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Preschool Teacher Training College, 37000 Kruševac, Serbia

Abstract

This paper is devoted to a study of geodesic mappings and infinitesimal geodesic
deformations of generalized Riemannian spaces. While a geodesic mapping be-
tween two generalized Riemannian spaces any geodesic line of one space sends
to a geodesic line of the other space, under an infinitesimal geodesic deformation
any geodesic line is mapped to a curve approximating a geodesic with a given
precision. Basic equations of the theory of geodesic mappings in the case of gen-
eralized Riemannian spaces are obtained in this paper. A new generalization of
the famous Levi Civita’s equation is found. Necessary and sufficient conditions
for a nontrivial infinitesimal geodesic deformation are given. It is proven that a
generalized Riemannian space admits nontrivial infinitesimal geodesic deforma-
tions if and only if it admits nontrivial geodesic mappings. At last it is shown
that generalized equidistant spaces of primary type admit nontrivial geodesic
deformations.

Keywords: Geodesic mapping, Infinitesimal deformation, Infinitesimal
geodesic deformation, Generalized Riemannian space, Generalized equidistant
space.
2000 MSC: 53C25, 53A45, 53B05.

1. Introduction

The problem of geodesic mappings of Riemannian spaces is related to the
Levi Civita’s investigations [1] and stems from his study of a dynamics equa-
tion. Basics of the theory of geodesic mappings of spaces with symmetric affine
connection can be found in monographs of the authors J. Mikeš, V. Kiosak
and A. Vanžurová [2], and also N. Sinyukov [3]. A lot of papers is dedicated
to the theory of geodesic mappings of nonsymmetric affine connection spaces,
specially of generalized Riemannian spaces (see [4, 5, 6, 7, 8, 9, 10]). Note that
the nonsymmetric affine connection is related to Einstein’s Unified Field Theory
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(UFT), which unites the gravitation theory and the theory of electromagnetism,
while the symmetric affine connection is related to General Theory of Relativity
(GTR) and gravitation theory.

Infinitesimal deformations of different spaces are very important from the
physical point of view because they estimate stability of different magnitudes.
Spaces with symmetric affine connection under infinitesimal deformations were
thoroughly studied in [2, 11, 12, 13, 14, 15, 16]. Some papers [17, 18, 19, 20]
are dedicated to the theory of infinitesimal deformations of nonsymmetric affine
connection spaces, specially to deformations of generalized Riemannian spaces.

By setting various special conditions, we get different kinds of infinitesimal
deformations. In this paper we are interested in such a kind of infinitesimal de-
formations called infinitesimal geodesic deformations under which any geodesic
is mapped to a curve approximating a geodesic with a given precision. This
approach in the studying of geodesics is appropriate for different applications,
for example, for simulating real physical situations when evolution of gravity
fields (electromagnetic fields, mechanical systems etc.) is considered [2].

This paper is organized as follows: In Section 2, some used notations and
preliminaries are given. In Section 3, a generalization of the famous Levi Civita’s
equation is obtained in the case of generalized Riemannian spaces. Necessary
and sufficient conditions for nontrivial geodesic mapping of a generalized Rie-
mannian space GRN are found. In Section 4, necessary and sufficient condi-
tions for an infinitesimal geodesic deformation of the space GRN are given. It is
proven that a generalized Riemannian spaceGRN admits nontrivial infinitesimal
geodesic deformations if and only if GRN admits nontrivial geodesic mappings.
At last it is shown that generalized equidistant spaces of primary type admit
nontrivial geodesic deformations.

2. Notation and preliminaries

Generalized Riemannian spaces. We are giving some basic facts about general-
ized Riemannian spaces according to [7, 21].

A generalized Riemannian space GRN is a differentiableN -dimensional man-
ifold endowed with a non-symmetric metric tensor gij(x

1, ..., xN ), where xi are
local coordinates. Generally we have

gij(x) �= gji(x). (2.1)

If the metric tensor is symmetric, then we get the Riemannian space RN .
Because of the non-symmetry it is defined symmetric and antisymmetric

part of the metric tensor gij as

gij =
1

2

(
gij + gji

)
and gij

∨
=

1

2

(
gij − gji

)
. (2.2)

For the lowering and raising of indices in GRN one uses the tensors gij respec-

tively gij , where
‖gij‖ = ‖gij‖−1 (det ‖gij‖ �= 0).
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First and second kind Christoffel symbols of the space GRN are:

Γi.jk =
1

2

(
gji,k − gjk,i + gik,j

)
and Γi

jk = giαΓα.jk, (2.3)

where comma denotes partial derivation ∂/∂xk. Generally, we have Γi
jk �= Γi

kj .

