,ℓ2 , ε2)
N2,ℓ2 (ω)

...

F(qk,1, nk,1, εk)
Nk,1(ω)

· · · F(qk,i, nk,i, εk)
Nk,i(ω)

then

|Π(η) − qk,i| ≤ εk (5)

and

nk+1,ℓk+1

|ω| +

ℓ1
i=1

N1,i(ω)n1,i + · · · +

ℓk
i=1

Nk,i(ω)nk,i

→ 0 as k → ∞. (6)

Now we define recursively the sets Ωk,i ⊂ Σ∗ for k ∈ N and i = 1, . . . , ℓk by

Ω1,1 =


ω∈Ω0

ωF(q1,1, n1,1, ε1)
N1,1(ω),

Ω1,2 =


η∈Ω1,1

ηF(q1,2, n1,2, ε1)
N1,2(ω),

...

Ω1,ℓ1 =


η∈Ω1,ℓ1−1

ηF(q1,ℓ1 , n1,ℓ1 , ε1)
N1,ℓ1 (ω),

Ω2,1 =


η∈Ω1,ℓ1

ηF(q2,1, n2,1, ε2)
N2,1(ω),

and so on.
Finally, let

Ek,i =


ω∈Ωk,i

[ω]

and

E =

∞
k=1

ℓk
i=1

Ek,i.

Clearly, E is a Gδ set since each cylinder set [ω] is open.
Next we show that E has the desired properties.

Claim 1. E is dense in Σ .

Proof of Claim 1. It suffices to show that E ∩ B(ω, r) ≠ ∅ for every ω ∈ Σ and r > 0, where B(ω, r) is the ball of radius r
centered at ω. Given ω ∈ Σ and r > 0, clearly there exist ω′

∈ Σ∗ and n ∈ N such that [ω′
|n] ⊂ B(ω, r). Write η = ω′

|n.
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Clearly, η ∈ Ω0. We take

η1,1 ∈ ηF(q1,1, n1,1, ε1)
N1,1(η),

η1,2 ∈ η1,1F(q1,2, n1,2, ε1)
N1,2(η),

...

η1,ℓ1 ∈ η1,ℓ1−1F(q1,ℓ1 , n1,ℓ1 , ε1)
N1,ℓ1 (η),

η2,1 ∈ η1,ℓ1F(q2,1, n2,1, ε2)
N2,1(η),

and so on.
It is easy to check that ([ηk,i])k∈N, i=1,...,ℓk is a decreasing sequence of non-empty compact subsets of Σ . Thus,

S :=


k,i

[ηk,i] ∩ [η] ≠ ∅.

Let ρ ∈ S. We claim that ρ ∈ E ∩ B(ω, r). Indeed, it follows from the inclusion S ⊂


k,i Ek,i that ρ ∈ E. On the other hand,

S ⊂ [η] ⊂ B(ω, r).

Hence, ρ ∈ B(ω, r). �

Claim 2. E ⊂ ΣC .

Proof of Claim 2. In order to prove that E ⊂ ΣC , we must show that A(Π(ω|n)) = C for ω ∈ E. We recall that for each
ω ∈ E, there exists ω0

∈ Ω0 such that

ω ∈ ω0F(q1,1, n1,1, ε1)
N1,1(ω

0)
· · · . (7)

We first show that

C ⊂ A(Π(ω|n)). (8)

Given

q ∈ C ⊂

ℓk
i=1

B

qk,i, 1/k


,

take an integer ik ∈ {1, . . . , ℓk} such that q ∈ B(qk,ik , 1/k). In order to avoid tedious notation we assume that ik ∉ {1, ℓk}

although the argument is identical when ik ∈ {1, ℓk}. Let

nk = |ω0
| +

ℓ1
j=1

N1,j(ω
0)n1,j + · · · +

ℓk−1
j=1

Nk−1,j(ω
0)nk−1,j +

ik
j=1

Nk,j(ω
0)nk,j.

It follows from (5) that

|Π(ω|nk) − q| ≤ |Π(ω|nk) − qk,ik | + |qk,ik − q| ≤ εk +
1
k

→ 0

as k → ∞. Therefore, q ∈ A(Π(ω|n)) and the proof of (8) is completed.
Now we show that

A(Π(ω|n)) ⊂ C . (9)

For each positive integer n > |ω0
| there exist k ∈ N, 0 ≤ j < ℓk+1, 0 ≤ N < Nk+1,j+1(ω

0) and 0 ≤ p ≤ nk+1,j+1 such that

n = |ω0
| + s + t + p, (10)

where

s =

ℓ1
i=1

N1,i(ω
0)n1,i + · · · +

ℓk
i=1

Nk,i(ω
0)nk,i +

j
i=1

Nk+1,i(ω
0)nk+1,i

and

t = Nnk+1,j+1.

