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Abstract

The Invariant Subspace Problem for Hilbert spaces is a long-standing question and the use of
universal operators in the sense of Rota has been one tool for studying the problem. The
best known universal operators have been adjoints of analytic Toeplitz operators or unitarily
equivalent to them. We present many examples of Toeplitz operators whose adjoints are
universal operators and exhibit some of their common properties. Some ways in which the
invariant subspaces of these universal operators interact with operators in their commutants
are given. Special attention is given to the closed subalgebra, not always the zero algebra, of
compact operators in their commutants. Finally, three questions connecting shift invariant
subspaces and invariant subspaces of analytic Toeplitz operators are raised. Positive answers
for both of the first two imply the existence of non-trivial invariant subspaces for every
bounded operator on separable Hilbert spaces of dimension two or more.

1. Introduction

The Invariant Subspace Problem is an important question in functional analysis but
remains unsolved in the context of separable, infinite dimensional Hilbert spaces. Radjavi
and Rosenthal’s classic book [21] and the recent monograph by Chalendar and Partington [3]
are excellent resources for both references and techniques developed in order to solve this and
related problems.
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operator, Rota’s universal operators
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One approach to this problem has been the use of universal operators in the sense of Rota,
a class of operators whose structure is rich enough to model every operator on a separable
infinite dimensional Hilbert space. There are several well-known examples of universal
operators in the literature, and most of these are adjoints of analytic Toeplitz operators or
operators that have a reducing subspace on which the operator is universal and unitarily
equivalent to the adjoint of an analytic Toeplitz.

In this work, we will examine the class of adjoints of analytic Toeplitz operators that are
universal in the sense of Rota and greatly extend the class of known examples. We will then
develop a strategy for attacking the Invariant Subspace Problem based on using operators
that commute with the universal operators along with the structure of analytic Toeplitz
operators. There are certain reductions in the problem that this makes possible and some of
these results are stated as alternatives. Of course, the main difficulty with these results is
that for most specific bounded linear operators, it is not clear which of the alternatives holds!

The invariant subspaces of the unilateral shift Tz acting on the classical Hardy space H2,
and therefore, of the backward shift are well known. These ideas associated with the
universal operators that are adjoints of analytic Toeplitz operators lead us to consider the
relationship between their invariant subspaces and the invariant subspaces of T∗z , that is,
proper closed invariant subspaces for the backward shift acting on H2. If L and M are both
closed subspaces of H2, we say the subspace M has non-trivial intersection with L if
(0) �= L ∩M �= L.

One of the most interesting consequences that follows from studying the class of adjoints
of analytic Toeplitz operators that are universal in the sense of Rota is the following
surprising result, a restatement of Corollary 27.

Theorem. If every closed, infinite dimensional, invariant subspace for the adjoint of an
analytic Toeplitz operator on the Hardy space H2 that is universal in the sense of Rota has a
non-trivial intersection with some invariant subspace of T∗z , then every bounded linear
operator on a separable Hilbert space of dimension two or more has a non-trivial closed
invariant subspace.

We observe that cyclic and non-cyclic vectors for the backward shift in the Hardy space
were characterized by R. G. Douglas, H. S. Shapiro and A. L. Shields in a classic paper [11]
from 1970 and other results for non-cyclic vectors may be found in work of Ahern and
Clark [1] and Herrero and Sherman [15]. In addition to that, as Prof. N. Nikolski has kindly
pointed out to us, there exist infinite dimensional closed subspaces consisting only of cyclic
vectors for the backward shift. Of course, it is not known if any of these subspaces are
invariant for the adjoint of an analytic Toeplitz operator that is universal.

We will close this work with the discussion of such issues along with some open questions
that could lead to progress in the solution of the Invariant Subspace Problem, including two
that get at the existence of sharp vectors (see Section 5) for the universal operators we study.
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Notation and framework

We will reserve the word subspace for a linear manifold in a Hilbert space that is
norm-closed. If T is a bounded operator on a Hilbert space, a subspace M is called invariant
for the operator T if x in M implies Tx is also in M and we say M is a proper invariant
subspace if M is not (0) and not the whole Hilbert space. A subspace M is said to be
hyperinvariant for T if M is an invariant subspace for every bounded operator that
commutes with T .

The major work in this paper is set in the Hardy Hilbert space, H2(D) (also written H2).
Of course, because any two separable, infinite dimensional complex Hilbert spaces are
isometrically isomorphic, our choice of H2 is not limiting in any way. There are two standard
definitions for H2(D): the power series definition is

H2(D) = {h analytic in D : h(z) =
∞∑
n=0

anz
n where ‖h‖2 =

∞∑
n=0

|an|2 < ∞}

If we regard the series for h as a Fourier series
∑∞

n=0 ane
inθ, then we see how H2(D) can be

regarded as the closed subspace of L2(∂D) consisting of those functions whose negative
Fourier coefficients are all 0.

The second definition connects H2(D) with L2(∂D) via integration:

H2(D) = {h analytic in D : sup
0<r<1

∫ 2π

0
|h(reiθ)|2 dθ

2π
< ∞}

From this perspective, ‖h‖2 is the supremum in the above definition and the norm for H2 is
the same using either definition. H2(D) is a “functional Hilbert space of analytic functions”
in the sense of [9]: in particular this means that for h in H2, the map h �→ h(α) is a
continuous linear functional for each α in the unit disk. It is well known that the kernel
functions on H2 are Kα(z) = (1− αz)−1 for α in D. This means for any h in H2,
〈h,Kα〉 = h(α) where 〈·, ·〉 is the inner product on H2.

For f a bounded analytic function on the unit disk, that is, f is in H∞(D), the analytic
Toeplitz operator, Tf , on H2 is the operator defined by (Tfh)(z) = f(z)h(z) for h in H2. For
f in H∞(D), the operator Tf is bounded on H2 and it is easy to prove that ‖Tf‖ = ‖f‖∞.
More generally, if f is a function in L∞(∂D), the Toeplitz operator Tf is the operator on H2

given by Tfh = P+fh where P+ is the orthogonal projection from L2(∂D) onto H2 and h is a
function in H2. Also when f is in L∞(∂D), the operator Tf is bounded on H2 and
‖Tf‖ = ‖f‖∞. In the case that f is in H∞, the projection P+ has no effect: for h in H2 and
f in H∞, P+fh = fh. Douglas’s book [10] can provide some background on properties of
Toeplitz operators.

For J an analytic map of the unit disk into itself, the composition operator, CJ , on H2 is
the operator defined by (CJh)(z) = h(J(z)). The boundedness of CJ for any analytic
function J mapping the unit disk into itself is a consequence of the Littlewood Subordination
Theorem [16] (or see [9, pp. 30 & 117]). For ψ in H∞(D) and J an analytic map of the disk
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into itself, the weighted composition operator Wψ,J = TψCJ is also a bounded operator on
H2. More information about composition operators can be found in the book of Cowen and
MacCluer [9].

2. A Special Class of Operators

In 1960, Rota [22] introduced the idea of an operator whose lattice of invariant subspaces
has a structure rich enough to model every Hilbert space operator and showed, perhaps
surprisingly, that such operators exist.

Definition:[3, p. 213] Let X be a Banach space, let U be a bounded operator on X , and let
B(X ) be the algebra of bounded operators on X . We say U is universal for X if for each
non-zero bounded operator A on X , there is an invariant subspace M for U and a non-zero
number λ such that λA is similar to U |M , that is, there is a linear isomorphism X of X onto
M such that UX = λXA.

Now, A and λA have the same invariant subspaces and the similarity X takes invariant
subspaces of λA to invariant subspaces of U |M . Suppose U is a universal operator for a
separable, infinite dimensional Hilbert space H. Then every bounded operator on H has an
invariant subspace if and only if every non-zero subspace M of H that is invariant for U has
a non-zero, proper subspace M0 such that M0 is also invariant for U . In other words,
understanding the invariant subspace problem on Hilbert spaces becomes a question of
understanding the invariant subspaces of the single operator U .

