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1. Introduction and main results

The circular restricted 3-body problem has attracted many researchers, e.g., Sitninkov [13], Moser [11], 
Mathlouthi [9], Souissi [14], and Zhang [16]. In this problem, it appears that two bodies with equal mass 
(m1 = m2 = 1/2) move in a circular orbit in a plane where their center of mass is at the origin. The motion 
of a third massless body is then considered under the attraction of the first two bodies. However, the circular 
motion of the first two bodies is not influenced by the third massless body. In particular, the massless body 
can move in a straight line perpendicular to the circular orbit plane and through the center of mass of the 
first two bodies.

Let z(t) be the coordinate of the third body. Then, z(t) satisfies

z̈(t) + α
z(t)

(|z(t)|2 + |r|2)α/2+1 = 0. (1)
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Zhang [16] used the variational minimizing method to prove the existence of an odd parabolic or hyperbolic 
orbit for Equation (1) with 0 < α < 2.

In this study, we consider the 2-fixed center problem, which is a classical problem with a long history 
[3–5,1,7,8,15]. For two masses, 1 −μ and μ fixed at q1 = (−μ, 0) and q2 = (1 −μ, 0), respectively, the problem 
involves studying the motion q(t) = (x(t), y(t)) of a third body with mass m3 > 0. In the present study, we 
consider that the motion of the third body is attracted by 2-fixed center masses with general homogeneous 
potentials, which satisfies the following equation:

q̈(t) + ∂V (q)
∂q

= 0, (2)

V (q) = − 1 − μ

|q − q1|α
− μ

|q − q2|α
. (3)

Definition 1.1. We refer to the solution q̃α(t) of (2)–(3) as a parabolic type solution if

max
t∈R

|q̃α(t)| = +∞,

min
t∈R

| ˙̃qα(t)| = 0

and the energy along the solution is zero:

1
2 |

˙̃qα|2 −
1 − μ

|q̃α − q1|α
− μ

|q̃α − q2|α
= h = 0. (4)

For μ = 1/2, we consider the existence of the motion q(t) = (x(t), y(t)) of the third body, which satisfies 
the odd symmetry (x(−t), y(−t)) = (−x(t), −y(t)). We use the variational minimizing method to prove the 
following.

Theorem 1.1. For (2)–(3) with μ = 1
2 and 0 < α < 2, an odd symmetrical parabolic-type solution exists.

Remark. Note that [16] studied the existence of the parabolic or hyperbolic solution for restricted 3-body 
problems, but the author only proved the energy h ≥ 0 along the unbounded solution, whereas we provide a 
more detailed analysis to determine the existence of the parabolic solution for 2-fixed center problems, and 
thus we prove the energy h = 0 along the unbounded solution. We also note that the potentials for these 
two problems are similar but not the same.

2. Truncation functional and its minimizing critical points

In order to determine the parabolic-type orbit of (2)–(3), we first restrict t ∈ [−n, n] and find solutions 
of (2)–(3), and we then let n → +∞ to obtain the parabolic-type orbit. By noting the symmetry of the 
equation, we can find the odd solutions of the following ODE:

q̈(t) = ∂U(q)
∂q

, (5)

U(q) = 1/2
|q − q1|α

+ 1/2
|q − q2|α

. (6)

We define the functional:

f(q) =
n∫
(1
2 |q̇(t)|

2 + 1/2
|q − q1|α

+ 1/2
|q − q2|α

)dt, (7)

−n
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where

q ∈ Hn = {q(t) = (x(t), y(t)) : x, y ∈ W 1,2[−n, n]; q(−t) = −q(t), q(t) �= qi, t ∈ [−n, n]}. (8)

Since ∀q ∈ Hn, q(0) = 0, then according to the well-known Hardy–Littlewood–Polya inequality [1, inequal-
ity 256], for ∀q ∈ Hn, we have an equivalent norm:

‖q‖n = (
n∫

−n

|q̇(t)|2dt)1/2.

Remark. We do not assume that q(−n) = q(n) = 0 because we want to obtain the parabolic-type orbit that 
satisfies

max
t∈R

|q(t)| = +∞,

min
t∈R

|q̇(t)| = 0.

In addition, we do not assume the periodic property for q(t) because we need a non-periodic odd test 
function in order to obtain Lemma 2.6.