The symbols Γi
jk present connection coefficients of the space GRN . For Γi

jk the
next equations are valid

Γi
ik=Γi

ki =
∂

∂xk
ln

√
|g|, g = det ‖gij‖, (2.4)

Γi
ik∨
=0. (2.5)

Using the non-symmetry of the connection coefficients, it is possible to define
four kinds of covariant differentiation of a tensor. Thus, for a tensor aij we have:

aij |
1
k = aij,k + Γi

αka
α
j − Γα

jka
i
α, aij |

2
k = aij,k + Γi

kαa
α
j − Γα

kja
i
α,

aij |
3
k = aij,k + Γi

αka
α
j − Γα

kja
i
α, aij |

4
k = aij,k + Γi

kαa
α
j − Γα

jka
i
α.

(2.6)

A Riemannian space RN endowed with a symmetric part of the connection
Γi
jk = 1

2

(
Γi
jk+Γi

kj

)
is the associated space to the space GRN . An antisymmetric

part of the connection, a magnitude Γi
jk
∨

= 1
2

(
Γi
jk − Γi

kj

)
is a tensor called the

torsion tensor.

Geodesic mappings. Basic facts related to the geodesic mappings of generalized
Riemannian spaces are given in the sequel according to [5, 7].

A geodesic mapping of a generalized Riemannian space GRN onto GRN is a
diffeomorphism f : GRN → GRN under which the geodesics of the space GRN

correspond to the geodesics of the space GRN .
Let the spaces GRN and GRN be considered in the common system of local

coordinates x1, x2, ..., xN , with respect to the mapping f . Then the connection
coefficients of these spaces in the corresponding points M(x) and M(x), can be
connected with the next relation:

Γ
i

jk = Γi
jk + P i

jk. (2.7)

A magnitude P i
jk is a tensor called deformation tensor of the connection Γ of

GRN according to the mapping f : GRN → GRN .

A necessary and sufficient condition for the mapping f to be a geodesic one
is that the deformation tensor P i

jk has the next form

P i
jk = δijψk + δikψj + ξijk, (2.8)
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where ψi is a covariant vector and ξijk is an antisymmetric tensor. With respect
to (2.7), the equation (2.8) becomes

Γ
i

jk = Γi
jk + δijψk + δikψj + ξijk. (2.9)

Obviously,

ψi =
1

1 +N
P p
ip =

1

1 +N
(Γp

ip − Γp
ip), ξijk = P i

jk
∨
= Γ

i

jk
∨
− Γi

jk
∨

(2.10)

A vector ψi has also the next form

ψi =
1

N + 1

∂

∂xi
ln

√∣∣∣g
g

∣∣∣, (2.11)

where g = det ‖gij‖, g = det ‖gij‖. As the magnitude |g/g| is an invariant, we

conclude that the vector ψi is a gradient. Also, for an antisymmetric tensor ξijk,
it is valid the next relation:

ξppk = ξpkp = 0. (2.12)

In [5] the next theorem was proved.

Theorem 2.1. a) A mapping f : GRN → GRN is geodesic if and only if the
2nd kind Cristoffel symbols of these spaces satisfy (2.9).

b)If the mapping f is geodesic, then the equations

gij |
1
k − gij

∨
||
1
k = 2ψk gij + ψi gkj + ψj gik + ξpikgpj + ξpjkgip, (2.13)

gij |
2
k − gij

∨
||
2
k = 2ψk gij + ψi gkj + ψj gik + ξpkigpj + ξpkjgip, (2.14)

are satisfied, where (|) and (||) denote covariant derivatives of the corresponding
kind in the spaces GRN and GRN , respectively. Conversely, if one of these
equations is satisfied, then this mapping is geodesic, and the other is satisfied
too. �

Infinitesimal deformations. We are going to define basic terms about infinites-
imal deformations following the research of J. Mikeš et al. in [2] about Rie-
mannian spaces and generalizing their considerations to the case of generalized
Riemannian spaces.