In 1969 Caradus proved the following theorem that gives a prescription for finding
universal operators on Hilbert spaces. The best known examples of universal operators,
including the operator Rota used to introduce the concept, satisfy the hypotheses of
Caradus’ Theorem.

Theorem 1. (Caradus [2, p. 527] or see [3, p. 214]) If H is a separable Hilbert space and U
is a bounded operator on H such that:

1. The null space of U is infinite dimensional.

2. The range of U is H.

then U is universal for H.

The best known example of a universal operator is the adjoint of a unilateral shift of
infinite multiplicity: for example, suppose S is an analytic Toeplitz operator on the Hardy
space H2 whose symbol is an infinite Blaschke product or an inner function that has factor
that is a non-trivial singular inner function. In this case, S is an isometric operator and S∗
has infinite dimensional kernel and maps H2 onto H2, so S∗ is a universal operator by the
Caradus Theorem (Theorem 1). Defining W by W = H2 � SH2, the wandering subspace of
S, using the Wold decomposition, H2 = ⊕∞

k=0S
kW, the operator S∗ can be represented as an
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upper triangular block matrix that has the identity on the super-diagonal. As it was noted
in [8], the only compact operator that commutes with the universal operator S∗ is the zero
operator.

Another widely known example of a universal operator was presented in the mid-1980’s by
Nordgren, Rosenthal and Wintrobe [19, 20] who proved that if ϕ is a hyperbolic
automorphism of the unit disc with fixed points at ±1 and μ is in the interior of the
spectrum of the composition operator Cϕ acting on the classical Hardy space H2, then
Cϕ − μI is a universal operator on H2. The authors’ paper [7] shows that for such a ϕ, the
restriction of C∗

ϕ to its invariant subspace zH2 is unitarily equivalent to an analytic Toeplitz
operator whose symbol is the covering map of an annulus {λ : ρ−1 < |λ| < ρ} for some ρ > 1.
Nordgren, Rosenthal, and Wintrobe used the Caradus theorem to prove universality and it is
also easily applied directly to the Toeplitz operator to get the result. The first author’s
papers [4, Thm. 10] and [5] show that this example cannot commute with a non-trivial
compact, either.

More recently, in [8] and described in more detail below (Theorem 8), the authors gave an
example of a universal operator, also the adjoint of an analytic Toeplitz operator, that
commutes with an injective compact operator with dense range. The compact operator in
that example is the adjoint of a weighted composition operator.

This paper is based on the fact that the use of universality in studying the invariant
subspace problem in Hilbert spaces has mostly been based on universal operators that are
adjoints of analytic Toeplitz operators acting on the Hardy Hilbert space H2 or are operators
that are universal and unitarily equivalent to such adjoints of Toeplitz operators.

Before beginning our main discussion, we give a version of the Caradus theorem with a
broader conclusion.

Theorem 2. If H is a separable Hilbert space and U is a bounded operator on H such that:

1. The null space of U is infinite dimensional.

2. The range of U is H.

then there is ε > 0 so that for |μ| < ε, the operator U + μI is universal. Moreover, for any
complex number μ and any bounded operator A0 on H, there is an invariant subspace M for
U and constants α �= 0 and β such that A = (U + μI)|M is similar to αA0 + βI. In
particular, the lattices of invariant subspaces for A0 and A are isomorphic as lattices.

Proof: We outline a version of Caradus’ proof of Theorem 1. Let {en}n∈N be an
orthonormal basis for the Hilbert space H and let {e′n}n∈N be an orthonormal basis for
N = {v : Uv = 0}, the kernel of U . Defining W on H by Wen = e′n for each positive integer
n and extending linearly means W is isometric on H and UW = 0. Since the range of U is
H, the restriction of U to N⊥ is an invertible operator and we let V be its inverse. That is,
V : H �→ N⊥ and UV = I. Then to prove his theorem, Caradus shows that if T is an
operator on H for which ‖T‖ < ‖V ‖−1, then X =

∑∞
k=0 V

kWT k is a bounded operator with
closed range, the range of X is invariant for U , and UX = XT , that is, X gives a similarity
between T and the restriction of U to its invariant subspace, range(X).
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Using the notation above, to prove the first assertion, let ε = ‖V ‖−1. Given a complex
number μ with |μ| < ε and a bounded operator A0 on H, we want to find a constant λ �= 0 so
that there is an invariant subspace M for U + μI so that A = (U + μI)|M is similar to λA0,
which will mean U + μI is universal. By our choice of μ, we see ε− |μ| is positive and we
choose λ �= 0 so that ‖λA0‖+ |μ| < ε. This means that T = λA0 − μI satisfies
‖T‖ ≤ ‖λA0‖+ |μ| < ‖V ‖−1. Thus, the construction of Caradus shows X =

∑∞
k=0 V

kWT k is
a bounded operator on H with closed range, the range of X is invariant for U , and X gives a
similarity between the restriction of U to its invariant subspace M = range(X) and the
operator T = λA0 − μI. Now M is also invariant for U + μI and

(U + μI)|M ≈ T + μI = λA0

Since A0 was a arbitrary operator on H and we have shown that there is an invariant
subspace M so that (U + μI)|M is similar to a multiple of A0, we see that U + μI is a
universal operator, as we were to prove.

The final conclusion is an easy consequence of the universality of U . The invariant
subspaces of U and U + μI are the same, so if we are given a bounded operator A0, then
there is an invariant subspace M for U and a constant λ �= 0 so that U |M is similar to λA0.
This means (U + μI)|M is similar to λA0 + μI, so the conclusion follows with α = λ and
β = μ.

Our goal is to study a large collection of universal operators that are adjoints of analytic
Toeplitz operators and also the operators and especially the compact ones that commute
with them in order to see how these operators interact with the invariant subspaces of the
universal operators. Theorem 2 will be used, when convenient, to replace, by a more
convenient translate of this operator, the adjoint of an analytic Toeplitz operator that
satisfies the hypotheses of the Caradus Theorem and be assured, from the standpoint of the
invariant subspace problem, to be able to obtain the same conclusions.

3. Toeplitz Operators as Universal Operators

For f in H∞, the analytic Toeplitz operator Tf is invertible if and only if 1/f is also in
H∞ and in this case, T−1

f = T1/f . It is possible, of course, for the restriction of f to the unit
circle to be invertible in L∞(∂D) without 1/f being in H∞, for example, this is the case for
any non-constant inner function. The following result describes this situation more fully and
will be important in our work.

Lemma 3. If f is a function in H∞(D) and there is � > 0 so that |f(eiθ)| ≥ � almost
everywhere on the unit circle, then 1/f is in L∞(∂D) and the (non-analytic) Toeplitz
operator T1/f is a left inverse for the analytic Toeplitz operator Tf .

Proof: It is well known (for example, see [10]), that if g is in L∞(∂D) and f is in H∞, then
TgTf = Tgf . Since 1/f is in L∞(∂D) and f is H∞, we have T1/fTf = T1 = I and Tf is
left-invertible.
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As a straightforward corollary, we have

Corollary 4. If f satisfies the hypotheses of Lemma 3, the Toeplitz operator T∗f has a right

inverse and T∗f maps H2(D) onto itself.

Proof: We have T1/fTf = I, so T∗f T∗1/f = (T1/fTf )
∗ = I. This equality implies T∗f maps

H2(D) onto itself.

Before going further, let us denote by U0 the set of adjoints of analytic Toeplitz operators
that Lemma 3 implies are left invertible, that is

U0 = {T∗f : f ∈ H∞ and on ∂D, 1/f ∈ L∞(∂D)}.
Let us fix the following definition.