Lemma 2.1. f(q) is weakly lower semi-continuous (w.l.s.c.) on the closure H̄n of Hn.

Proof. (i). It is well known that the norm and its square are w.l.s.c.
(ii). ∀{qm} ⊂ Hn, if qm ⇀ q ∈ Hn weakly, then by the compact embedding theorem, we have the uniform 

convergence:

max
−n≤t≤n

|qm(t) − q(t)| → 0,

as m → +∞, and thus

n∫

−n

1
|qm − qi|α

dt →
n∫

−n

1
|q − qi|α

dt, i = 1, 2,

as m → +∞. Hence,

lim
m→∞

f(qm) ≥ f(q).

(iii). ∀{qm} ⊂ Hn, if qm ⇀ q ∈ ∂Hn weakly, let

S = {t0 ∈ [−n, n] : q(t0) = q1(t0), or q2(t0)}.

(1) The Lebesgue measure of S is zero, so U(qm(t)) → U(q(t)) almost everywhere, and thus by Fatou’s 
Lemma, 

∫ n

−n
U(q)dt is w.l.s.c., and it is well known that the norm and its square are w.l.s.c. so f(q) is also 

w.l.s.c.
(2) The Lebesgue measure of S: L(S) > 0, then

n∫
U(q)dt = +∞, f(q) = +∞,
−n
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and thus by the compact embedding theorem, we have the uniform convergence on S:

max
−n≤t≤n

|qm(t) − q(t)| → 0,

as m → +∞, and so on S, we have the uniform convergence:

n∫

−n

1
|qm − qi|α

dt → +∞, i = 1 or 2,

as m → +∞. Hence,

n∫

−n

U(qm(t))dt → +∞

lim
m→∞

f(qm) = +∞ ≥ f(q). �
Lemma 2.2. f is coercive on H̄n.

Proof. From the definition of f(q) and the Hardy–Littlewood inequality, it is clear that the coercivity holds 
(f(q) → +∞, ‖q‖ → +∞). �
Lemma 2.3 (Tonelli). (See [2,10].) Let X be a reflexive Banach space, M ⊂ X is a weakly closed subset, 
and f : M → R ∪ {+∞}, but f(x) is not always +∞, and suppose that f is w.l.s.c. and coercive (f(x) →
+∞, ‖x‖ → +∞), then f attains its infimum on M .

Lemma 2.4 (Palais’ Symmetry Principle). (See [12].) Let G be a finite or compact group, σ is an orthogonal 
representation of G, and let H be a real Hilbert space, f : H → R, which satisfies

f(σ · x) = f(x), ∀σ ∈ G,∀x ∈ H.

Let

F
�= {x ∈ H | σ · x = x,∀σ ∈ G}.

Then, the critical point of f in F is also a critical point of f in H.

Lemma 2.5. f(q) attains its infimum on H̄n, and thus the minimizer q̃α,n(t) is an odd solution.

Proof. We have proved Lemmas 2.1–2.2, so in order to apply Lemma 2.3, we need to apply Lemma 2.4
to prove that the critical point of f(q) on Hn is the odd solution of (4)–(5). We define groups G1 =
{I2×2, −I2×2}, G2 = {1, −1} and their actions:

σ1 · q(t) = I2×2q(t),

σ2 · q(t) = −I2×2q(t);

σ̃1 · q(t) = q(t),

σ̃2 · q(t) = q(−t).
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Then, it is easy to prove that f(q) is invariant under σ1, σ2, ̃σ1, ̃σ2, σi · σ̃j , ̃σj · σi and the fixed point set 
of the group actions for G1 ×G2 is simply Hn, so we can apply Palais’ Symmetrical Principle. �

In order to obtain the parabolic type solution, we need to prove that

q̃α,n(t) → q̃α(t)

when n → ∞, and q̃α(t) has the following properties:

max
t∈R

|q̃α(t)| = +∞,

min
t∈R

| ˙̃qα(t)| = 0.

To achieve this, we require some further lemmas, as follows.

Lemma 2.6. Constants c > 0 and 0 < θ < 1 that are independent of n exist such that the variational 
minimizing value an for f(q) on H̄n satisfies an ≤ cnθ.

