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0. Introduction

The theory of scalar balance laws is relatively well developed. In particular, the method of characteristics allows us to
determine explicitly the life span of solutions with Lipschitz continuous initial data and demonstrate that in general this
life span is finite. After this moment one can introduce a weak solution. There exists a number of ways for the construction
of the admissible weak solution: the method of vanishing viscosity, the theory of L!-contraction semigroups, the layering
method, a relaxation method and an approach motivated by the kinetic theory [7].

Moreover, before the moment of the singularity formation the method of characteristics allows us to construct the
smooth solution. Nevertheless, this solution cannot generally be obtained explicitly. In this paper we propose a method
for finding an asymptotical representation of the smooth solution before the moment of the singularity formation.

Namely, we consider the initial value problem

u+ Y a(t,xWu, =0,  u0,x) =u®), uX) € CR"R), (1
i=1

wheret € Ry, x € R", a;(t, x,u),i =1, ..., n,isareal-valued C' function defined on some open subset of (R, x R" x R).
For a technical reason the functions a;(t, x, u) are assumed to grow at infinity not quicker than a linear function in u.
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A particular important special case is given by the scalar conservation law in the form
u, + divF(t,u) =0,

where F(t,) = (Fi(t,-), ..., Fa(t,")) is a C? vector-function defined on some open subset of R, for any t € R,, and
ai(t,u) = %,i: 1,...,n.

The main aim of this paper is to obtain an asymptotic formula for the solution to the Cauchy problem (1) for the case of a
scalar conservation law. The formula is obtained by the limit for vanishing perturbation of the corresponding stochastically
modified equation (small diffusion limit).

The introduction of a small perturbation of deterministic equation to study then the original equation in the limit of
vanishing noise has appeared in several contexts, particularly for equations of the reaction-diffusion type, see, e.g. [1,9]
and references therein. In [12] large deviations principles for a family of scalar conservation laws with both stochastic and
viscous perturbations, in the limit of jointly vanishing noise and viscosity.

Our asymptotical representation satisfies a special system of balance laws with special integral terms. Nevertheless, after
the moment of the loss of smoothness our asymptotical representation does not corresponds to the admissible weak solution
as small perturbation limit.

In our previous works we considered the non-viscous Burgers equation including multidimensional case. The 1D case
the Burgers equation is a very particular case of the 1D scalar conservation laws, therefore our previous results intersect
with the results presented in this paper.

The paper is organized as follows. In Section 1 we introduce a stochastic differential equation that corresponds to the
stochastic perturbation of the quasilinear equation (1) along characteristics. We consider the relative Fokker-Planck equa-
tion and introduce several integral values that pretend to represent the solution of (1). In Section 2 we show, for the case
of conservation law, how these integral values are connected with the solution to the Cauchy problem (1). In Section 3 we
prove that as a small perturbation limit the integrals introduced in Section 1 represent the smooth solution to the Cauchy
problem (1). In Section 4 by the example of 1D conservation law we show how it is possible to describe the formation of
singularity in solution, e.g. the formation of unbounded derivative. At last, in Section 5 we introduce a system of balance
law associated with the Cauchy problem (1). Moreover, we describe a relationship between this system and the system of
pressureless gas dynamics that arises in context of the non-viscous Burgers equation.

1. Stochastic differential equation associated with the equation of characteristics

Let us write the characteristic ODE of Eq. (1):

dx; du )
— = q;(t, x, u), — =0, i=1,...,n.
dt dt

Its stochastic analog is

dXi(t) = a;(t, X(t), U(®)dt + ord(W}),,  dU(t) = od(W?),, ()
Xi(0) = x;, U@)=u, t>0,
i=1,...,nX()and U(t) are considered as random variables with given initial distributions, (X(t), U(t)) runs in the
phase space R" x R!, oy and o, are nonnegative constants such that |o| # 0 (6 = (01, 03)) and (W), (W?),) =
W], ...,W}!,W?), is an n + 1-dimensional Brownian motion, i.e. the W', W2, i = 1,...,n, are independent one-

dimensional standard Brownian motions.
Let P(t, dx, du), t € R, x € R", be the joint probability distribution of the random variables (X, U), subject to the initial
data

Py (dx, du) = 8, (ug(x)) po(x)dx, (3)

where pg is a bounded nonnegative function from C(R") and dx is Lebesgue measure on R", §, is Dirac measure concentrated
onu.