Definition. Let U = {T∗f ∈ U0 : kernel(T∗f ) is infinite dimensional}.
The following theorem, which begins our investigation, says that U is the set of adjoints of

analytic Toeplitz operators that can be proved universal by using Lemma 3 and the Caradus
theorem. It is not clear whether this is the same as the set of all adjoints of analytic Toeplitz
operators that are universal, although in light of Theorem 2, it seems plausible that it is not
true. Because there are operators on H2 that have infinite dimensional kernel and a universal
operator must be able to model these, it is easy to see that every universal operator must
have infinite dimensional kernel, but it is not true that every universal operator must be left
invertible: if Y is an operator that is not left invertible and U is a universal operator, then
Y ⊕ U is universal without being left invertible.

Theorem 5. If f is in H∞ and T∗f is in U , then the Toeplitz operator T∗f is universal for

H2.

Proof: The fact that T∗f is in U means its kernel is infinite dimensional and U ⊂ U0 means

Corollary 4 applies so T∗f maps H2 onto itself. Thus, the conclusion follows immediately
from the Caradus theorem (Theorem 1).

It now follows that the product of an operator in U0 and an operator in U is also universal.
In particular, the set U is a multiplicative subset of B(H2) so the set of universal adjoints of
analytic Toeplitz operators is a very large set indeed! The set U is not an algebra and we
should not expect that it would be because sums of operators with large kernels need not
have kernels or even eigenvalues. We notice that no multiple of the identity is in U , because
the only multiple of the identity with infinite dimensional kernel is 0 and the zero operator is
not left invertible. In particular, T∗f in U implies f is non-constant.

Corollary 6. If f and g are in H∞ with T∗f in U and T∗g in U0, then T∗f T∗g = T∗fg is also in

U and is a universal operator for H2.
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Proof: It is easy to see that any two analytic Toeplitz operators, Tf and Tg commute and
their product is the analytic Toeplitz operator Tfg. This means T∗fg is also in U0 and since

the kernel of T∗fg = T∗g T∗f contains the kernel of T∗f , and T∗fg is also in U and is universal for

H2.

Theorem 2 motivates the following definition.

Definition. Let V = {T∗f − μI : μ ∈ C and T∗f ∈ U}.
Thus, we have U ⊂ V and because V includes invertible operators that cannnot have

infinite dimensional kernel and are not universal, the sets U and V are not the same. But, as
Theorem 2 states, for application to the study of invariant subspaces of operators on H2, the
set V is a large set of adjoints of analytic Toeplitz operators each of which are still special
enough to be able to model, by restrictions to invariant subspaces, all possible invariant
subspace lattices for operators on H2.

In [8], it was shown that there is a universal operator T that commutes with an injective
compact operator W with dense range. At this point, we want to recall the specific
descriptions of the operators T = T∗φ and W = W∗

ψ,J . The following easy lemma, taken
from [8], tells when such operators commute.

Lemma 7. For φ and ψ in H∞ and J an analytic map of the unit disk into itself, the
analytic Toeplitz operator Tφ commutes with the composition operator CJ or the weighted
composition operator Wψ,J if and only if φ ◦ J = φ.

To define the operators, let Ω = {z ∈ C : Im z2 < −1 and Re z < 0}, which is the region in
the second quadrant of the complex plane above the branch of the hyperbola 2xy = −1. Let
σ be the Riemann map of D onto Ω defined by

σ(z) =
−1 + i√
z + 1

(1)

where we choose the branch of
√ · on the halfplane {z : Re z > 0} satisfying

√
1 = 1. Notice

that σ(1) = (−1 + i)/
√
2, σ(0) = −1 + i, and σ(−1) = ∞. We define φ on the unit disk by

φ(z) = eσ(z) − eσ(0) = eσ(z) − e−1+i (2)

Since φ is an infinite-to-one map of the disk to a punctured disk that includes 0 in the range
and the image of the unit circle, excluding −1, is completely contained in φ(D) and avoiding
0, it is not difficult to prove that T∗φ is in U .

Now, we let J be the analytic map of the unit disk into itself given by

J(z) = σ−1(σ(z) + 2πi) (3)

where σ is the map of the disk into the plane given by Equation (1). From this definition, an
easy calculation shows that φ ◦ J = φ and letting ψ(z) = (z + 1)/2 allows us to conclude that
Tφ and Wψ,J = TψCJ commute.
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Theorem 8 (see [8]). For φ as in Equation (2) and J as in Equation (3), the operator T∗φ
is a universal operator for H2 and the operator W∗

ψ,J is an injective compact operator that

has dense range and commutes with T∗φ .
That W∗

ψ,J is compact follows from general facts (J(−1) = −1 and ψ(−1) = 0) about

weighted composition operators [13, p. 2896] or from [6], but the proof that W∗
ψ,J is injective

and has dense range is a much larger part of [8].
All of the universal operators noted above, backward shifts S∗ of infinite multiplicity, the

Toeplitz operator whose adjoint is unitarily equivalent to a translate of the restriction to zH2

composition operator Cϕ, and the operator T∗φ just introduced, are in the class U defined
above and, indeed, inspired the definitions above.

3.1. Commutants of Universal Toeplitz Operators Containing Compacts

Recall that if S is any set of bounded operators on H2, the commutant of S is the set

S ′ = {G ∈ B(H2) : GF = FG for all F ∈ S}.
If F is a bounded operator on H2, the commutant of F is {F}′, the special case in which S is
the set containing the single operator F . It is easy to see that for any set of operators S, the
commutant S ′ is a closed subalgebra of B(H2). For f in H∞, clearly {T∗f }′ includes T∗g for
all g in H∞.

We have seen that some universal operators commute with a compact operator and others
do not. We want to consider this distinction and try to exploit the existence of a compact
operator that commutes with a particular universal operator when there are some.

Definition. If f is a bounded analytic function on the unit disk such that T∗f is in V, let Cf
be the set of compact operators in {T∗f }′. That is,

Cf = {G ∈ B(H2) : G is compact, and T∗f G = GT∗f }
Notice that if T∗f is in V, then there is a complex number μ so that g = f + μ and T∗g is in

U . For such f and g, {T∗f }′ = {T∗g }′ and Cf = Cg, so the distinction between f in U or V is
not important in this context.

In the examples noted above, if ζ is a inner function that is not a finite Blaschke product,
so that T∗ζ is a universal operator unitarily equivalent to the backward shift S∗ of infinite

multiplicity, or if η is an analytic map on the disk so that T∗η is unitarily equivalent to the
compression to zH2 of the translated composition operator Cϕ − μI, then Cζ = Cη = {0}, but
for the map φ associated with the universal operator T∗φ , then W∗

ψ,J is in Cφ.
The following result gives further properties of Cf for T∗f in V.

Theorem 9. Let f be a bounded analytic function for which T∗f is in V. The set Cf is a

closed subalgebra of {T∗f }′ that is an ideal in {T∗f }′. In particular, if G is a compact operator

in Cf and g and h are bounded analytic functions on the disk, then T∗g G, GT∗h , and T∗g GT∗h
are all in Cf . Moreover, every operator G in Cf is quasi-nilpotent.
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Proof: Let f be a bounded analytic function for which T∗f is in V. Clearly, all of the
conclusions of the theorem are correct if Cf = {0}, so we assume that is not the case.

If Gn is a sequence in Cf such that limn→∞Gn = G, then since each Gn is compact, G is
compact and since each Gn is in the commutant of T∗f , G is also. This means that G is in Cf
also and Cf is closed.

Let g and h be in H∞. It follows that T∗g and T∗h are in {T∗f }′. Since G compact implies

T∗g G, GT∗h , and T∗g GT∗h are all compact, if G is in Cf , then each of T∗g G, GT∗h , and T∗g GT∗h
are in {T∗f }′ and we see that all are in Cf as well.