Let GRM be a generalized Riemannian space with a metric tensor aαβ and
local coordinates y1, ..., yM . The equations

yα = yα(x1, ..., xN ), rank
∥∥yα,i∥∥ = N < M (2.15)

determine the subspace GRN of the space GRM (GRN ⊂ GRM ) with induced
metric gij . The components of metric tensors aαβ and gij are related with the
next relation according to [6]

gij = aαβy
α
,iy

β
,j . (2.16)
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Greek indices α, β, ... take values 1, ...,M and refer to the space GRM but
Latin indices i, j, ... take values 1, ..., N and refer to the subspace GRN .

Let zα(x1, ..., xN ) be a restriction of a vector field defined on a generalized
Riemannian space GRM onto the subspace GRN .

Definition 2.1. The equations

ỹα = yα(xi) + εzα(xi), (2.17)

where ε is an infinitesimal, define a family of generalized Riemannian subspaces
GR̃N of the space GRM which is said to be the infinitesimal deformation (of
the first order) of the space GRN . The field zα(x1, ..., xN ) is the infinitesimal
deformation field or the displacement field.

Definition 2.2. Let A = A(x1, ..., xN ) be a geometric object from the general-
ized Riemannian space GRN (a scalar function, a vector, a tensor, a connec-
tion,...). An object Ã = Ã(x1, ..., xN , ε) from the space GR̃N is the deformed
object A, with respect to the infinitesimal deformation (2.17), if

Ã(yα) = A(ỹα). (2.18)

Definition 2.3. Let A = A(x1, ..., xN ) be a geometric object from the space
GRN and let Ã = Ã(x1, ..., xN , ε) be an infinitesimally deformed object A, with
respect to the deformation (2.17). Also, let the equation

ΔA = Ã(xi, ε)−A(xi) = εδA+ ε2δ2A+ ...+ εnδnA+ . . . (2.19)

be a valid one, then the coefficients δA, δ2A, . . . , δnA, . . . are first, second, etc.
variation of the magnitude A under this infinitesimal deformation.

Summands which have the infinitesimal ε of a degree higher than one are
going to be omitted in this research. We will omit mention of the order of
variation as well as infinitesimal deformation supposing it is the first variation
of infinitesimal deformation of the first order in the sequel.

For a variation of a geometric object A from the space GRN the next prop-
erties hold [20] as same as it is valid in the case of a Euclidean space EN :

• A variation of addition of geometric objects of the same kind is equal to
the sum of variations of these objects.;

• For multiplication and composition (multiplication with contraction) of
geometric objects, Leibnitz role holds.

Definition 2.4. An infinitesimal geodesic deformation is an infinitesimal
deformation GR̃N of a generalized Riemannian space GRN if it preserves the
geodesic curves of the space GRN .
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3. Necessary and sufficient conditions for a geodesic mapping f :
GRN → GRN

Theorem 2.1 gives necessary and sufficient conditions for a geodesic mapping
of two generalized Riemannian spaces. Here we give their equivalent, which
presents simpler expression of the conditions (2.13) and (2.14).

Theorem 3.1. A mapping f of a generalized Riemannian space GRN onto a
generalized Riemannian space GRN is geodesic if and only if in the common
system of local coordinates with respect to the mapping f , basic metric tensor of
the space GRN satisfies the next relation

gij |
1
k =2ψk gij+ψi gkj+ψj gik + ξpikgpj + ξpjkgip, (3.1)

where (|
1
) denotes covariant derivative of the first kind in the space GRN .

