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CONTINUOUS RANDOM WALKS AND

FRACTIONAL POWERS OF OPERATORS

MIRKO D’OVIDIO

Abstract. We derive a probabilistic representation for the Fourier symbols of

the generators of some stable processes. This short paper represents a bridge
between probabilists and researchers working in PDE’s.

1. Introduction

The connection between fractional operator in space and diffusion with long
jumps has been pointed out by many researchers (see for example [1; 12; 19] and
the references therein). It is well known that the compound Poisson process is a
continuous time stochastic process with jumps which arrive, according to a Poisson
process, with specific probability law for the size. Our aim is to characterize the
jumps distribution in order to obtain singular limit measure characterizing frac-
tional powers of operators.

2. Preliminaries

Let N(t), t > 0 be a Poisson process with rate λ > 0. Let Yj , 0 ≤ j ≤ n be n+1
independent and identically distributed (i.i.d.) random jumps such that Yj ∼ Y
for all j, where the symbol ”∼” stands for equality in law. That is, X1 ∼ X2 if, for
every Borel set B, P{X1 ∈ B} = P{X2 ∈ B} and therefore the random variables
X1 and X2 have the same distribution or probability function. We note that, if
probabilities are defined for a larger class of events, it is possible for two random
variables to have the same distribution function but not the same probability for
every event (see [5], Chapter 2). Furthermore, two random variables which are
identically distributed are not necessarily equal.

It is well known that

(2.1) Zt =

N(t)∑
j=0

Yj − λtEY, t > 0

(E is the mean operator and EY =
∫
yP{Y ∈ dy}) is the compensated compound

Poisson process with generator

(2.2) (Af)(x) = λ

∫
R

(f(x+ y)− f(x)− yf ′(x)) νY (dy)

where νY : Ω ⊆ R �→ [0, 1] is the density law of Y ∈ Ω. The process (2.1) is a

compensated process involving the compound Poisson process
∑N(t)

j=0 Yj . Thus, we
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2 MIRKO D’OVIDIO

have a sequence of i.i.d. random jumps with common law νY and a random number
of jumps 1 + N(t) with P{N(t) = n} = e−λt(λt)n/n!, n = 0, 1, 2, . . ., t > 0. It is
worth to mention that ([17; 18]) the transport equation

(2.3)
∂u

∂t
= Au− λu+ λKu = Au− λ(I −K)u

where

Au = −
n∑

k=1

∂

∂xk
(a(x)u)

(assume that a is sufficiently smooth) and K is the Frobenius-Perron operator
corresponding to the transformation T (x) = x − τ(x) has a solution which is the
law of the solution to the Poisson driven stochastic differential equation

(2.4) dXt = a(Xt)dt+ τ(Xt)dNt.

Formula (2.4) says that Xt is a continuous-time stochastic process with jumps τ
which arrive randomly according to the Poisson process Nt. In particular, dNt = 1
if a Poisson event arrives or dNt = 0 otherwise. The compensated Poisson process
Zt = N(t)− λt (take Yj ≡ 1 for all j in formula (2.1)) is therefore governed by the
equation

∂u

∂t
(x, t) = λ

∂u

∂x
(x, t)− λ(I −K)u(x, t)

= λ
∂u

∂x
(x, t)− λ

(
u(x, t)− u(x− 1, t)

)
where the Frobenius-Perron operator is associated to the jump function τ ≡ 1. The
first derivative ∂u/∂x disappears if Zt = N(t) is the Poisson process. Equation (2.3)
appears in such diverse areas as population dynamics (see for example [13; 14]) and
in astrophysics ([4]).

Formula (2.2) is quite familiar in the representation of the fractional power of
the Laplacian. Indeed, the fractional Laplace operator can be defined pointwise:

(2.5) − (−	)αf(x) =

∫
Rd

(
f(x+ y)− f(x)− y · ∇f(x)1(|y|≤1)

)Cd(α)dy

|y|2α+d

where Cd(α) is a constant depending on d and α ∈ (0, 1), f is a suitable test
function, C2 function with bounded second derivative for instance. We note that
νY in (2.2) is a density defining a probability measure. Furthermore, the fractional
Laplacian is the governing operator of symmetric stable processes.