Every operator in Cf is a compact operator in {T∗f }′, so if G is in Cf , then G∗ is a
compact operator commuting with the analytic Toeplitz operator, Tf . Lemma A of [4, p. 26]
says every compact operator commuting with an analytic Toeplitz operator that is not a
multiple of the identity is quasi-nilpotent. This means G∗ is quasi-nilpotent and therefore G
is also.

Theorem 10. If f is a non-constant bounded analytic function for which T∗f commutes with

a non-zero compact operator, there is a backward shift invariant subspace, L = (ηH2)⊥ for
some inner function η, that is invariant for every operator in {T∗f }′.

Proof: Lomonosov’s well-known theorem [17, 3] states that if an operator, not a multiple of
the identity, commutes with a non-zero compact operator, then the operator has a
hyperinvariant subspace. Our hypotheses are that T∗f satisfies Lomonosov’s hypotheses.

Since T∗z commutes with T∗f , any subspace satisfying the conclusion of Lomonosov’s theorem

must be invariant for T∗z , which is our conclusion.

4. The Subspace Perspective

In many cases, the perspective on using universal operators to study the Invariant
Subspace Problem has been to focus on the operators being modeled by a universal operator,
U . In fact, however, as was clear in the papers [8, 12] for example, we can instead take the
perspective of the invariant subspaces. The earlier perspective is that an operator A0 (and
the complex number λ) determine an invariant subspace M , and we study invariant
subspaces for λA0 ≈ U |M . In fact, of course, there is not a one-to-one correspondence
between operators A0 (or operators and λ’s) and invariant subspaces M because we are only
dealing with a similarity of λA0. The different perspective we take in this section is that the
universal operator has certain invariant subspaces, M , and we study the invariant subspaces
M0 for U that are (properly) contained in M : these are exactly the invariant subspaces of
the operator A = U |M . On the other hand, Theorem 2 suggests we do not need to confine
ourselves to universal operators, but can expand our horizons to translates of certain
universal operators.

Let us formalize the notation for the perspective we will take. Let f be a bounded analytic
function on the disk such that T∗f is in the class V. Suppose M is an infinite dimensional
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invariant subspace of T∗f . The operator T∗f
∣∣∣
M

is determined but from the perspective of the

class V, this operator is a stand-in for all operators that are similar to a non-zero multiple of
a translate of this operator. We want to study the invariant subspaces of T∗f that are
contained in M .

It will be helpful to write H2 as a direct sum of M and its orthogonal complement. The
following result clarifies this situation somewhat.

Proposition 11. If f is a non-constant bounded analytic function and M is a proper
invariant subspace for T∗f , then M⊥ is infinite dimensional.

Proof: We have assumed that M �= H2, so M⊥ �= (0). Since M is invariant for T∗f , the
subspace M⊥ is invariant for (T∗f )∗ = Tf . Now Tf is an analytic Toeplitz operator with f
non-constant, so Tf has no eigenvalues. This means the restriction of Tf to its invariant
subspace M⊥ also has no eigenvalues. But every operator on a finite dimensional space has
eigenvalues, so M⊥ must be infinite dimensional.

The following theorem provides the notation that we will often use to describe our results.
It permits us to easily describe operators with invariant subspaces, compact operators, and
relationships between commuting operators. In particular, operators commuting with T∗f
help us study its invariant subspaces. Note that Corollary 16 strengthens the conclusion of
this result concerning invertibility.

Theorem 12. Let T be a universal operator on H2 or let T = T∗f for a bounded analytic

function f for which T∗f is in V and let W be a bounded operator on H2.
If M is an infinite dimensional invariant subspace for T , then there are block

representations of T and W on H2 = M ⊕M⊥, say,

T ∼
(

A B
0 C

)
and W ∼

(
P Q
R S

)
(4)

If A and C are invertible on M and M⊥, respectively, then T is invertible on H2.
Moreover, W is compact if and only if P , Q, R, and S are compact and TW = WT if

and only if

AP +BR = PA (5a) AQ+BS = PB +QC (5b)
CR = RA (5c) CS = RB + SC (5d)

Proof: If A and C are invertible, then it is easy to see that(
A−1 −A−1BC−1

0 C−1

)

is the inverse of T .
The equivalence of the compactness of W to the compactness of P , Q, R, and S is a

consequence of the finite block representation. The operator T commutes with the operator

11



W if and only if T + μI commutes with W , and the Equations (5a), (5b), (5c), and (5d) are
the expressions in the block multiplication form of the equality TW = WT .

If T is a universal operator satisfying the hypotheses of Theorem 1, Caradus’ sufficient
conditions for universality, more can be said.

Theorem 13. Let H be a separable, infinite dimensional Hilbert space and suppose T is a
bounded operator on H that satisfies the hypothesis of the Caradus Theorem. If M is an
invariant subspace for T for which M⊥ is infinite dimensional and T has the block
representation in Equation (4) with respect to the representation H = M ⊕M⊥, then either
the dimension of ker(A) is infinity or C also satisfies the hypotheses of Caradus Theorem and
is universal.

Proof: Suppose the dimension of ker(A) is finite. We want to prove that ker(C) is infinite
dimensional and that the range of C is all of M⊥.

Since T has infinite dimensional kernel, we may choose linearly independent non-zero
vectors vj for j = 1, 2, · · · for which Tvj = 0. For each positive integer j, let xj and yj be the
(unique) vectors in M and M⊥ respectively such that vj = xj + yj . Now span{yj}∞j=1 cannot
be finite dimensional. Indeed, if it were, there is some integer n so that span{yj}nj=1 is the
same as span{yj}∞j=1. So for j > n and k = 1, · · · , n, we let aj,k be complex numbers so that
yj =

∑n
k=1 aj,kyk and we let ṽj = vj −

∑n
k=1 aj,kvk. Now, because the vj are linearly

independent, the set {ṽj}∞j=n+1 is also linearly independent. Moreover,

T (ṽj) = Tvj −
n∑

k=1

aj,kTvk = 0 (6)

and (7)

ṽj = vj −
n∑

k=1

aj,kvk = xj −
n∑

k=1

aj,kxk + yj −
n∑

k=1

aj,kyk (8)

= xj −
n∑

k=1

aj,kxk (9)

That is, the set {ṽj}∞j=n+1 is an infinite linearly independent set of vectors in the kernel of T
and we see by Equation (9) they are, in fact, all in M . But on M , the operator T is A, so A
has infinite dimensional kernel. This contradiction shows that span{yj} is infinite
dimensional.

The choice of the vj and the representation of T given in Equation (4) shows

0 = Tvj = (Axj +Byj) + Cyj

where (Axj +Byj) is in M and Cyj is in M⊥. Because M ∩M⊥ = (0), this means both
(Axj +Byj) = 0 and Cyj = 0, so in particular, the kernel of C includes the infinite
dimensional subspace span{yj}.
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By hypothesis, the range of T is all of H. In particular, if y is in M⊥, then there is v in H
so that Tv = y. Now v = x0 + y0 where x0 is in M and y0 is in M⊥. Thus,

y = Tv = T (x0 + y0) = (Ax0 +By0) + Cy0

Since y is in M⊥ and (Ax0 +By0) is in M and Cy0 is in M⊥, we must have (Ax0 +By0) = 0
and Cy0 = y. In other words, the range of C includes the vector y, and since y was an
arbitrary vector in M⊥, the range of C is M⊥.

This means that if the kernel of A is finite dimensional, then C satisfies the hypotheses of
Theorem 1, which is the desired conclusion.

In fact, for operators in the class U , the hypothesis that M⊥ is infinite dimensional is
always true! The following corollary is straightforward.