We look at P = P(t, dx, du) as a generalized function (distribution) with respect to the variable u. It satisfies the
Fokker-Planck equation
P o9 1,02 K1, 97
—=|- — a(t,x,u 0] —5 -0, — | P, 4
at [ ,;axk K )+;2(’1axﬁ+;2zauﬁ ®

subject to the initial data (3).

There is a standard procedure for finding the fundamental solution for (4) (see, e.g. [11]). This procedure consists in a
reduction of the equation to a Fredholm integral equation, the solution of which can be found in the form of series. We are
going to show that for a(t, x, u) = a(t, u) one can also find an explicit solution to the Cauchy problem (4) and (3).
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Let us introduce, still in the general case, the functions, for t € R, x € R", depending on o = (071, 03):

Po (L, X) =/P(t,x, du), .
R
_ JpuP(t, x, du)
UU(t,X) = W’ (6)
_ Jpalt.x, wP(t, x, du)
as(t,x) = Je P(t, x, du) -

We can consider these values if the integrals exist in the Lebesgue sense.
It will readily be observed that u, (0, X) = ug(x) and a, (0, x) = a(0, x, ug(x)).
We denote

p(t,x) = lirr%),o(,(t,x), u(t,x) = lirr}) Uy (t, x), a(t,x) = lirr%)a(,(t, X),

provided these limits exist.
2. Case of a conservation law

Now we dwell on the simpler case of a conservation law, where a = a(t, u). Here the Eq. (4) can be solved explicitly.
Moreover, for the sake of simplicity we set o, = 0 and denote oy = o.

Proposition 1. If a = a(t, u), then problem (4), (3) has the following solution:

2
T g aitrugw)de+yi—xi|

Su(uo()) po(y) e 2% dy, (8)

P(t,x,du) =

1
(W 2mto)" /m"

t > 0,x € R", or, in other words,

1 _Z;‘=1|f6 ai(r,uoz(y))dr+yi—x,-|2 J
P(t,x,du) = — oot s 9
/R¢(u) (t, x, du) VZnto) /D;I duo(y)) po(y) e 2 y 9)
forall p(u) € Co(R).

Proof. We act as in [5,2]. Namely, we apply the Fourier transform to P(t, x, du) in (4), (3) with respect to the variable x and
obtain the Cauchy problem for the Fourier transform P = P(t, X, du) of P(t, x, du):

P _ (1 o p

i (20 [A12 4+ i(A, a(t, u))) P, (10)

B0, %, du) = / DS, (U)o )y, A € R, (1)
[Rn

Eq. (10) can easily be integrated and we obtain the solution given by the following formula:

P(t, 1, du) = P(0, 1, duye™ 27" HtHifo (atwiide (12)

The inverse Fourier transform (in the distributional sense) allows us to find the density function P(t, x, du), t > 0:

1 o
P(t, x, du) = (271)"/ 0Pt &, du) di
Rn

_ 1 / pih) (/ e—f(x,y)e—ijg(x,a(r,u))dz Su(uo(y))po(y)dy> e_%gz\,wzrd)h
R" R"

(271’)2"

1 710'2t()»7 i\x—j‘é a(t,u)dr—y| )27 |f0[ a(r,u)dr+y—x|2
= / 8u(uo () po(¥) / e’ ot 2% drdy
]Rn

Q@m)" Jgn

_ |f(§ a(r,Llo(y))dr+y—x|2

Su(uo(¥)) po(y) e 20% dy, t>0,xeR"