Proof. (⇒:) Let us suppose that the mapping f : GRN → GRN is geodesic.
According to Theorem 2.1, a the next relation is a valid one

Γ
i

jk=Γi
jk+ψjδ

i
k+ψkδ

i
j + ξijk. (3.2)

From the definition of the covariant derivative (2.6) and from the equation (3.2)
we obtain

gij
∨
|
1
k − gij

∨
||
1
k =gij

∨
,k − Γp

ikgpj
∨
− Γp

jkgip
∨
− gij

∨
,k +Γ

p

ikgpj
∨
+Γ

p

jkgip
∨

=(Γ
p

ik − Γp
ik)gpj

∨
+(Γ

p

jk − Γp
jk)gip

∨

=(δpi ψk+δpkψi + ξpik)gpj
∨
+(δpjψk+δpkψj + ξpjk)gip

∨

=2ψk gij
∨
+ψi gkj

∨
+ψj gik∨

+ ξpikgpj
∨
+ ξpjkgip

∨
.

(3.3)

If we exchange gij
∨
|
1
k from (3.3) into (2.13), we obtain the equation (3.1).

(⇐:) Let us suppose that the equation (3.1) holds. It is known that in the space
GRN the next equations are valid gij |

θ

k = 0, θ = 1, . . . , 4 (see [7, 21]), so using

the definition of the covariant derivative we have

gij |
1
k −

0︷ ︸︸ ︷
gij||

1
k =(Γ

p

ik − Γp
ik)gpj+(Γ

p

jk − Γp
jk)gip.

(3.4)

On the other hand, from (3.1) we have

gij |
1
k =2ψk gij +ψi gkj +ψj gik + ξpikgpj + ξpjkgip

=(ψiδ
p
k+ψkδ

p
i + ξpik)gpj+(ψjδ

p
k+ψkδ

p
j + ξpjk)gip.

(3.5)
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By comparing the equations (3.4) and (3.5) we conclude the relation (2.9) is a
valid one, i.e. the mapping is geodesic. �

It is easy to prove the next theorem.

Theorem 3.2. A mapping f of a generalized Riemannian space GRN onto a
generalized Riemannian space GRN is geodesic if and only if in the common
system of local coordinates with respect to the mapping f , basic metric tensor of
the space GRN satisfies the next relation

gij |
2
k =2ψk gij+ψi gkj+ψj gik + ξpkigpj + ξpkjgip, (3.6)

where (|
2
) denotes covariant derivative of the second kind in the space GRN . �

In connection with the previous exposure we give a basic equation of the
theory of geodesic mappings of Riemannian spaces which was proved by N. S.
Sinyukov [22].

Theorem 3.3. A Riemannian space RN admits a nontrivial geodesic mapping
if and only if there exists a nonsingular symmetric tensor aij satisfying

aij;k = λigjk + λjgik, (3.7)

for a gradient λi �= 0. �

In the sequel we are giving a generalization of that theorem in the case of
generalized Riemannian spaces.

Theorem 3.4. A generalized Riemannian space GRN admits a nontrivial geodesic
mapping, if and only if there exists a nonsingular symmetric tensor aij satisfying

aij |
1
k=λigjk + λjgik + μp

ikgpj + μp
jkgpi, (3.8)

for a gradient λi �= 0 and an antisymmetric tensor μi
jk so that μi

ij = μi
ji = 0.

Proof. Let us suppose that GRN admits a nontrivial geodesic mapping. Then
the equality (3.1) holds, where ψk is a gradient vector and ξijk is an antisym-
metric tensor given in (2.10).

As the vector ψk is a gradient, i. e. ψk = ∂ψ/∂xk, we can introduce the
next quantity

g̃ij = e−2ψ ḡij . (3.9)

After covariant derivative of the first kind of symmetric part in the previous
equation in GRN , i. e.

g̃ij = e−2ψ ḡij , (3.10)

having in mind the condition (3.1), we have

g̃ij |
1
k=ψig̃kj + ψj g̃ik + ξpikg̃pj + ξpjkg̃ip. (3.11)
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As the tensor ḡij is nonsingular, i. e. det ‖ḡij‖ �= 0, we conclude from the

equation (3.10) that g̃ij is also nonsingular. Let us denote an element of the

matrix, which is the inverse of the matrix ‖g̃ij‖, with g̃kl. Then it will be valid

g̃iα g̃αj = δji . (3.12)

Let us covariant differentiate this equation in GRN . We obtain

g̃iα|
1
k g̃

αj + g̃iα g̃αj |
1
k = 0.