Proof. (i). If q̃(t) = (x̃, ỹ) ∈ Hn is located on the y-axis, then we choose a special odd function defined by

x̃ = 0, ỹ = tβ , t ∈ [−n, n],

where we select β to satisfy 0 < β < 1, 1
2 < β = l

m < 1
α , l, m are odd numbers, and (l, m) = 1. Then,

f(q̃(t)) = 1
22

n∫

0

β2t2(β−1)dt +
n∫

−n

[ 1/2
|t2β + 1

4 |α/2
+ 1/2

|t2β + 1
4 |α/2

]dt

≤ β2

2β − 1n
2β−1 + 2

1 − αβ
n1−αβ .

Now, we define

θ = max(2β − 1, 1 − αβ), (9)

c = β2

2β − 1 + 2
1 − αβ

> 0. (10)

When 0 < β < 1 and

1
2 < β = l

m
<

1
α
,

then

1 > 2β − 1 > 0, 1 > 1 − αβ > 0

and 0 < θ < 1. Hence, we have

f(q̃) ≤ cnθ.

(ii). If q̃(t) = (x̃, ỹ) is not on the y-axis, we choose a special odd function on t defined by
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x̃(t) = tβ , ỹ(t) = 0, t ∈ [−n, n],

where 0 < β < 1,

1
2 < β = l

m
<

1
α
,

l, m are odd numbers, and (l, m) = 1. Then, we have

f(q̃(t)) ≤
n∫

0

β2t2(β−1)dt +
n∫

0

[ 1
|tβ + 1

2 |α
+ 1

|tβ − 1
2 |α

]dt

≤ β2

2β − 1n
2β−1 + [ 1

1 − αβ
n1−αβ +

n∫

0

1
|tβ − 1

2 |α
dt].

Now, we estimate

n∫

0

1
|tβ − 1

2 |α
dt.

Let

tβ − 1
2 = τβ ,

then t > τ and

dt = (τ
t
)β−1dτ,

and by changing the variables, we have

n∫

0

1
|tβ − 1

2 |α
dt <

(nβ− 1
2 )

1
β∫

(− 1
2 )

1
β

τ−αβdτ

<
1

1 − αβ
[n1−αβ − (−1

2)−
1
β (1−αβ)].

Define

θ = max{2β − 1, 1 − αβ},

c = β2

2β − 1 + 3
1 − αβ

> 0.

When 0 < β < 1 and

1
2 < β = l

m
<

1
α
,

then
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1 > 2β − 1 > 0, 1 > 1 − αβ > 0

and 0 < θ < 1. Hence, we also have

f(q̃) ≤ cnθ. �
Furthermore, for our minimizer, we have

Lemma 2.7. Let q̃α,n be critical points that correspond to the minimizing critical values an = minHn
f(q), 

then ‖q̃α,n‖∞ → +∞ when n → +∞.

Proof. By the definition of f(q̃α,n) and Lemma 2.6, we have

cnθ ≥ f(q̃α,n)

≥
n∫

0

[ 1
|(x + 1

2 )2 + y2|α/2
+ 1

|(x− 1
2 )2 + y2|α/2

]dt.

We note that

(x + 1
2)2 + y2 ≤ 2(x2 + y2) + 5

4 ,

(x− 1
2)2 + y2 ≤ (x2 + y2) + 1

4 ,

and thus

cnθ ≥
n∫

0

dt

(2‖q̃α,n‖2
∞ + 5

4)α/2
+ dt

(‖q̃α,n‖2
∞ + 1

4)α/2

≥ 2n
(2‖q̃α,n‖2

∞ + 5
4 )α/2

.

Hence,

‖q̃α,n‖2
∞ → +∞, (11)

as n → +∞. �
Lemma 2.8. 

∫ b

a
| ˙̃qα,n|2dt is uniformly bounded on any compact set [a, b] ⊂ R.