Let us introduce the 1-dimensional β-stable process Sβ(t), t > 0 with no drift.
In this case we have the characteristic function E exp iξSβ(t) = exp−tΨ(ξ) with
Fourier symbol

Ψ(ξ) = |ξ|β exp
(
−i

πγ

2

ξ

|ξ|
)

= σ|ξ|β
(
1− iθ

ξ

|ξ| tan
πβ

2

)
, β ∈ (0, 1) ∪ (1, 2]

where σ = cosπγ/2, θ = cot
(

πβ
2

)
tan

(
πγ
2

)
and γ must be determined in such

a way that θ ∈ [−1, 1] and σ > 0. The parameter θ is the skewness parameter.
In particular, Sβ(t) is a symmetric real-valued stable process for θ = 0 (and β ∈
(0, 1) ∪ (1, 2]). If β ∈ (0, 1) and θ = −1 then Sβ(t) is totally negatively skewed
whereas, if β ∈ (0, 1) and θ = 1 (that is γ = β) then Sβ(t) is totally positively
skewed. In the latter case, the stable process is also termed stable subordinator (see
for example [2]) and we will denote such a process by Hα(t), t > 0, α ∈ (0, 1). We
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recall that a random variable is positively skewed if the right tail of its probability
distribution is longer than the left tail. The converse holds for the negative case.

Compound Poisson and stable processes belong to the general class of Lévy
processes whose characteristic function is written in terms of the following Fourier
symbol (Lévy - Khintchine)

(2.6) ΨL(ξ) = ib · ξ + ξ ·Mξ −
∫
Rd−{0}

(
eiξ·y − 1− iξ · y1(|y|≤1)

)
μ(dy)

where b ∈ Rd, M is a positive definite symmetric d × d matrix and μ is a Lévy
measure on Rd − {0}, that is a Borel measure on Rd − {0} such that

(2.7)

∫
(|y|2 ∧ 1)μ(dy) < ∞ or equivalently

∫ |y|2
1 + |y|2μ(dy) < ∞.

If Dt, t > 0 is a subordinator (not necessarily stable), then its Lévy symbol is
written as

(2.8) η(ξ) = ibξ +

∫ ∞

0

(
eiξy − 1

)
μ(dy)

where b ≥ 0 and the Lévy measure μ satisfies the following requirements: μ(−∞, 0) =
0 and

(2.9)

∫
(y ∧ 1)μ(dy) < ∞ or equivalently

∫
y

1 + y
μ(dy) < ∞.

Throughout the paper, the symbol
d−→ stands for ”converges in distribution” (or

”converges weakly”, or ”converges in law”, that is Xn
d−→ X iff P{Xn ∈ B} →

P{X ∈ B} as n → ∞ for every Borel set B ⊂ R). Furthermore,

P{X ∈ B} =

∫
B
νX(dx) = νX(B).

3. Compensated Poisson and fractional Laplace operator

Let us consider the Lévy process Ft, t > 0, with associated Feller semigroup
Tt f(x) = Ef(Ft − x) solving ∂tu = Au, u0 = f . In particular, Tt is a positive
contraction semigroup (i.e. 0 ≤ f ≤ 1 ⇒ 0 ≤ Ttf ≤ 1 and Tt+s = TtTs ) on
C∞(Rd) such that (Feller semigroup)

• Tt(C∞(Rd)) ⊂ C∞(Rd), t > 0 (Tt is invariant),
• Ttf → f as t → 0 for all f ∈ C∞(Rd) under the sup-norm (Tt is a strongly

continuous contraction semigroup on the Banach space (C∞(Rd), ‖ · ‖∞) ).

From the general theory of such semigroups we infer the existence of the generator

Af = lim
t→0

Ttf − f

t

for all functions f ∈ D(A), a linear space that is dense in C∞(Rd). A is a closed
linear operator. Thus, we are able to compute the semigroup and its generator as
pseudo-differential operators. We say that A is the infinitesimal generator of Ft,
t > 0 and the following representation holds

(3.1) (Af)(x) = − 1

(2π)d

∫
Rd

e−iξ·xΦ(ξ)f̂(ξ)dξ
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for all functions in the domain

(3.2) D(A) =

{
f ∈ L2(Rd,dx) :

∫
Rd

Φ(ξ)|f̂(ξ)|2dξ < ∞
}

where f̂(ξ) =
∫
Rd e

iξ·xf(x)dx is the Fourier transform of f , Φ(·) is continuous and
negative definite. We say that Tt is a pseudo-differential operator with symbol

exp(−tΦ) and, −Φ is the Fourier multiplier (or Fourier symbol) of A, (̂Af)(ξ) =

−Φ(ξ)f̂(ξ). Furthermore (as in [9]), we write

(3.3) − ∂t Ee
iξ·Ft

∣∣∣
t=0

= Φ(ξ).