If we multiply this equation with g̃iβ and use (3.12), then we obtain

g̃ij |
1
k=−g̃αβ |

1
kg̃

αig̃βj . (3.13)

Comparing with (3.11), we obtain

g̃ij |
1
k=−ψαg̃

αiδjk − ψβ g̃
βjδik − ξjαkg̃

αi − ξiβkg̃
βj . (3.14)

Let us introduce the next notation:

λi = −ψαg̃
αi, μpi

k = −ξpαkg̃
αi, (3.15)

we obtain
g̃ij |

1
k=λiδjk + λjδik + μji

k + μij
k . (3.16)

By lowering of indices i and j in GRN in the equation (3.16), we obtain

g̃ij |
1
kgiαgjβ=λiδjkgiαgjβ + λjδikgiαgjβ + μji

k giαgjβ + μij
k giαgjβ . (3.17)

Let us use the next notation

aαβ = g̃ijgiαgjβ λi = giαλ
α, μi

jk = gjαμ
iα
k , (3.18)

then we obtain

aαβ |
1
k=λαgkβ + λβgkα + μp

αkgpβ + μp
βkgpα. (3.19)

Obviously, aij is a nonsingular symmetric tensor, λi is a covariant vector, μi
jk

is a tensor.
From (3.10), (3.15) and (3.18) we conclude:

aij=e2ψgαβgαigβj , λi=−e2ψψαg
αβgiβ , μi

jk=−ξiβke
2ψgαβgjα. (3.20)

Let us multiply (3.19) with gαβ , we obtain

(aαβg
αβ)|

1
k=2(λk + μp

pk)=2ηk. (3.21)
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We conclude that ηk is a gradient, so it can be presented as the derivative of
the function

η =
1

2
aαβg

αβ . (3.22)

Form here it is aαβ = (2η/N)gαβ , which comparing with the first equation in

(3.18) gives g̃ij = (2λ/N)gij . Using this equation and the expression for the
tensor μi

jk from (3.15) and (3.18), we obtain μi
jk = −(2η/N)ξijk. It is clear that

the tensor μi
jk is antisymmetric, and also μp

pk = −(2η/N)ξppk = 0. Therefore,
ηk = λk, so λk is a gradient, and from (3.20) we conclude that λi �= 0 if and only
if ψi �= 0. In this way, if the space GRN admits a nontrivial geodesic mapping,
then there exists a nonsingular symmetric tensor aij , which satisfies the equality
(3.19) for a gradient λi �= 0 and an antisymmetric tensor μi

jk, μ
i
ik = μi

ki = 0.
Let us prove conversely statement. By the raising of indices α and β in GRN

in the equation(3.19), we conclude in accordance with (3.18) that the tensor

g̃ij=aαβg
αigβj (3.23)

satisfies the equality (3.16), for λi = λαg
αi, μij

k = μi
αkg

αj , where the tensor g̃ij

is symmetric and nonsingular. But than the element g̃ij of the inverse matrix

satisfies (3.11) for ψi = −λαg̃αi, ξ
p
jk = −μpα

k g̃αj . In the similar way as in the first

part of the proof we obtain that ξijk is an antisymmetric tensor which satisfies

ξppk = ξpkp = 0.
Further, the tensor g̃ij can be observed as a metric tensor of a generalized

Riemannian space GR̃N. For the second kind Christoffel symbols Γ̃i
jk of that

space we have, according to (2.4),

Γ̃α
αk=Γ̃α

kα =
∂

∂xk
ln

√
|g̃|, g̃ = det ‖g̃ij‖. (3.24)

According to (2.3) we conclude

Γ̃α
αk=

1

2
g̃αβ g̃αβ,k. (3.25)

As it is g̃αβ g̃αβ,k = g̃αβ g̃βα,k, we have g̃αβ g̃αβ
∨

,k = 0, so the previous equation

reduces to

Γ̃α
αk=

1

2
g̃αβ g̃αβ,k. (3.26)

Let us use (3.11) and the definition of the covariant derivative of the first kind.
We have

Γ̃α
αk=

1

2
g̃αβ

(
Γp
αkg̃pβ + Γp

βkg̃pα + ψαg̃kβ + ψβ g̃kα + ξpαkg̃pβ + ξpβkg̃pα
)