Corollary 14. Let H be a separable, infinite dimensional Hilbert space and suppose T is a
bounded operator on H that satisfies the hypothesis of Caradus Theorem. Suppose M is an
invariant subspace for T for which M⊥ is infinite dimensional and suppose T |M �= 0. Then,
either there is a proper subspace of M that is invariant for T or the matrix C in the block
representation of T in Equation (4) also satisfies the hypotheses of the Caradus Theorem and
is universal.

Proof: Since A = T |M �= 0, kernel(A) �= M . Theorem 13 says either kernel(A) is infinite
dimensional or the matrix C satisfies the hypotheses of Theorem 1 and is universal. Clearly,
kernel(A) is a closed subspace of M that is invariant for T and is proper if it is infinite
dimensional.

As noted in Section 1, H2(D) is a Hilbert space of analytic functions, so the linear
functionals for evaluation at α in D are continuous and are given by inner products with
functions in H2. Because the analytic Toeplitz operators and composition operators on H2

are directly connected to the values at points in the disk for functions in H2, we can use
ideas about these kernel functions in our work and we develop the notation and some of the
ideas in this section.

For α in the disk, write Kα for the kernel function that satisfies 〈f,Kα〉 = f(α) for f in
H2. We let xα and yα be the projections of Kα onto M and M⊥ respectively. Because they
are subspaces of a Hilbert space of analytic functions, M and M⊥ are also Hilbert spaces of
analytic functions on the disk and we can identify their kernel functions. If f is in H2(D), we
can write f = f0 + f1 where f0 is in M and f1 is in M⊥ and, using Kα = xα + yα, we have

f0(α) + f1(α) = f(α) = 〈f,Kα〉 = 〈f0 + f1, xα + yα〉 = 〈f0, xα〉+ 〈f1, yα〉

because f0 and xα are orthogonal to f1 and yα.
As is well known, and clear from this calculation applied to functions f in M or M⊥, the

xα and yα are the kernel functions for evaluation at α for functions in M and M⊥,
respectively. Because the constant function 1 is in H2, there is no α in the disk for which
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Kα = 0 and it follows from Kα = xα + yα that there is no α in the disk where both xα = 0
and yα = 0.

In addition, the assumption that M is neither {0} nor H2(D) implies that for all but
countably many α in D, both xα and yα are non-zero because, for example, xα = 0 means
every function in M vanishes at α and M non-zero means M contains functions that are not
identically zero. Since functions in M are also in H2, the usual properties of analytic
functions show that the set of α in the disk for which f in H2 satisfies f(α) = 0 is countable
and has no accumulation points in the open disk or else f ≡ 0, so xα = 0 for at most
countably many points of the disk. The same argument applied to M⊥ shows that yα = 0
only countably many times also.

In Theorem 3 of his paper [14], Domingo Herrero established some relationships between
the spectrum of a bounded operator, T , on a Banach space, the spectrum of its restriction to
a closed invariant subspace, and the spectrum of the operator obtained by composing T with
the canonical projection of the Banach space onto the quotient of the space by the invariant
subspace. Translating Herrero’s theorem into the setting of this paper leads to the following
theorem.

Theorem 15 (Herrero [14]). Let T be a bounded operator on H2. If M is a proper
invariant subspace for T and A and C are as in Equation (4), then the spectra of A, C, and
T satisfy

σ(T ) ∪ σ(A) = σ(T ) ∪ σ(C) = σ(A) ∪ σ(C)

From this general result, since our T has a special form, we get an interesting extension of
Theorem 12.

Definition: If Δ is a compact subset of the plane, let Fill(Δ) denote the complement of the
component of Ĉ \Δ that contains infinity.

Corollary 16. Suppose f is a bounded analytic function for which T∗f is in V.
If M is a proper invariant subspace for T∗f and A and C are as in Equation (4), then the

spectra of C and T∗f satisfy σ(T∗f ) ⊂ σ(C) ⊂ Fill(σ(T∗f )). Moreover, σ(C) = σ(T∗f ) ∪ σ(A).

Proof: For f in H∞, it is well-known that σ(Tf ) is the closure of f(D) and that the kernel
functions are eigenvectors of T∗f whose eigenvalues are the conjugates of the numbers in
f(D), the image of f .

Now the eigenvector Kα for T∗f can be written Kα = (xα, yα). Then Equation (4) gives

f(α)

(
xα
yα

)
= f(α)Kα = T∗f Kα =

(
A B
0 C

)(
xα
yα

)
=

(
Axα +Byα

Cyα

)

That is, Cyα = f(α)yα, which means either f(α) is an eigenvalue of C or yα = 0. The set of
eigenvalues of T∗f is a non-empty open set and the set of α in the disk for which yα = 0 is
countable and this set has no limit points in the disk. This means that the closure of the set

14



of eigenvalues of C associated with the eigenvectors yα is the same as the closure of the set of
eigenvalues of T∗f coming from the Kα, which is σ(T∗f ). Since every eigenvalue of C is in the

spectrum and σ(C) is closed, we see σ(T∗f ) ⊂ σ(C). Now, Herrero’s theorem says

σ(C) = σ(T∗f ) ∪ σ(C) = σ(T∗f ) ∪ σ(A).

To see the other inclusion, we observe that the operator-valued function on the
complement of Fill(σ(T∗f )) given by μ �→ (μI − T∗f )−1 is analytic in μ. If we write the block
representation

(μI − T∗f )−1 =

(
D(μ) E(μ)
F (μ) G(μ)

)
then each entry is analytic in μ. But for |μ| > ‖T∗f ‖, the function (μI − T∗f )−1 is given as a

convergent series in the powers of

(
A B
0 C

)
which means F (μ) ≡ 0 for |μ| > ‖T∗f ‖, but

because F is an analytic function of μ, it must be that F (μ) ≡ 0 on all of the complement of
Fill(σ(T∗f )). This means G(μ) = (μI − C)−1 for all μ in the complement of Fill(σ(T∗f )), that
is, σ(C) ⊂ Fill(σ(T∗f ).

Corollary 17. If f , T∗f , A, and C are as in Corollary 16 and f(D) is simply connected,

then σ(C) = σ(T∗f ) and σ(A) ⊂ σ(T∗f ).

Proof: If f(D) is simply connected, then σ(T∗f ) = Fill(σ(T∗f )), so
σ(T∗f ) = σ(C) = σ(T∗f ) ∪ σ(A).

Of course, if Δ is a compact set in the plane, Fill(Δ) is the set obtained by filling in the
holes of Δ and Corollary 16 says that the spectrum of C is obtained by including some
points from the holes of σ(T∗f ) to that set. In fact, we can do better! Corollary 16 (along
with part of the proof of Theorem 12) says that when C − μI is invertible,

(T∗f − μI)−1 =

(
(A− μI)−1 −(A− μI)−1B(C − μI)−1

0 (C − μI)−1

)

so both ‖(A− μI)−1‖ and ‖(C − μI)−1‖ are bounded by ‖(T∗f − μI)−1‖.
Now, it is a standard result in operator theory that if X is a bounded operator and μn is

sequence of numbers in ρ(X) = σ(X)c that converges to a point of σ(X), then
‖(X − μnI)

−1‖ → ∞ and conversely, if μn → μ and ‖(X − μnI)
−1‖ → ∞, then μ is in σ(X).

It follows that if μn is sequence of numbers in ρ(C) converging to a point, μ, of σ(C), then
limn→∞ ‖(T∗f − μnI)

−1‖ = ∞ and μ is in σ(T∗f ). That is, we have the following result.

Corollary 18. If f , T∗f , and C are as in Corollary 16, then ∂σ(C) ⊂ ∂σ(T∗f ).