It is well known that, for Φ(ξ) = |ξ|α, formula (3.1) gives us the fractional power
of the Laplace operator which can be also expressed as

−(−	)αf(x) =Cd(α) p.v.

∫
Rd

f(y)− f(x)

|x− y|2α+d
dy

=Cd(α) p.v.

∫
Rd

f(x+ y)− f(x)

|y|2α+d
dy(3.4)

where ”p.v.” stands for the ”principal value” of the singular integrals above near
the origin. For α ∈ (0, 1), the fractional Laplace operator can be defined, for f ∈ S
(the space of rapidly decaying C∞ functions), as follows

−(−	)αf(x) =
Cd(α)

2

∫
Rd

f(x+ y) + f(x− y)− 2f(x)

|x− y|2α+d
dy

=
Cd(α)

2

∫
Rd

f(x+ y) + f(x− y)− 2f(x)

|y|2α+d
dy, ∀x ∈ Rd.(3.5)

This representation comes out by considering straightforward calculations and re-
moves the singularity at the origin ([6]). Indeed, from the second order Taylor
expansion of the smooth function f (f ∈ S ) we obtain

(3.6)
f(x+ y) + f(x− y)− 2f(x)

|y|2α+d
≤ ‖D2f‖L∞

|y|2α+d−2

which is integrable near the origin provided that α ∈ (0, 1). The constant Cd(α)

must be considered in order to obtain ̂(−	)αf(·)(ξ) = |ξ|αf̂(ξ).
Remark 1. Let Hα

t , t > 0 be a stable subordinator. The generator of FHα
t
, t > 0

is given by the beautiful formula

(3.7) − (−A)αf(x) =
α

Γ(1− α)

∫ ∞

0

(
Ts f(x)− f(x)

) ds

sα+1

for all f ∈ S (Ts = esA is the Feller semigroup of Ft, t > 0). A generalization
due to R.S Phillips allows the replacement of A with the generator of a general (not
only associated with Lévy processes) contraction semigroup on a Banach space. The
formula (3.7) comes from the representation of the Bernstein function g(x) = xα

for α ∈ (0, 1),

(3.8) xα =

∫ ∞

0

(1− e−sx)μ(ds), x > 0

where μ is (in our view) a Lévy measure satisfying (2.9). In particular, μ(ds) =
α

Γ(1−α)s
−α−1ds is the Lévy measure of a stable subordinator with no drift (see for-

mula (2.8)). By passing to the Fourier transform of (3.7) and considering that
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T̂sf = e−sΦf̂ , the reader can immediately see that the Fourier multiplier of (3.7)
is given by −(Φ)α. If Ft = Bt is the d-dimensional Brownian motion for instance,
then Φ(ξ) = |ξ|2 and therefore the associated Fourier symbol becomes −|ξ|2α. The
last result is known as the Bochner’s subordination rule: the subordinate Brownian
motion BHα

t
, t > 0 possesses the same law of an n-dimensional isotropic stable pro-

cess (its infinitesimal generator is therefore the fractional Laplacian −(−	)α). The
interested reader can consult the book by Schilling et al. [16] for a deep discussion
on the role of Bernstein function in this context.

Formula (2.2) can be obtained by considering the following characteristic func-
tion

EeiξZt =E

N(t)∏
j=0

eiξYj e−iξαtEY

=E
(
EeiξY

)N(t)
e−iξαtEY

=e−λt(1−EeiξY ) e−iξαtEY

=exp
(
λtE

(
eiξY − 1− iξY

) )
.

Therefore, we get that

∂t Ee
iξZt

∣∣∣
t=0

= λE(eiξY − 1− iξY ) = λ

∫
R

(eiξy − 1− iξy)νY (dy) = −Φ(ξ).