=
1

2

(
Γp
αkδ

α
p + Γp

βkδ
β
p + ψαδ

α
k + ψβδ

β
k + ξpαkδ

α
p + ξpβkδ

β
p

)
=Γα

αk + ψk,

(3.27)
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after using ξppk = 0. Therefore,

ψk=Γ̃α
αk − Γα

αk=
∂

∂xk
ln

√
|g̃| − ∂

∂xk
ln

√
|g|= ∂

∂xk
ln

√∣∣∣ g̃
g

∣∣∣, (3.28)

which means that ψk is a gradient, i. e. ψk = ∂ψ
∂xk . But then for the tensor

gij = e2ψ g̃ij (3.29)

from (3.11) obviously the condition (3.1) is valid. Therefore, the theorem is
proved. �

Analogously we prove the next theorem:

Theorem 3.5. A generalized Riemannian space GRN admits a nontrivial geodesic
mapping, if and only if there exists a nonsingular symmetric tensor aij satisfying

aij |
2
k=λigjk + λjgik + μp

kigpj + μp
kjgpi, (3.30)

for a gradient λi �= 0 and an antisymmetric tensor μi
jk so that μi

ij = μi
ji = 0. �

4. Necessary and sufficient conditions for an infinitesimal geodesic
deformation of the space GRN

In his paper [11] M. L. Gavril’chenko gave a necessary and sufficient condition
that a Riemannian space admits an infinitesimal geodesic deformation, i. e. he
proved following theorem:

Theorem 4.1. A Riemannian space RN admits infinitesimal geodesic defor-
mations if and only if on RN there exists a symmetric tensor hij so that the
condition

hij;k = 2ψkgij + ψigjk + ψjgik, (4.1)

is valid for a gradient vector ψi. �

In the sequel we are giving a generalization of that theorem which is valid
in the case of generalized Riemannian spaces.

Theorem 4.2. A generalized Riemannian space GRN admits infinitesimal geodesic
deformations if and only if on GRN there exists a symmetric tensor hij so that
the condition

hij |
1
k=2ψkgij + ψigkj + ψjgik + ξpikgpj + ξpjkgip, (4.2)

is valid for a gradient vector ψi and an antisymmetric tensor ξijk so that ξiik =

ξiki = 0.

10



Proof. Let be given an infinitesimal geodesic deformation of the space GRN

with the equation
ỹα = yα(xi) + εzα(xi), (4.3)

where ε is a small real parameter. The equations (4.3) define a deformed space
GR̃N. Obviously, the spaces GRN and GR̃N, in the common system of local
coordinates (xi), admit a geodesic mapping of one to another, so the equality
(3.1) holds true:

g̃ij |
1
k=2ψk g̃ij+ψi g̃kj+ψj g̃ik + ξpikg̃pj + ξpjkg̃ip, (4.4)

where ξijk is an antisymmetric part of the deformation tensor, and ψi is a gra-
dient vector defined with the function

ψi=
1

N + 1

∂

∂xi
ln

√∣∣ g̃
g

∣∣, g=det ‖gij‖, g̃=det ‖g̃ij‖. (4.5)

Further,

2(N + 1)ψi=
∂

∂xi
ln

∣∣ g̃
g

∣∣= ∂

∂xi
ln

∣∣1 + δg

g
ε
∣∣= ∂

∂xi
ln

(
1 +

δg

g
ε
)

=
∂

∂xi

(εδg
g

+ . . .
)
=ε

∂

∂xi

(δg
g

)
+ . . .

because it is valid g̃ = g + εδg, so we can ψi in (4.4) exchange with εψi. Also,
it is

ξijk=Γ̃i
jk
∨
− Γi

jk
∨
=Γi

jk
∨
+ ε δΓi

jk
∨
− Γi

jk
∨
=ε δΓi

jk
∨
,

so we can exchange ξijk with εξijk. Therefore,

g̃ij |
1
k=ε[2ψk(gij + ε δgij) + ψi(gkj + ε δgkj) + ψj(gik + ε δgik)

+ξpik(gpj + ε δgpj) + ξpjk(gip + ε δgip)]

=ε(2ψkgij + ψigkj + ψjgik + ξpikgpj + ξpjkgip) + ε2 . . .