We claim that

dist(Π(ω|n), C) → 0 when n → ∞. (11)

Note that C is closed, this implies that A(Π(ω|n)) ⊂ C and therefore the proof of (9) is completed.
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Next we establish property (11). Write ω = ω0η1η2η3η where |η1| = s, |η2| = t, |η3| = p and η ∈ Σ . We divide the
proof of (11) into two cases.

Case 1: j ≠ 0. It follows from Lemma 2.1 that

dist(Π(ω|n), C) ≤ |Π(ω|n) − Π(ω0η1η2)| + |Π(ω0η1η2) − qk+1,j+1| + dist(qk+1,j+1, C)

≤ |Π(ω|n) − Π(ω0η1η2)| + |Π(ω0η1) − qk+1,j| + |Π(η2) − qk+1,j+1|

+ |qk+1,j − qk+1,j+1| +
1

k + 1

≤ |Π(ω|n) − Π(ω0η1η2)| + εk+1 + εk+1 +
1

k + 1
+

1
k + 1

(by (5), (2) and (4))

≤ |Π(ω|n) − Π(ω0η1η2)| +
4
k
. (since εk+1 < 1/(k + 1)). (12)

Case 2: j = 0. Also, it follows from Lemma 2.1 that

dist(Π(ω|n), C) ≤ |Π(ω|n) − Π(ω0η1η2)| + |Π(ω0η1η2) − qk+1,1| + dist(qk+1,1, C)

≤ |Π(ω|n) − Π(ω0η1η2)| + |Π(ω0η1) − qk,ℓk | + |Π(η2) − qk+1,1|

+ |qk,ℓk − qk+1,1| +
1

k + 1

≤ |Π(ω|n) − Π(ω0η1η2)| + εk + εk+1 +
1
k

+
1

k + 1
(by (5), (2) and (4))

≤ |Π(ω|n) − Π(ω0η1η2)| +
4
k
. (since εk < 1/k). (13)

Next we estimate the term |Π(ω|n) − Π(ω0η1η2)|. It is easy to check that

Π(ω|n) = Π(ω0η1η2η3) =
|ω0η1η2|

|ω0η1η2| + |η3|
Π(ω0η1η2) +

|η3|

|ω0η1η2| + |η3|
Π(η3).

Therefore,

|Π(ω|n) − Π(ω0η1η2)| ≤
|η3|

|ω0η1η2| + |η3|
|Π(η3) − Π(ω0η1η2)|

≤
|η3|

|ω0η1η2|

Π(η3) + Π(ω0η1η2)


≤
2|η3|

|ω0η1η2|

≤
2nk+1,ℓk+1

|ω0| +

ℓ1
i=1

N1,i(ω0)n1,i + · · · +

ℓk
i=1

Nk,i(ω0)nk,i

. (14)

By (12)–(14) we have

dist(Π(ω|n), C) ≤
2nk+1,ℓk+1

|ω0| +

ℓ1
i=1

N1,i(ω0)n1,i + · · · +

ℓk
i=1

Nk,i(ω0)nk,i

+
4
k
. (15)

Finally, property (11) follows from (6) and (15). Therefore, Claim 2 follows from (8) and (9). �

The proof of Theorem 2.2 is completed. �

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.
Let us first introduce some notations. For ω = (ω1 . . . ωn) ∈ Σn, write pω = pω1 . . . pωn , rω = rω1 . . . rωn , Sω =

Sω1 ◦ · · · ◦ Sωn and Kω = Sω(K). Furthermore, define π : Σ → Rd by

{π(ω)} =

∞
k=1

Kω|k.

It is well known that the map is continuous and onto, see [6].
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For ω ∈ Σ and n ∈ N define

L(ω|n) =
logµ(Kω|n)

log diam Kω|n
.

It follows from [10] that µ(Kω|n) = pω|n under the OSC. Without loss of generality, we can assume that diam K = 1. Hence,

L(ω|n) =
log pω|n

log rω|n
=


i

Πi(ω|n) log pi
i

Πi(ω|n) log ri
. (16)

Given I ⊂ [αmin, αmax], write

SI = {ω ∈ Σ : A(L(ω|n)) = I},

where A(L(ω|n)) denotes the set of accumulation points of the sequence {L(ω|n)}n. It is worth pointing out that π(SI) = KI
if the SSC is satisfied, see [6,18]. However, due to the overlap structure the two sets do not coincide under the OSC.

The following result appeared in [18] but we present its proof for the reader’s convenience.

Proposition 3.1. For any closed non-singleton subinterval I ⊂ [αmin, αmax], there exists a compact connected non-singleton
subset C ⊂ ∆ such that ΣC ⊂ SI .