In other words, if the spectrum of C contains any point of a hole in σ(T∗f ), then it must

contain the entire hole. Moreover, in this case, because σ(C) = σ(T∗f ) ∪ σ(A), the hole must
consist of points of the spectrum of A.
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Corollary 19. If f , T∗f , A and C are as in Corollary 16, and the interior of σ(A) is empty,

then σ(C) = σ(T∗f ) and σ(A) ⊂ σ(T∗f ).

Proof: The holes of σ(T∗f ) are open sets, so if σ(A) contains no open sets, then it cannot

contain any holes of σ(T∗f ), and it must lie completely in that set. The conclusion now

follows from σ(C) = σ(T∗f ) ∪ σ(A).

Of course, this Corollary applies to any translate of a quasi-nilpotent operator as well as
other operators.

Corollary 20. Suppose f is a bounded analytic function such that T∗f is in V and σ(T∗f ) has
only finitely many holes. For any bounded operator A0 on H2, there is ε > 0 so that for any
λ with |λ| < ε, there are invariant subspaces M for T∗f and numbers β so that

λA0 + βI ≈ A = T∗f
∣∣∣
M
. Moreover, for any such M and A and C are as in Corollary 16,

then σ(C) = σ(T∗f ) and σ(A) ⊂ σ(T∗f ).

Proof: The proof of Theorem 2 shows that there is ε1 > 0 so that for |λ| < ε1, there are

invariant subspaces M and numbers β so that λA0 + βI ≈ A = T∗f
∣∣∣
M
. Now the holes in

σ(T∗f ) are open sets and because there are only finitely many, there is a number ε, with
0 < ‖A0‖ε ≤ ε1 and each hole contains a closed disk of diameter ‖A0‖ε.

Thus, if |λ| < ε, there are invariant subspaces M and numbers β so that

λA0 + βI ≈ A = T∗f
∣∣∣
M
. Moreover, because the diameter of σ(λA0) is too small to fill any

hole in σ(T∗f ), the spectrum of C must be σ(T∗f ) and σ(A) ⊂ σ(T∗f ).
Corollary 16 and its corollaries refer to the spectra of T∗f , A, and C but in so far as

invariant subspaces can be connected to spectra, we hope that these relationships might lead
to relationships among invariant subspaces as well.

It is well known and easy to prove that the kernel functions are linearly independent in H2

and from this fact, we gain information about the independence of the yα in M⊥.

Theorem 21. If T is in U and M is an infinite dimensional invariant subspace for T , then
either {yα}α∈D is linearly independent in M⊥ or there is a non-zero, finite dimensional
subspace of M that is also invariant for T .

Proof: Suppose T = T∗f . Suppose {yα}α∈D is not linearly independent, that is, suppose for

some yα1 , · · ·, yαk
, (with k ≥ 1), we have

∑k
j=1 ajyαj = 0, but none of a1, a2, · · ·, ak are zero.

Letting L = span{Kαj}kj=1, we see L is a k-dimensional subspace of H2 and v =
∑k

j=1 ajKαj

is a non-zero vector in L because the {Kα} are linearly independent. This means

0 �= v =
k∑

j=1

ajKαj =
k∑

j=1

ajxαj +
k∑

j=1

ajyαj =
k∑

j=1

ajxαj + 0 =
k∑

j=1

ajxαj
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The vector on the right is clearly a vector in M , so v =
∑k

j=1 ajKαj is a non-zero vector in
M and, indeed, in M ∩ L.

Now M is invariant for T = T∗f by hypothesis and L is invariant for T∗f because each Kαj

is an eigenvector for T∗f : T∗f (Kα) = f(α)Kα.
In other words, we have proved that if {yα}α∈D is linearly dependent as above then the

non-zero subspace M ∩ L is a finite-dimensional invariant subspace for T . This shows either
{yα}α∈D is linearly independent or M contains a non-zero finite dimensional subspace that is
invariant for T , as we wished to prove.

Corollary 22. Suppose T is in U and M is an infinite dimensional invariant subspace for
T . If yα = 0 for any α in D, then there is a non-zero, one-dimensional subspace of M that is
also invariant for T .

Proof: If the vector yα = 0, then the set {yα} is a linearly dependent set and Theorem 21
gives the conclusion, after reviewing the proof to notice that L = [xα] = [Kα], the
one-dimensional subspace spanned by xα is invariant for T .

5. Exploiting Commuting Operators

Our strategy, of course, is to obtain interesting consequences of the structure for operators
described in Theorem 12 and we believe using operators that commute with operators in V
may help. If f is a bounded analytic function with T∗f in V, we choose W to be an operator

that commutes with T∗f and depending on the application, we might choose W to have other
properties, such as W being the adjoint of an analytic Toeplitz operator or a compact
operator such as W = W∗

ψ,J , the injective, compact operator with dense range described in
Theorem 8. Using the notation of Equation (4) in Theorem 12, the two most useful
equalities coming from the commutativity TW = WT are the equations relating the entries
of the block matrices and their action on M :

AP +BR = PA (10)

CR = RA (11)

The operators in the blocks depend on the operators T and W , but also on M . We are
given a choice of universal operator T and we seek to understand how T acts on each of its
invariant subspaces. In particular, this means we must treat T and M as given, and we are
free to choose W to exploit the features of T and M . In particular, in order to choose W , we
need to understand how the properties of R depend on the nature of W .

Theorem 23. Let T be a universal operator on H2 that is in the class U and let M be an
infinite dimensional, proper invariant subspace for T . Let W be an operator on H2 that
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commutes with T for which M �⊂ kernel (W ). Using the notation from Equation (4), if
kernel (R) �= (0) and R �= 0, then kernel (R) is a proper subspace of M that is invariant for
T . Moreover, if kernel (W ) ∩M �= (0) and R = 0, then kernel (W ) ∩M = kernel (P ) is a
proper subspace of M that is invariant for T .

Proof: If M ⊂ kernel(W ), then for all x ∼ (x, 0) in M , using Equation (4), we have(
0
0

)
= 0 = Wx =

(
P Q
R S

)(
x
0

)
=

(
Px
Rx

)

so both Px = 0 and Rx = 0 for all x in M and P = 0 and R = 0. Clearly the converse holds
as well.

Thus, if M �⊂ kernel(W ), then either R �= 0 or P �= 0. Suppose R �= 0 and kernel(R) �= (0).
If x is in kernel(R) ⊂ M , then Equation (11) gives R(Ax) = C(Rx) = C0 = 0, and Tx = Ax
is also in kernel(R). This shows that if M �⊂ kernel(W ), then either R = 0 or kernel(R) = (0)
or there is a proper invariant subspace of M that is invariant for T .

If R = 0, then P �= 0, so kernel(P ) �= M . The calculation above shows

kernel(W ) ∩M = kernel(P ) ∩ kernel(R) = kernel(P ) ∩M = kernel(P )

Since R = 0, Equation (10) becomes PA = AP . This means that if x is in kernel(P ), then
P (Ax) = A(Px) = 0 and Tx = Ax is also in kernel(P ).

Observe that if T is a universal operator on H2 that is in the class U then, in particular, T
commutes with T∗η for every inner function η. Since the kernels of the operators T∗η are the
vectors in H2 that are not cyclic vectors for the backward shift, one might ask the question

Does every closed, infinite dimensional subspace of H2 include a non-zero,
non-cyclic vector for the backward shift?

The cyclic and non-cyclic vectors for the backward shift acting on Hp, 1 < p < ∞, were
characterized by Douglas, Shapiro, and Shields [11] in terms of pseudocontinuation.
Moreover, they showed that the set of non-cyclic vectors is a (not closed) linear manifold in
Hp.

Prof. N. Nikolski pointed out to us that the answer to the question above is “No!” – it is
possible to construct infinite dimensional, closed subspaces consisting only of cyclic vectors
for the backward shift. We thank him for showing us the following example, referred to in his
book [18, pp. 83], and included here for the sake of completeness.