If Yj ∼ Y are symmetric random variables such that EYj = EY = 0 for all j =
1, 2, . . ., then νY (y) = νY (−y) and

(3.9)

∫
R

yf ′(x) νY (dy) = f ′(x)
∫
R\Br

y νY (dy) + f ′(x)
∫
Br

y νY (dy) = 0

where we also include those density law νY (·) for which (3.9) holds as principal
value. If (3.9) holds true, then formula (2.2) takes the form

(Af)(x) = λ

∫
R

(f(x+ y)− f(x)) νY (dy)

and the integral converges depending on νY (·). If we choose νY (dy) = 2α|y|−2α−1dy
for instance, then the integral must be understood in the principal value sense and
we get the fractional Laplace operator as formula (3.4) entails.

4. Main results

In this short paper, we construct continuous random walks with exponential
and Gaussian jumps driven by pseudo-differential operators with Fourier multiplier
−Φγ(ξ) which converges to −|ξ|β with β ∈ (0, 2) as γ → 0. In particular, we
first consider the random jump Y = γeX ∈ [γ,∞) where X ∼ Exp(α) and α, γ >
0. We have that P{Y ∈ B} =

∫
B νY (dy) with νY (y) = αγαy−α−11(y≥γ). By

”symmetrizing”, we get that

(4.1) ν∗Y (y) = q νY (−y)1(y≤−γ) + p νY (y)1(y≥γ)

is the density of Y ∗ = ε Y with Rademacher law

P{ε = +1} = p, P{ε = −1} = q
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for the random variable ε where we obviously assume that p + q = 1. For p = q,
formula (4.1) takes the form

(4.2) ν∗Y (y) =
1

2
νY (|y|) = αγα

2
|y|−α−11(|y|≥γ)

and Y ∗ is therefore written as

(4.3) Y ∗ =

{
γeX , with probability 1/2,
−γeX , with probability 1/2.

Now we write the corresponding compound Poisson process as follows

(4.4) A(t) =

N(t)∑
j=0

Y ∗
j =

N(t)∑
j=0

εj Yj =

N(t)∑
j=0

εj γj e
Xj , t > 0

with Xj ∼ X, εj ∼ ε and γj = γ for all j = 0, 1, 2, . . .. We also assume that
all the random variables we are dealing with are taken to be independent, that is
Eεεj = Eεjεj′ = 0, ∀ j, j′ such that j �= j′. Observe that, for all ε > 0, P{γeX <
ε} → P{eX < +∞} = 1 as γ → 0.

We are now ready to state the following results

Theorem 1. Let Hα
j (t), t > 0, j = 1, 2 be two independent stable subordinators.

For given p, q ≥ 0 such that p+ q = 1, α ∈ (0, 1),

(4.5) A(t/γα)
d−−−→

γ→0
Hα

1 (pt
∗)− Hα

2 (qt
∗)

with t∗ : t �→ λΓ(1− α)t and generator

(4.6) Af(x) = −λΓ(1− α)

(
p
dα

dxα
+ q

dα

d(−x)α

)
f(x).

The Weyl’s fractional derivatives appearing in (4.6) are defined as follows:

dαf

dxα
(x) =

1

Γ(1− α)

d

dx

∫ ∞

0

f(x− y)
dy

yα

=
α

Γ(1− α)

∫ ∞

0

(f(x)− f(x− y))
dy

yα+1

=
α

Γ(1− α)

∫ ∞

0

(
f(x)− e−y∂xf(x)

) dy

yα+1
=

(
∂

∂x

)α

f(x);

dαf

d(−x)α
(x) =

−1

Γ(1− α)

d

dx

∫ ∞

0

f(x+ y)
dy

yα

=
α

Γ(1− α)

∫ ∞

0

(f(x)− f(x+ y))
dy

yα+1

=
α

Γ(1− α)

∫ ∞

0

(
f(x)− ey∂xf(x)

) dy

yα+1
=

(
− ∂

∂x

)α

f(x).