As it is

g̃ij |
1
k=

0︷︸︸︷
gij |

1
k + ε δgij |

1
k=ε δgij |

1
k, (4.6)

we conclude that

δgij |
1
k=2ψkgij + ψigkj + ψjgik + ξpikgpj + ξpjkgip. (4.7)

Let us denote the symmetric tensor δgij with hij . Then we have (4.2).
Let us prove the opposite part of the theorem. Namely, let the equation

(4.2) be a valid one. Let us observe a deformation g̃ij = gij + ε δgij such that
δgij = hij .
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As it is εg̃ij = εgij + ε2 δgij , we can exchange εgij with εg̃ij , so we have

0︷︸︸︷
gij |

1
k + ε δgij |

1
k=ε(2ψkgij + ψigkj + ψjgik + ξpikgpj + ξpjkgip), (4.8)

i. e.
g̃ij |

1
k=2ψkg̃ij + ψig̃kj + ψj g̃ik + ξpikg̃pj + ξpjkg̃ip, (4.9)

therefore, the deformation is a geodesic one. �

Also, the next theorem can be analogously proved.

Theorem 4.3. A generalized Riemannian space GRN admits infinitesimal geodesic
deformations if and only if on GRN there exists a symmetric tensor hij so that
the condition

hij |
2
k=2ψkgij + ψigkj + ψjgik + ξpkigpj + ξpkjgip, (4.10)

is valid for a gradient vector ψi and an antisymmetric tensor ξijk so that ξiik =

ξiki = 0. �

Now we can prove the theorem which gives necessary and sufficient condi-
tions that the space GRN admits a nontrivial geodesic deformation.

Theorem 4.4. A generalized Riemannian space GRN admits nontrivial in-
finitesimal geodesic deformations if and only if GRN admits nontrivial geodesic
mappings.

proof. (⇒:) Let the space GRN admits a nontrivial geodesic deformation.
Then the condition (4.2), where ψk �= 0, can be written as

(hij − 2ψgij)|
1
k=ψigkj + ψjgik + ξpikgpj + ξpjkgip, (4.11)

i. e. in GRN there exists a tensor aij = hij − 2ψgij which satisfies the equation

(3.8) for λi = ψi and μi
jk = ξijk. Therefore, GRN admits nontrivial geodesic

mapping.
(⇐:) On the contrary, a tensor hij = aij + 2λgij , where aij is the solution

of the equation (3.8), satisfies the condition (4.2), so GRN admits nontrivial
geodesic deformation according to Theorem 4.2. �

The corresponding theorem for Riemannian spaces of the first class was
proved in 1971 in the paper [16]. Later it was proved for all Riemannian spaces.
Also, according to [2, 3], the next Riemannian spaces do not admit nontrivial
geodesic deformations: symmetric spaces, recurrent spaces, double symmetric
spaces, double recurrent spaces, m-recurrent spaces and semisymmetric spaces

12



Dm
n of nonconstant curvature. On the contrary, for spaces of constant curvature

and for equidistant spaces geodesic deformations exists.
In the case of generalized Riemannian spaces, there are defined so-called

generalized equidistant spaces. Namely, according to [4, 8], a generalized Rie-
mannian space GRN with a nonsymmetric metric tensor gij is called generalized
equidistant space, if there exists a non-vanishing one-form ϕ in GRN , ϕi �= 0,
satisfying

ϕi;j = ρgij , (4.12)

where (; ) denotes covariant derivative with respect to the symmetric part of the
connection of the space GRN . For ρ �= 0 generalized equidistant spaces belong
to the primary type, and for ρ ≡ 0 to the particular. The equation (4.12) is
equivalent to the next equations:

ϕi|
1
j = ρgij − Γp

ij
∨
ϕp, ϕi|

2
j = ρgij − Γp

ji
∨
ϕp (4.13)

where (|) denotes covariant derivative of the corresponding kind in the space
GRN . It was proved in [4, 8] that generalized equidistant spaces of the primary
type admit nontrivial geodesic mappings. As the direct corollary of Theorem
4.4 we have the next corollary.

Corollary 4.1. Each generalized equidistant space of primary type admits non-
trivial geodesic deformations.
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