Example. Let S := {nj} be a Hadamard lacunary sequence of positive integers, that is,
infj>k nj/nk > 1, and represent it as an infinite union of disjoint infinite subsequences, say
S =

⋃
k≥1 Sk. For each k ≥ 1, let fk ∈ H2 whose Fourier spectrum is exactly Sk, that is,

fk(z) =
∞∑
n=0

f̂k(n)z
n ∈ H2
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such that σ̂(fk) =
{
n ∈ Z+ : f̂k(n) �= 0

}
= Sk. Let us set

E = span {fk : k = 1, 2, ...}
Hence, since the fk are pairwise orthogonal, if f in E is non-zero, it is not a polynomial, but
it still has a lacunary Fourier spectrum. Therefore, it is backward cyclic.

Thus, we specialize our query to address the issue at hand:

Question 1: Does every closed, infinite dimensional subspace of H2 that is a proper
invariant subspace for an operator in the class U include a non-zero vector that is not cyclic
for the backward shift?

Since non-cyclic vectors for the backward shift are related to inner functions as noted
above, this question is easily seen to be equivalent to the question: Does every closed, infinite
dimensional subspace of H2 that is a proper invariant subspace for an operator in the class U
have a non-zero intersection with (ζH2)⊥ = kernel (T∗ζ ) for some non-constant inner function
ζ?

We need some facts about the non-cyclic vectors for the backward shift, T∗z . As we have
noted, a vector in H2 is not cyclic for the backward shift if and only if it is contained in the
(ζH2)⊥ = kernel (T∗ζ ) for some inner function ζ, that is, it is in an invariant subspace for the

backward shift. It is easy to show that kernel (T∗ζ2) ⊂ kernel (T∗ζ1) if and only if ζ2 divides ζ1.
Herrero and Sherman [15, Thm. 3] show that a closed subspace consists only of non-cyclic
vectors if and only if it is contained in one of these invariant subspaces for the backward
shift. We give an easy sharper version of this result.

Proposition 24. Suppose η is an inner function and M �= (0) is a closed subspace such that
M ⊂ kernel (T∗η ). If J is the set of inner functions ζ for which M ⊂ kernel (T∗ζ ), then there
is an inner function ζ0 such that

kernel (T∗ζ0) =
⋂
ζ∈J

kernel (T∗ζ ) (12)

The inner function ζ0 is minimal in the sense that if ζ1 �= ζ0 is any inner function that
divides ζ0, then M ∩ kernel (T∗ζ1) �= M . Moreover, if ξ is any inner function,

M ∩ kernel (T∗ξ ) = M ∩ kernel (T∗ζ2) where ζ2 is an inner function that divides ζ0.

Proof: Clearly the set on the right in Equation (12) is a closed subspace containing M
because each set in the intersection is a closed subspace containing M . Moreover, because
each of the subspaces in the intersection is an invariant subspace for T∗z , the set on the right
is also an invariant subspace for T∗z . In particular, this implies that there is an inner function
ζ0 for which the equality in Equation (12) holds.

Now if ζ1 �= ζ0 is any inner function that divides ζ0, then kernel (T∗ζ1) ⊂ kernel (T∗ζ0) but
they are not equal, so ζ1 is not in J because otherwise the intersection would be smaller. In
particular, this means kernel (T∗ζ1) �⊃ M and M ∩ kernel (T∗ζ1) �= M .
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If ξ is any inner function, M ∩ kernel (T∗ξ ) is a closed subspace of M , so

kernel (T∗ζ0) ∩
(
M ∩ kernel (T∗ξ )

)
= M ∩ kernel (T∗ξ )

because kernel (T∗ζ0) contains M . On the other hand,

kernel (T∗ζ0) ∩
(
M ∩ kernel (T∗ξ )

)
= M ∩ (

kernel (T∗ξ ) ∩ kernel (T∗ζ0)
)

Both kernel (T∗ξ ) and kernel (T∗ζ0) are invariant subspaces for the backward shift operator, so

their intersection is as well, and it must be kernel (T∗ζ2) for some inner function ζ2. Indeed,
because the intersection of the subspaces is a subspace of each of them, ζ2 is the greatest
common divisor of ζ0 and ξ, so ζ2 divides ζ0 and, as desired, we see

M ∩ kernel (T∗ξ ) = M ∩ kernel (T∗ζ2)

Corollary 25. If v is a non-zero vector that is not cyclic for T∗z , then there is an inner
function ζv such that [v], the subspace spanned by v, satisfies [v] ⊂ kernel (T∗ζv) and if ζ �= ζv
is an inner function that divides ζv, then [v] ∩ kernel (T∗ζ ) = (0). That is, kernel (T∗ζv) is the
smallest backward shift invariant subspace that includes v.

Proof: The vector v is assumed to be a non-zero vector that is not cyclic for the backward
shift, so v in in kernel (T∗ζ ) for some inner function ζ. Since [v] is a subspace of kernel (T∗ζ ),
it satifies the hypotheses of the Theorem above. We will write ζv for the inner function ζ0
resulting from the application of the Theorem to the subspace [v].

Now, if ζ �= ζv is an inner function that divides ζv, the theorem says [v] ∩ kernel (T∗ζ ) �= [v],
but the only subspace of [v] besides [v] is (0), which is the conclusion of the Corollary.

Corollary 25 justifies the language “smallest invariant subspace” and allows us to make the
following definition:

Definition: If M is a closed subspace of H2 and v is a non-zero vector in M , we say v is a
sharp vector for M if v is a not a cyclic vector for T∗z and the smallest invariant subspace of
T∗z that contains v does not contain all of M .

In other words, v is a sharp vector for M if M ∩ kernel (T∗ζv) �= M .

Theorem 26. Let T be a universal operator on H2 that is in the class U and let M be an
infinite dimensional, proper invariant subspace for T . If ζ is any inner function, then
M ∩ kernel(T∗ζ ) is a subspace of M that is invariant for T . If there is a non-zero vector in

M ∩ kernel(T∗ζ ) and M is not contained in kernel (T∗ζ ), then M ∩ kernel(T∗ζ ) is a proper
subspace of M that is invariant for T .
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Proof: Let T = T∗f and suppose η is any inner function. Since f and η are both in H∞, the

adjoints of their Toeplitz operators, T∗f and T∗η , commute. We see that if v is a vector in the

the kernel of T∗η , then
T∗η (T∗f v) = T∗f (T∗η v) = T∗f 0 = 0

so T∗f v is also in the kernel of T∗η and kernel(T∗η ) is an invariant subspace for T∗f . By
hypothesis, M is an invariant subspace for T∗f , so M ∩ kernel(T∗η ) is the intersection of two

invariant subspaces for T∗f , and is also invariant.

If v is a non-zero vector in M ∩ kernel(T∗η ), then this intersection is not (0). If
M ∩ kernel(T∗η ) is also not equal to M , it is a proper subspace of M that is invariant for T∗f
as the Theorem asserts.

Corollary 27. Let T be a universal operator on H2 that is in the class U and let M be an
infinite dimensional, invariant subspace for T . If v is a sharp vector for M , then there is a
proper subspace of M that is invariant for T .

Proof: Since v is a sharp vector for M , it is a non-zero vector in M that is not cyclic for the
backward shift, T∗z , that is in kernel (T∗ζv) where ζv is the inner function of Corollary 25. In

particular, M ∩ kernel (T∗ζv) �= (0) and, by hypothesis, M ∩ kernel (T∗ζv) �= M , so it follows

from Theorem 26 that M ∩ kernel (T∗ζv) is a proper invariant subspace for T .

Corollary 28. Let T be a universal operator on H2 that is in the class U and let M be an
infinite dimensional, proper invariant subspace for T . If M contains a non-zero vector that is
not cyclic for the backward shift, T∗z , then there is a non-zero subspace of M that is invariant
for T .