Here we have considered ”good” functions f : R �→ [0, 1] whereas, we obtain the
Riemann-Liouville derivatives (left-handed and right-handed respectively) by con-
sidering f : R+ �→ [0, 1] and f : R− �→ [0, 1] respectively ([8; 15]). In the integrals
above, for example, one can write f(z)1(z≥0) and f(z)1(z≤0) and obtain the opera-
tor governing the (totally) positively and (totally) negatively skewed stable process,
that is q = 0 and p = 0 respectively in (4.6). We notice that the definitions above
are related to the representation (3.7) involving the translation semigroup e∓y∂x .
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Remark 2. The stable subordinator Hα
t , t > 0, α ∈ (0, 1) has a probability law, say

hα = hα(x, t), x ≥ 0, t > 0, solving the fractional equation ∂thα = −(∂/∂x)αhα,
(x, t) ∈ [0,∞) × (0,∞) subject to the initial condition hα(x, 0) = δ(x), the Dirac
delta function.

Proof of Theorem 1. The characteristic function of (4.4) is written as follows

E exp

⎛⎝iξ

N(t)∑
j=0

εj Yj

⎞⎠ =E
(
EeiξεY

)N(t)

=exp
(
λt(EeiξεY − 1)

)
=exp

(
λt
(
pEeiξY + qEe−iξY − (p+ q)

))

=exp

(
λt
(
p(EeiξY − 1) + q(Ee−iξY − 1)

))
.

From this, we immediately get

E exp (iξA(t/γα)) = exp

(
λt

γα

(
p(EeiξY − 1) + q(Ee−iξY − 1)

))
.

We recall that the Lévy symbol (see (2.8)) of a stable subordinator with no drift
(b = 0 in (2.8)) is a mapping from R �→ C which takes the form

(4.7) − (−iξ)α =
α

Γ(1− α)

∫ ∞

0

(
eiξy − 1

) dy

yα+1

for α ∈ (0, 1). The Fourier symbol (depending on γ) of the characteristic function
of A(t/γα) is therefore given by

Φγ(ξ) =− ∂t E exp (iξA(t/γα))

∣∣∣∣∣
t=0

=− λ

γα

(
p

∫ ∞

0

(eiξy − 1)νY (dy) + q

∫ ∞

0

(e−iξy − 1)νY (dy)
)

=− λp

∫ ∞

γ

(eiξy − 1)
αdy

yα+1
− λq

∫
γ

(e−iξy − 1)
αdy

yα+1
.

For γ → 0 we obtain

Φγ(ξ) → Φ(ξ) =λΓ(1− α)
(
p(−iξ)α + q(iξ)α

)
, α ∈ (0, 1)(4.8)

and, from (3.1) we arrive at

(4.9) Af(x) = −λΓ(1− α)

(
p
dα

dxα
+ q

dα

d(−x)α

)
f(x).

The fact that the Lévy process (4.5) has infinitesimal generator (4.6) comes directly
from the characteristic function

E exp
(
iξHα

1 (pt
∗)− iξHα

2 (qt
∗)
)
= exp (−t∗p(−iξ)α − t∗q(iξ)α)

where t∗ = λΓ(1− α)t > 0. Thus, we get that

−∂tE exp
(
iξHα

1 (pt
∗)− iξHα

2 (qt
∗)
)∣∣∣

t=0
= λΓ(1− α)

(
p(−iξ)α + q(iξ)α

)
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which coincides with Φ(ξ) in (4.8).
In the last calculations we have used the fact that

EeiξH
α(t) = exp (−t(−iξ)α) = exp

(
−t|ξ|αe−iπα

2
ξ
|ξ|
)
, ξ ∈ R, t ≥ 0

and thus,

Ee−iξHα(t) = exp
(
−t|ξ|αeiπα

2
ξ
|ξ|
)
= exp (−t(iξ)α) .

The Fourier transforms of the Weyl’s fractional derivatives, for α ∈ (0, 1), are given
by ([15])

(4.10)

∫
R

eiξx
dα

d(±x)α
f(x)dx = (∓iξ)αf̂(ξ), f ∈ L1(R).

�

Remark 3. A stable subordinator is a one-dimensional non-decreasing Lévy process
with E exp(−ξHα

t ) = exp(−tξα), α ∈ (0, 1). We recall that Hα
t is a totally positively

skewed stable process and therefore it is also non-negative. Its distribution has non-
negative support, P{Hα

t ∈ [0,∞)} = 1. We observe that Hα
j (0) = 0 for j = 1, 2

and therefore the process (4.5) converges (in distribution) to a totally positively
skewed (if q = 0, P{εj = +1} = 1, ∀ j) or totally negatively skewed (if p = 0,
P{εj = −1} = 1, ∀ j) stable process with support for the distribution function
respectively given by [0,∞) or (−∞, 0]. Furthermore, for a given process Xt, t > 0
we notice that Xθt runs slower than Xt if θ is less than 1 or faster than Xt if θ is
greater than 1.