Proof. Let I = [a, b]. There exist q1, q2 ∈ R with q1 ≤ q2 such that α(q1) = b, α(q2) = a and α([q1, q2]) = [a, b]. Here the
function α(q) is defined by

α(q) = −β ′(q) =


i
pqi r

β(q)
i log pi

i
pqi r

β(q)
i log ri

,

and β : R → R is defined by


i p
q
i r

β(q)
i = 1. For q ∈ R, define the probability vector vq = (pq1r

β(q)
1 , . . . , pqN r

β(q)
N ) and let

C = {vq : q1 ≤ q ≤ q2}. Clearly, the set C is not a singleton if I is not a singleton. Moreover, the set C is compact and
connected since q → ∆q is continuous.

Next we show that

ΣC ⊂ SI .

Let ω ∈ ΣC . We must prove that

A(L(ω|n)) ⊂ I (17)

and

I ⊂ A(L(ω|n)). (18)

Let x ∈ A(L(ω|n)). Then there exists a subsequence (L(ω|nk))k such that L(ω|nk) → x as k → ∞. Since (L(ω|nk))k ⊂ ∆ and
∆ is compact, there exists a probability vector v = (vi)i ∈ ∆ and a subsequence (Π(ω|nkj))j such that Π(ω|nkj) → v as
j → ∞. Therefore, v ∈ A(Π(ω|n)) = C and v = vq for some q1 ≤ q ≤ q2. It follows from (16) that

x = lim
j→∞

L(ω|nkj) = lim
j→∞


i

Πi(ω|nkj) log pi
i

Πi(ω|nkj) log ri

=


i

vi log pi
i

vi log ri
=


i
pqi r

β(q)
i log pi

i
pqi r

β(q)
i log ri

= α(q) ∈ [a, b] = I.

The proof of (17) is completed.
On the other hand, let x ∈ I . We can find q ∈ [q1, q2] such that x = α(q). Since vq ∈ C = A(Π(ω|n)), there exists a

subsequence (Π(ω|nk))k such that Π(ω|nk) → vq as k → ∞. Therefore,

L(ω|nk) =


i

Πi(ω|nk) log pi
i

Πi(ω|nk) log ri
→


i
pqi r

β(q)
i log pi

i
pqi r

β(q)
i log ri

= α(q) = x.

This implies that x ∈ A(L(ω|n)) and the proof of (18) is completed. �



436 J. Li, M. Wu / J. Math. Anal. Appl. 404 (2013) 429–437

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Put

W =


∞
n=1


ω∈Σ∗

Sω(V )


V ,

where

V =


i≠i

Si(K) ∩ Sj(K).

Write Σ = Σ \ π−1(W ), K = K \ W .

Then, π : Σ → K is bijective and σ(Σ) = Σ , where σ is the shift operator on Σ , see [15]. Clearly, Σ is a Gδ set since
π−1(W ) is an Fσ set. Moreover, since any invariant set of one-sided shift is dense, Σ is a dense Gδ set.

Let I ⊂ [αmin, αmax] be a closed non-singleton subinterval. It follows from Proposition 3.1 and Theorem 2.2 that there
exists a dense Gδ set E ⊂ SI . To complete the proof, it suffices to show that the set F = π(E ∩Σ) ⊂ K satisfies the following
properties:

(1) F ⊂ KI ;
(2) F is dense in K ;
(3) F is a Gδ set.

It is easy to check that

F = π(E ∩ Σ) ⊂ π(SI ∩ Σ) = KI ∩K ⊂ KI .

Moreover, E ∩ Σ is a dense Gδ set since both E and Σ are dense Gδ sets. In particular,

K = π(Σ) = π(E ∩ Σ) ⊂ π(E ∩ Σ) = F

and therefore F is dense in K .
For the last property, we observe that

K \ F = (W ∪K) \ F = W ∪ (K \ F) (sinceW ∩ F = ∅)

= W ∪

π(Σ) \ π(E ∩ Σ)


= W ∪ π

Σ \ (E ∩ Σ)


(since π is bijective on Σ)

= π(Σ \ Σ) ∪ π
Σ \ (E ∩ Σ)


= π


(Σ \ Σ) ∪ (Σ \ (E ∩ Σ))


= π


Σ \ (E ∩ Σ)


.

Finally, Σ \ (E ∩ Σ) is an Fσ set (since E ∩ Σ is a Gδ set). Writing Σ \ (E ∩ Σ) =


i Fi as a countable union of closed sets
Fi ⊂ Σ , we obtain

K \ F = π

Σ \ (E ∩ Σ)


=


i

π(Fi),

whereπ(Fi) is a closed set (sinceπ is continuous and K is compact). This shows that F is aGδ set and the proof of Theorem1.1
is complete. �
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