1
- (W2mto)" /]R”

The third equality is satisfied by Fubini’s theorem, which can be applied by the absolute integrability and the bound on the
function involved. Thus, the proposition is proved. O

Remark 1. In the general case o, # 0 an analogous formula can be obtained in a similar way.
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Corollary 1. The functions p,, U, and a, defined in (5)-(7) can be represented by the following formulas:

2
B ZL] |[0[ ai(r,uo(y))dr+yi—xi|

po(y) e 202t dy, (13)

1
Po(t,X) = ——— /
7 (V2mto)n Jen
B X, |f(§ ﬂi(f.uo(y))dr+J’i_Xi|2
Jn i) po(¥) € dy
B 7, |f(§ a,-(r.uo(y))dr+}’i_"i|2
.[Rn poy)e 2% dy
Xk ﬂi<fv“0LV))d’+yi‘Xi|2
S a(E, us () po(v) € ds
S | aicup @iy .

Jan Po¥) e 202 ds

Proof. The result is obtained by substitution of P(t, x, du) as given by (8) in (5)-(7). O

Uy (t,x) = , (14)

a,(t,x) =

(15)

3. Asymptotic formula for smooth solutions

Let us define the following subset A of R:

yER!

t n
teA if inf f Y (@)u(T. o)) o))y dr > —1, (16)
0 =1
where uy € Cb] (R™). It is not difficult to show the A is an open set. Denote t, (ug) = sup A.
The following theorem holds:

Theorem 1. Let u(t, x) be a solution to the Cauchy problem
n
u+ Yt wu, =0, u0,x) = up(x), (17)
i=1
wherea;, i = 1, ..., n,are C'-functions defined on some open subset of (R, xR) and uy € Cbl (R™). Assume t, (ug) = sup A > 0,
A being defined by (16). Then for t € [0, t,(ug)),
u(t, x) = u(t, x) = lim u, (t, %),
o—

where u, (t, x) is given by (6) and the limit exists pointwise.

Proof. The proofis similar to the one given in [2] for a related problem. According to the classical theory (see, e.g.[7, Theorem
5.1.1]), the solution u of (17) exists on some maximal interval [0, T), T < oo and is a C'-smooth function. Since u is constant
along characteristics, its value at any point (t, x), withx € R", t € R, satisfies the implicit relation

t
u(x, t) = ug (x —/ a(r, u)dr) . (18)
0

In particular, the range of u coincides with the range of uo.
Differentiating (18) yields

ay,- Ug (.V)

o u(t, x) = .
1+ 1Y (@)u(T, u1)) o))y, dr
i=1

t
, y:x—/ a(zr, u)dr. (19)
0

This imply T = t.(ug). If 0 < t.(ug) < oo, then the solution to the Cauchy problem blows up at the instant t, (ug).
Otherwise, the solution keeps its smoothness for all t > 0.

The formula (6) implies, using the weak convergence of measures and the fact that pg and ug are continuous and bounded
and independent of o

_ |f(§ a(r.uo(y))dr+y—x|2

fRn ug(y) oo (y) (ll{)r}) («/2717]&7)" e 202t dy

lim uy (t,x) =
Jim o (£, %) _ g atruooacsyf®

: 1
fRn Po(y) Jlm me 202t dy

—0

— Jen 403 P0 ()it x. Y
fR” Lo 8pe.x.y)dy
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with

t
pexy) = [ ateuwde +y—x (20)
0
where §, is the Dirac measure at p € R". We can use locally the implicit function theorem and findy = y; x(p) fromp(t, x, y).
The condition for existence of this function is the invertibility of the matrix
op; tv X, ..
Gi(t,y) = M i,j=1,...,n.
ayj
This matrix fails to be invertible for t = t, (ug). For t < t,(up)

u(t,x) = (}1310 Uy (t, x)

_ Jan Yo @ex (D)) Po (Ve x(P)) det(C(t, yex(p))) " 8y (dye.x)
Jan P x(P)) det(C(t, yex(p))) ™1 8p (dye.x)