Theorem 2. Let Sβ(t), t > 0 be a symmetric stable process with β ∈ (0, 2). Then,
for p = q = 1/2, α ∈ (0, 2),

(4.11) A(t/γα)
d−−−→

γ→0
Sα(t∗)

with t∗ : t �→ αλCt and generator (Riesz operator)

(4.12) Af(x) = −αλC
dαf

d|x|α (x)

where

(4.13) C =
1

2

∫
R

1− cos y

|y|α+1
dy.

Proof. For p = q = 1/2 and α ∈ (0, 2) we obtain that

Φγ(ξ) =− ∂t E exp (iξA(t/γα))

∣∣∣∣∣
t=0

=− λ

2γα
(EeiξY + Ee−iξY − 2)

=− λ

2γα

∫ ∞

0

(
eiξy + e−iξy − 2

)
νY (dy)

=− λ

γα

∫
R

(cos(ξy)− 1) ν∗Y (dy)

where, we recall that

ν∗Y (y) =
αγα

2
|y|−α−11(|y|≥γ).
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We explicitly have that

Φγ(ξ) =− λ

γα

∫
R

(cos(ξy)− 1) ν∗Y (dy)

=− αλ

2

∫
R\Bγ

(cos(ξy)− 1) |y|−α−1dy.

By taking the limit for γ → 0, we obtain

(4.14) Φγ(ξ) → Φ(ξ) = −αλ

2

∫
R

(cos(ξy)− 1) |y|−α−1dy = αλC|ξ|α

where, due to the fact that (cos(y)− 1) |y|−α−1 ≤ y2|y|−α−1 by Taylor expansion
near the origin, we obtain that

0 < C =
1

2

∫
R

(1− cos(y)) |y|−α−1dy < ∞

and −|ξ|α is the Fourier multiplier of the infinitesimal generator of a stable sym-
metric process. Indeed, for the symmetric stable process Sβ(t), t > 0, β ∈ (0, 2),
we have that

−∂t Ee
iξSβ(t)

∣∣∣
t=0

= |ξ|β

and (3.1) holds with

(4.15) Af(x) = − dβf

d|x|β (x) = −σ

2

(
dβf

dxβ
(x) +

dβf

d(−x)β
(x)

)
where σ = (cosπβ/2)−1. The Fourier symbol of the Riesz operator (4.15) is written
as (see formula (4.10))∫

R

eiξx
dβf

d|x|β (x)dx =
σ

2

(
(−iξ)β + (iξ)β

)
f̂(ξ) = |ξ|β f̂(ξ).

Therefore, from (4.14), we conclude that

N(t/γα)∑
j=0

Y ∗
j

γ→0−→ Sα(t∗)

in distribution, where

EeiξS
α(t∗) = exp (−t∗|ξ|α)

and t∗ = αλCt, t > 0. Furthermore, the generator of Sα(t∗) with α ∈ (0, 2) is

−αλC
dαf

d|x|α (x) = − 1

2π

∫
R

e−iξxΦ(ξ)f̂(ξ)dξ.

�

We now introduce the reciprocal gamma random variable Eα, α > 0 with

P{Eα ∈ dx}/dx = x−α−1

Γ(α) e−1/x, x > 0 (the reciprocal gamma process has inter-

esting connections with stable subordinators and Bessel processes, see for example
[7]). The random variable Eα is termed reciprocal in the sense that Eα ∼ 1/Gα

where Gα has Gamma density law. It is particularly interesting because it ap-
pears in many contexts. The density law of Eα appears as steady state solution to
some diffusions ([10]), as density law for the reciprocal Bessel process at fixed time
([7]), as marginal density for diffusion models ([3]), as the density law of integrals
involving geometric Brownian motions ([11]).
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We also consider the (normal) random vector Y ∼ N(0, σ2
α), Y ∈ Rd, with

random variance σ2
α ∼ γ

2Eα for some γ > 0 and define the process

(4.16) A(t) =

N(t)∑
j=0

εjYj

where εj ∼ ε ∀ j, ε has Rademacher law as above, Yj ∼ Y ∀ j and Eεjεj′ = 0 for
all j, j′ such that j �= j′. We notice that

P{N(0, σ2
α) > x} ≤ 1

x

∫ ∞

x

y

(∫ ∞

0

e−
y2

2s√
2s

P{σ2
α ∈ ds}

)
dy ≈ γαx−2α

and therefore, for large x,

P{N(0, σ2
α) ∈ dx}/dx ≈ 2αγαx−2α−1.