Proof: If v is a non-zero vector that is not cyclic for the backward shift, then ζv is an inner
function so that M ∩ kernel (T∗ζv) is a non-zero subspace of M that is invariant for T .

Note that in Corollary 28, the conclusion allows M ∩ kernel (T∗ζ ) = M , which is not a
proper invariant subspace of M .

Corollary 29. Let T be a universal operator on H2 that is in the class U and let M be an
infinite dimensional, proper invariant subspace for T . If M contains a cyclic vector for the
backward shift, T∗z , and non-zero vector that is not cyclic for the backward shift, then there is
a proper subspace of M that is invariant for T .

Proof: Suppose u is a cyclic vector for the backward shift and suppose v is a non-zero
vector that is not cyclic for the backward shift. By Corollary 28, M ∩ kernel (T∗ζv) is a
non-zero subspace of M that is invariant for T . On the other hand, since u is cyclic for the
backward shift, u is a vector in M that is not in any backward shift invariant subspace, so
M ∩ kernel (T∗ζv) is also not all of M . Thus, this subspace is a proper subspace of M that is
invariant for T .
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Corollary 30. Let T be a universal operator on H2 that is in the class U and let M be an
infinite dimensional, proper invariant subspace for T . If M is an invariant subspace for the
backward shift, T∗z , then there is a proper subspace of M that is invariant for T .

Proof: Let T = T∗f and let M = kernel(T∗η ) for some inner function, η. Since kernel (T∗η ) is
an infinite dimensional space, there is an inner function ζ that divides η for which neither ζ
nor η/ζ is constant. Since ζ is not constant, kernel(T∗ζ ) �= (0) and since η/ζ is not constant,

kernel(T∗ζ ) �= M . Thus, kernel(T∗ζ ) is a proper subspace of M that is invariant for T∗f .
It seems possible that the hypotheses of some of the results above are more restrictive

than necessary, although we have not been able to weaken them. If we are considering the
case of an invariant subspace M for a universal operator T in the class U in which M
contains a non-zero vector, v, that is not cyclic for the backward shift, we have no problem if
kernel (T∗ζv) does not contain M because in that case M ∩ kernel (T∗ζv) is a proper subspace of

M that is invariant for T . On the other hand, if M ⊂ kernel (T∗ζv), we have a problem

because M ∩ kernel (T∗ζv) = M , not a proper subspace of M . This leads to the following
question about a possible reduction for this situation:

Question 2: Suppose M is an infinite dimensional closed subspace that is invariant for T ,
a universal operator in the class U , and suppose η is an inner function for which
M ⊂ kernel (T∗η ). Is there always an inner function ζ so that (0) �= M ∩ kernel (T∗ζ ) �= M?

First, notice that we have restricted our question to the particular case in which we want
to apply it, but it can be asked more generally for any infinite dimensional subspace M ,
without involving any universal operators. As a second observation, Proposition 24 allows us
to restrict our attention to just the smallest backward shift invariant subspace containing M ,
if we wish, rather than looking at the invariant subspace given by the inner function η. The
last conclusion of Proposition 24 allows us to only consider subspaces of the type
M ∩ kernel (T∗ζ2) where ζ2 is an inner function that divides the inner function associated with
the smallest backward shift invariant subspace containing M (which also divides η). Finally,
we observe that the two questions raised here, Question 1 and Question 2, can be combined
in the form:

If T is a universal operator in the class U and M is an infinite dimensional
closed subspace that is invariant for T , does M always contain a vector v that is
sharp for M?

Notice that if M is contained in a backward shift invariant subspace, then every v in M is
a non-cyclic vector for the backward shift and there is an inner function ζv such that
(ζvH

2)⊥ is the smallest backward shift invariant subspace containing v. On the other hand,
because M is contained in a backward shift invariant subspace, there is a smallest backward
shift invariant subspace (ζMH2)⊥ that contains M . If v is in M , the inner function ζv
divides ζM and either (ζvH

2)⊥ = (ζMH2)⊥ or M ∩ (ζvH
2)⊥ �= M . This suggests a general

question and a question more pointed to our concerns:
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Question 3: Is there an an infinite dimensional closed subspace M of H2 with
M ⊂ kernel (T∗η ) for some inner function η such that for each v in M we have

(ζvH
2)⊥ = (ζMH2)⊥ where (ζvH

2)⊥ (respectively, (ζMH2)⊥) is the smallest backward shift
invariant subspace containing v (repsectively, M)?

or, more pointedly:

Question 3a: If T is a universal operator in the class U , is there an infinite dimensional
closed subspace M that is invariant for T with M ⊂ kernel (T∗η ) for some inner function η

such that for each v in M we have (ζvH
2)⊥ = (ζMH2)⊥?

The next three propositions are observations that appear to be useful in considering
properties of the subspaces of M . The first puts further limits on the kinds of operators that
can be C in Equation (4).

Proposition 31. For f a bounded analytic function for which T∗f is in V, using the notation

from Equation (4), the operator C∗ has no eigenvalues.

Proof: Since M is an invariant subspace for T∗f , the subspace M⊥ is invariant for Tf and

C∗ is the restriction of Tf to M⊥. Since T∗f is in V, the function f is non-constant. In
particular, this means for every complex number μ, the operator Tf − μI has trivial kernel
and, as is well known, Tf has no eigenvalues. Because every eigenvector of C∗ is also an
eigenvector of Tf , we see C∗ has no eigenvalues.

The next two provide tools for using information about C to learn about the operator A of
primary interest.

Proposition 32. If N is a non-trivial closed, invariant subspace for C, we let
Ñ = {x ∈ M : Rx ∈ N}, then the subspace Ñ is a closed invariant subspace for A.

Proof: Since R is a bounded operator, Ñ is a closed subspace of M . Let x be in Ñ so that
Rx is in N . Because N is an invariant subspace for C, we see CRx is in N also. This means
that RAx = CRx is in N , so Ax is in Ñ . In other words, Ñ is an invariant subspace for A.

Proposition 33. Since RA = CR, we have R∗C∗ = A∗R∗ and if L is any invariant
subspace for C∗ then R∗L is an invariant linear manifold for A∗.

Proof: Suppose v is a vector in R∗L, say v = R∗w for w in L. Then
A∗v = A∗R∗w = R∗(C∗w) which is in R∗L because C∗w is in L. Thus, R∗L is an invariant
linear manifold of A∗.

Notice that Proposition 32 does not make any assertion about the size of Ñ . In particular,
if N �= (0) but Ñ = (0) or if N �= M⊥ but Ñ = M , this lemma is not helpful.
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Similarly, Proposition 33 does not make any assertion about the size of R∗L, but if R∗L is
dense or if R∗L = (0), this lemma is not helpful. The subspace R∗L = (0) if and only if
range(R) ⊂ L⊥. Notice that if R∗L is not dense, then there is v �= 0 in (R∗L)⊥ which means
Rv is in L⊥. In this case, if Rv = 0, then Theorem 23 applies. Since L is invariant for C∗, we
know L⊥ is invariant for C. If Rv �= 0, then L̃⊥ is a subspace of M that is invariant for A

(and T ) by Proposition 32 and it is non-trivial because v �= 0 is in L̃⊥.

In this work, we have pointed out that there are many universal operators that are adjoints
of analytic Toeplitz operators and exhibited some of their shared properties as well as
pointing out consequences of differences among these operators. We believe that these results
provide a wide variety of tools for the study of the Invariant Subspace Problem and that
choices can be made between universal operators based on the types of questions under study.

While we have been unable to answer the questions raised above, or to exploit these
results for using operators in the class V to show the existence of invariant subspaces for
broader classes of operators, we believe these results can lead to more concrete answers than
have been possible before.
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