Let us introduce the new notation y,(t, X) = y; x(0). Then (20) implies the following vectorial equation:

= Up(Yr.x(0)).

t
/ a(t, ug(yo(T, X)))dt +yo(t,x) —x =0, t=>0,xeR". (21)
0
Let us show that u(t, x) = ug(yo(t, x)) satisfies Eq. (1), that is
n n
> 3(ue) Yo )e + Y 0t p)de(up) (Vo) = O (22)
j=1 k=1

and up(yo(0, x)) = ug(x). Here we denote by yy ; the i-th components of the vector yj.
Fort < t,(up) we can differentiate (21) with respect to t and x; to get the matrix equations:

n
Z Gj Woj)e +ug;i=0, i=1,...,n,
=

and
n
D CiGordy +8 =0, ij=1,....n,
k=1

where §; is the Kronecker symbol. The equations imply

o) ==Y (C Djuoi  Gowy =—(C g (23)
i=1

It remains now only to substitute (23) into (22) to see that u(t, x) satisfies the first equation in (17).
Further, (21) implies ug(yo(0, X)) = ug(x), thus Theorem 1 is proved. O

Remark 2. For a; = a;(u) (i.e. a; is independent of variable t) we have the Conway criterion [6]:

t.(ug) = inf | — ! ) (24)

P S (@)uo) o)y,

i=1

Note that if the denominator vanishes, then t, (1g) = oo and the solution does not blow up. If t, (19) < 0, then the solution
is globally smooth for t > 0, as well.

Proposition 2. Under the assumptions of Theorem 1 the vector
at,x) = (112}) a, (t, x),

where a, (t, x) is given by (7), solves the multidimensional Burgers equation
(at, w), + (a(t,w), Via(t,u) =0

with initial data a(0, u(0, x)) = a(0, up(x)).
Proof. This fact follows directly from Proposition 2.1 of [2]. O
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4. Asymptotics of the singularity formation

In this section we show how the formulas from Corollary allows us to describe the formation of the singularity of solution
to conservation laws. For the sake of simplicity we restrict ourselves to the case of one space variable and a = a(u).
First of all we make several assumptions on the structure of initial data ug(x).

e (A) The moment t, = t,(ug) given by (24) is such that 0 < t,(up) < oo and y* € R is the infimum point in (24);
e (B) There exists x* € R such that equation
a(uo(W)ts +y —x" =0
has a unique solution y*;
e (C) The function a(u) € C¥K(R), k > 2 and there exist m € N, k > m > 2, such that

3 a(uo(y))

= 0’
oky

y=y*

k=2,...,m—1,

9"a(uo(y))

Iy £0. (25)

y=y*

Conditions (A)-(C) mean that y* is a point of inflection of the graph of function z = a(ug(y)) and x* is a point, where
the tangent line to the graph at the point y = y* intersects the abscissa axis. If z = a(up(y)) is bounded, then (A) implies
(B) and (C).

Theorem 2. Let the initial data (pg, Ug) be at least C™-smooth and bounded, m > 2, and the assumptions (A)-(C) hold. Then at
the moment t = t, the singularity arises at the point x, and the following asymptotics takes place as  — 0:

Po (L, %) ~ B(xs, ) po(v) o~ 7, (26)

where
m+1
daug(yx)) | 2m m+1
B(x,. t,) = Ky " K, = 2" (mv)lr<]>
k9 bx) — I\m ] m Y m - ’
Mauo)) | my/m 2m
ou, (ty, X dup((x m—
Wl e D] o (27)
0x 0
x=x* xX=y*
where
"iiﬂ
2 | da(ug(¥x)) m
(2(”“) T ) m+ 2 1 m+ 1 1
C(xy, ty) = — r r{—)-r{——\)r(—-1))J.
Mauee)) | M 2m 2m 2m m
oMy

MOTEOVET, at the moment t = Ly

Po (ts, X) = po(Vo(ts, X)), o — 0,X # Xy, (28)

Uy (ty, X) = Ug(Yo(ts, X)), o — 0,Xx €R, (29)

where the function yq(t, x) has been introduced in the proof of Theorem 1.