After some calculations we explicitly write the law of Y ∈ Rd as follows

(4.17) νY(y) =
Γ(α+ d

2 )

π
d
2 Γ(α)

γα

(|y|2 + γ)α+
d
2

, y ∈ Rd.

We are now ready to present the next result.

Theorem 3. Let Sβ(t) ∈ Rd, t > 0 be an isotropic stable process with β ∈ (0, 2).
Then, for α ∈ (0, 1),

(4.18) A(t/γα)
d−−−→

γ→0
S2α(t∗)

with t∗ : t �→ λ
Γ(α+ d

2 )

π
d
2 Γ(α)

Ct and infinitesimal generator

(4.19) Af(x) = −λ
Γ(α+ d

2 )

π
d
2 Γ(α)

C(−	)αf(x)

where

(4.20) C =

∫
Rd

1− cos y1
|y|2α+d

dy.

Proof. We have that

Eeiξ·A(t) =E

N(t)∏
j=0

Eeiεjξ·Yj = E

(
Eeiεξ·Y

)N(t)

where we used the fact that Yj ∼ Y for all j. Therefore, we obtain that

Eeiξ·A(t) =exp
(
λt(Eeiεξ·Y − 1)

)
=exp

(
λt

2
(Eeiξ·Y + Ee−iξ·Y − 2)

)
(4.21)

and Y ∼ νY, see formula (4.17). The Fourier symbol corresponding to the charac-
teristic function (4.21) is given by

−∂t Ee
iξ·A(t)

∣∣∣∣∣
t=0

=− λ

2

∫
Rd

(eiξ·y + e−iξ·y − 2)νY(dy)

=− λ

∫
Rd

(
cos ξ · y − 1

) γα Γ(α+ d
2 )

π
d
2 Γ(α) (|y|2 + γ)α+

d
2

dy.
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and therefore, for the process (4.18), we get that

−∂t Ee
iξ·A(t/γα)

∣∣∣∣∣
t=0

= −λ

∫
Rd

(
cos ξ · y − 1

) Γ(α+ d
2 )

π
d
2 Γ(α) (|y|2 + γ)α+

d
2

dy = Φγ(ξ).

The limit for γ → 0 leads to the Fourier symbol

(4.22) lim
γ→0

Φγ(ξ) = −λ
Γ(α+ d

2 )

π
d
2 Γ(α)

∫
Rd

(
cos ξ · y − 1

) dy

|y|2α+d
= λ

Γ(α+ d
2 )

π
d
2 Γ(α)

C |ξ|2α

where

(4.23) C =

∫
Rd

1− cos y1
|y|2α+d

dy.

The interested reader can find in [6] a detailed computation of the integrals in (4.22)
and (4.23). Finally, we observe that

−∂t Ee
iξ·A(t/γα)

∣∣∣∣∣
t=0

=− λ

2γα

∫
Rd

(eiξ·y + e−iξ·y − 2)νY(dy) = Φγ(ξ)

converges, for γ → 0, to the Fourier symbol

Φ(ξ) = −λ

2

Γ(α+ d
2 )

π
d
2 Γ(α)

∫
Rd

(eiξ·y + e−iξ·y − 2)
dy

|y|2α+d
.

By applying formula (3.1), we get

Af(x) =λ
Γ(α+ d

2 )

π
d
2 Γ(α)

C
Cd(α)

2

∫
Rd

(
f(x+ y) + f(x− y)− 2f(x)

) dy

|y|2α+d

=− λ
Γ(α+ d

2 )

π
d
2 Γ(α)

C(−	)αf(x)

where

Cd(α) =

(∫
Rd

1− cos y1
|y|2α+d

dy

)−1

which is the generator of the isotropic stable process S2α(t∗) with

t∗ = λ
Γ(α+ d

2 )

π
d
2 Γ(α)

Ct, t > 0.

�
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