Proof. The system is autonomous, so for any given α, n along the solution q̃α,n(t), the energy h(t) is 
conservative, i.e., a constant h = h(α, n):

1
2 |

˙̃qα,n|2 −
1/2

|q̃α,n − q1|α
− 1/2

|q̃α,n − q2|α
= h. (12)

By the energy relationship above and the definition of the functional f , we have
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f(q̃α,n) =
n∫

−n

(1
2 |

˙̃qα,n|2 + 1/2
|q̃α,n − q1|α

+ 1/2
|q̃α,n − q2|α

)dt

=
n∫

−n

(1
2 |

˙̃qα,n|2 −
1/2

|q̃α,n − q1|α
− 1/2

|q̃α,n − q2|α
)dt

+ 2
n∫

−n

1/2
|q̃α,n − q1|α

+ 1/2
|q̃α,n − q2|α

dt

= 2nh + 2
n∫

−n

1/2
|q̃α,n − q1|α

+ 1/2
|q̃α,n − q2|α

dt.

By Lemma 2.6, we have

cnθ ≥ 2nh + 2
n∫

−n

( 1/2
|q̃α,n − q1|α

+ 1/2
|q̃α,n − q2|α

)dt,

and

h ≤ c

2n
θ−1 − 1

n

n∫

−n

( 1/2
|q̃α,n − q1|α

+ 1/2
|q̃α,n − q2|α

)dt ≤ c

2n
θ−1. (13)

(1) When n is sufficiently large, |q̃α,n(t) − qi| has a uniformly positive lower bound, i.e., mina≤t≤b |q̃α,n(t) −
qi| ≥ c > 0, and thus we have

b∫

a

1
2 |

˙̃qα,n|2 = h(b− a) +
b∫

a

[ 1/2
|q̃α,n − q1|α

+ 1/2
|q̃α,n − q2|α

]dt

≤ c

2(b− a) + c−α(b− a).

(2) i0 = 1 or 2 and a sequence tn ⊂ [a, b] exist such that q̃α,n(tn) → qi0 , and since 0 < α < 2, then there is 
a weak force potential; thus, when n is large, we have

b∫

a

[ 1/2
|q̃α,n − q1|α

+ 1/2
|q̃α,n − q2|α

]dt ≤ M,

b∫

a

1
2 |

˙̃qα,n|2dt ≤
c

2(b− a) + M. �

3. Proof of Theorem 1.1

By q̃α,n(0) = 0, the Cauchy–Schwarz inequality, and Lemma 2.8, we have

|q̃α,n(t)| = |
t∫

˙̃qα,n(s)ds| ≤ (b− a)1/2[
b∫
| ˙̃qα,n|2ds]1/2 ≤ M1,
0 a
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and thus we have the following:

(i) {q̃α,n} is uniformly bounded on any compact set of R.

By the Cauchy–Schwarz inequality and Lemma 2.8, we have

|q̃α,n(t2) − q̃α,n(t1)| = |
t2∫

t1

˙̃qα,n(s)ds| ≤ [
b∫

a

| ˙̃qα,n|2ds]1/2(t2 − t1)1/2 ≤ M2(t2 − t1)1/2,

and thus we have the following:

(ii) {q̃α,n} is uniformly equi-continuous on any [a, b] ⊂ R.

Now, we can apply the Ascoli–Arzelà Theorem and we know that {q̃α,n} has a sub-sequence that converges 
uniformly to a limit q̃α(t) on any compact set of R, and q̃α(t) is a solution of (5)–(6). By the energy 
conservation law and Lemma 2.7 and (13), we have

h = 1
2 |

˙̃qα|2 −
1
2( 1

|q̃α − q1|α
+ 1

|q̃α − q2|α
) = 0.

Then, by Corollary 2.3 from [6], we have

1
2 |

˙̃qα|2 = 1/2
|q̃α − q1|α

+ 1/2
|q̃α − q2|α

≥ [2
α+2

2 ][2|q̃α|2 + 1
2]−α/2. (14)

Now, we claim:

(a)

max
t∈R

|q̃α(t)| = +∞. (15)

In fact, if ∃β > 0 such that

|q̃α| < β,∀t ∈ R,

then by (14), there exists γ > 0 such that

| ˙̃qα| > γ,∀t ∈ R.

Therefore, when n is large, we have

| ˙̃qα,n| > γ,∀t ∈ R,

cnθ ≥
n∫

−n

| ˙̃qα,n|2 > 2nγ2,

which is a contradiction.
Now, by (14) we have

(b)

min
t∈R

| ˙̃qα(t)| = 0. (16)
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