Proof. Proceeding as in the proof of Theorem 1 we can readily obtain properties (28), (29). Let us prove (26) analyzing
formula (13) at the point (t, Xy).
For every ¢ > 0 we can consider

V27t,0 py (te, X*) = / po(y) e
R

given by (13) as a sum of two integrals, I; and I, over U, (y*) and R" \ U, (y*), respectively.
First we estimate I,. Let us denote

So) = (a(uo(y)) tz*t+y — x*)? 7

Y1 latug ) txty—x* |2
Zazt*

dy

M, inf  S(y) > 0.

YER\Ue (v*)

My = sup [p(¥)| > 0,
yeER
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Then for every o < o we have

|| < Mqe 02/ e % e o/ dy
R\Ue (v*)

< 2Mqe 0 e % dy <conste o2, (30)
R\Ue (%)
S

<

om‘

since f]R\Ue(y*) dy < o0.
Inequality (30) impliesl, — Oaso — 0.
Then,

 (@lg ) taty—x*)? _ (@) trty—x*)?
I = po(y™) e 2% dy +/ (Po() — po(¥")) e 2021 dy = I + Iiz.
Us (y*) Ue (y*)

Since pg(x) is continuous, then for an arbitrary small ¢ > 0 we have |po(y) — po(y*)| < n(e) = 0(g),y € U.(y*) Thus,
ol = [ 1) - )l dy = consten(e) > 0, ¢ . (31)
()

To estimate [;; we expand a(uy(y)) at the pointy = y*. Since a(ug(y,)) t, = x* —y*and t, = for y belonging

1
T @)y’
to the e-neighborhood Uy« (¢) of the point y* we have

1 9m
AUt +y—x=a (uo(y ) +d Wo))ly=y O =¥ + m'w

v —y*)m> te+y—x
y y**
=A™ -yt — (x —xY), (32)

with A(y**) — % 9Ma(ug ()

amy and y** € Uy« (e).

ok

Taking into account (32), we have

_ () [*er—x*)z & _ Az(y*) U,fy*)Zm ty _ A2 ) (yfy*)Zm t _AZ ) (yfy*)Zm ty
/ e 202t dy = [ e 202 dy + / e 202 —e 202 dy
x (€) - Iy« (€)

&€

=h+h
To find the asymptotics of J; we recall the Watson’s Lemma [8,13], concerning the Laplace integral

a
F()) = / ) dx, a>0,a>08>0.
0

According to this lemma

) ®)
FL) = Zx St <k+’3>f © 5L e (33)

k!

for a suitably smooth f (x).
By means of Watson’s Lemma it can be readily shown that

Ji ~B(xs, t,) o, o — 0.
_A20) =y M by
Atlast,J;; — 0aso — 0analogously to (31), sincee 202 is continuous. Thus we obtain asymptotical formula (26).
Formula (27) is obtained from (14). First we differentiate (14) with respect to x, this is allowable due to properties of
up(x) and pg(x). Then we estimate the numerator and denominator as above. Here we have to take into account the second
terms in expansion (33) from Watson’s Lemma in the numerator, since the first terms are canceled. O

5. Associated system of balance laws

Now we consider the following question: what system of equations do the triple (o, , U, a,) and its limit (p, u, a) satisfy
before and after the blow up time t, (ug)?
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The following proposition holds:

Proposition 3. The functions p,, U, and a,, given by (5)-(7), satisfy for t > 0 the following PDE system:

n

1, 3% Py
@) =0 , (34)
2 ; ax2

at

9(polls)
at

¥ (potls)
ax,{

+ dive(po U 05) = Z I, (35)

where

= / (u — u, (t, %)) ((a(t, u) — a,(t, x)), VxP(t, x, du));
RTI

3(,0000 l) Z 8 (paaa l) a

di o0y i Qo ) 36
at + divy(p ils) = 3Xk a: (36)

i=1,...,n, where

Ifil:f (a;(t, u) — as i (t, x))((a(t, u) — as (t, x)), ViP(t, x, du))+f (ai(t, u))P(t, x, du).
R RN

Proof. The Eq. (34) follows from the Fokker-Planck equation (4) directly.
Let us prove (36) (the derivation of (35) is analogous). We note hthat the definitions of a, (t, x) and p, (t, x) imply

3(ps 05 a
(o d5) = —/ a(t, u)P(t, x, du) :/ a(t, u)P(t, x, du)
at ot Jmn R

3%a, po
Bxk

= - V,P(t, x, d +f 2 37
/Ra(t u)(a(t, u), VxP(t, x, du)) Z (37)

=1

where P, = 2p.
Further, we have

Woelested o, ey ([ acwrcnan)
RN

an 0x Xk
Jen a(t, u) P(t, x, du)
Jan P(t, x, du) )

:/ a(,,,-(t,x)ak(t,u)ka(t,x,du)+/ a(t, u) P(t, x, du)
R"

RM
f]R,, a(t, u) Py (t, x, du) [, P(t, X, du) — [on a(t,u) P(t, x, du) [on Py (t, x, du)

(fen P(t.x, du))

+/ ag(t, u) P(t, x, du)—(
R d Xk

= / (ak(tv u) aa,i(tsx) +a(t, u) aa,k(tax) - aU,k(th) aa’,‘(f,X)) ka(tvxa du)’ (38)

i,k=1,...,n withP, = 0 p

Xk = Bxy

Eq. (36) follows lmmedlately from (37) and (39). Thus, Proposition 3 is proved. O

Corollary 2. Before the instant t,(up), the blow up time of the solution to the Cauchy problem (17), the triple (p, u, a), which
constitutes the limit as |o| — 0 of the triple (p,, U, a5 ), Solves the following system:

8:p + divy(pa) = 0, (39)
:(pi1) + divy(pud) = 0, (40)
9;(pa) + Divy(pa ® a) = 0, (41)

where Div is the divergence of a tensor.

Proof. Eq. (39) follows from the properties of parabolic differential equations with a small parameter in front of the
derivatives of second order [10, Theorem 3.1], since until the instance t, (ug) the coefficients of Eq. (34) are differentiable.
Eq. (40) follows from (39) and Theorem 1, Proposition 2 implies (41). O
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Remark 3. System (39) and (41) constitutes the so called pressureless gas dynamics system, the simplest model introduced
to describe the formation of large structures in the Universe, see, e.g. [14].

Remark 4. As it has been shown in [2] on an example, for discontinuous solutions to (17) the limits as o — 0 of the terms
I? and I} do not vanish as 0 — 0 and yield some specific pressure.

Remark 5. This paper is a continuation of our works concerning stochastic regularization of the non-viscous Burgers
equation for the velocity of particles. In [4] we studied an influence of stochastic perturbation along characteristics with
a variance which depends in a polynomial way on the velocity to the process of the singularity formation. We established a
threshold effect: if the power in the above variance is less than 1, then the noise does not prevent the unbounded gradient of
solution with a linear profile. In [5] we studied the decay rate of the initial particles distribution at infinity for the Langevin
equation associated with the Burgers equation stochastically perturbed by uniform noise to the formation of unbounded
gradient for initial data with a linear profile. In [2,3] we show that the balance laws associated with a stochastic perturbation
of the Burgers equation form the pressureless gas dynamics system with special integral terms. We introduce a notion of
generalized solution as a special small perturbation limit. On the example of Riemann data we show that this solution differs
from the admissible weak solution and takes part of the solution to the gas dynamics equations with a specific pressure term
as small perturbation limit.
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