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Abstract

This paper is devoted to a study of geodesic mappings and infinitesimal geodesic
deformations of generalized Riemannian spaces. While a geodesic mapping be-
tween two generalized Riemannian spaces any geodesic line of one space sends
to a geodesic line of the other space, under an infinitesimal geodesic deformation
any geodesic line is mapped to a curve approximating a geodesic with a given
precision. Basic equations of the theory of geodesic mappings in the case of gen-
eralized Riemannian spaces are obtained in this paper. A new generalization of
the famous Levi Civita’s equation is found. Necessary and sufficient conditions
for a nontrivial infinitesimal geodesic deformation are given. It is proven that a
generalized Riemannian space admits nontrivial infinitesimal geodesic deforma-
tions if and only if it admits nontrivial geodesic mappings. At last it is shown
that generalized equidistant spaces of primary type admit nontrivial geodesic
deformations.

Keywords: Geodesic mapping, Infinitesimal deformation, Infinitesimal
geodesic deformation, Generalized Riemannian space, Generalized equidistant
space.
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1. Introduction

The problem of geodesic mappings of Riemannian spaces is related to the
Levi Civita’s investigations [1] and stems from his study of a dynamics equa-
tion. Basics of the theory of geodesic mappings of spaces with symmetric affine
connection can be found in monographs of the authors J. Mikes, V. Kiosak
and A. Vanzurovd [2], and also N. Sinyukov [3]. A lot of papers is dedicated
to the theory of geodesic mappings of nonsymmetric affine connection spaces,
specially of generalized Riemannian spaces (see [4, 5, 6, 7, 8, 9, 10]). Note that
the nonsymmetric affine connection is related to Einstein’s Unified Field Theory
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(UFT), which unites the gravitation theory and the theory of electromagnetism,
while the symmetric affine connection is related to General Theory of Relativity
(GTR) and gravitation theory.

Infinitesimal deformations of different spaces are very important from the
physical point of view because they estimate stability of different magnitudes.
Spaces with symmetric affine connection under infinitesimal deformations were
thoroughly studied in [2, 11, 12, 13, 14, 15, 16]. Some papers [17, 18, 19, 20]
are dedicated to the theory of infinitesimal deformations of nonsymmetric affine
connection spaces, specially to deformations of generalized Riemannian spaces.

By setting various special conditions, we get different kinds of infinitesimal
deformations. In this paper we are interested in such a kind of infinitesimal de-
formations called infinitesimal geodesic deformations under which any geodesic
is mapped to a curve approximating a geodesic with a given precision. This
approach in the studying of geodesics is appropriate for different applications,
for example, for simulating real physical situations when evolution of gravity
fields (electromagnetic fields, mechanical systems etc.) is considered [2].

This paper is organized as follows: In Section 2, some used notations and
preliminaries are given. In Section 3, a generalization of the famous Levi Civita’s
equation is obtained in the case of generalized Riemannian spaces. Necessary
and sufficient conditions for nontrivial geodesic mapping of a generalized Rie-
mannian space GRy are found. In Section 4, necessary and sufficient condi-
tions for an infinitesimal geodesic deformation of the space GRy are given. It is
proven that a generalized Riemannian space GR y admits nontrivial infinitesimal
geodesic deformations if and only if GR admits nontrivial geodesic mappings.
At last it is shown that generalized equidistant spaces of primary type admit
nontrivial geodesic deformations.

2. Notation and preliminaries

Generalized Riemannian spaces. We are giving some basic facts about general-
ized Riemannian spaces according to [7, 21].

A generalized Riemannian space GR is a differentiable N-dimensional man-
ifold endowed with a non-symmetric metric tensor gij(xl, ..., zN), where z? are
local coordinates. Generally we have

9ij () # gji(@). (2.1)

If the metric tensor is symmetric, then we get the Riemannian space Ry.
Because of the non-symmetry it is defined symmetric and antisymmetric
part of the metric tensor g;; as

1 1
Gij = 5(92’]‘ +g;i) and 9ij = i(gij — gji)- (2.2)

For the lowering and raising of indices in GRy one uses the tensors gij Tespec-
tively ¢, where N
Ig2(1 = NlgislI =" (det [lgi; |l # 0).



First and second kind Christoffel symbols of the space GRy are:

1 7 (1o
Lijr= i(gji,k — gjki + girj) and Tl = g Ty i, (2.3)

where comma denotes partial derivation 9/9x". Generally, we have T # T} ..
The symbols F; i present connection coefficients of the space GRy. For F; i the
next equations are valid

i 9
in=Thki = 5 pIny/lgl, g=detllgll, (2.4)
It =0. (2.5)

Using the non-symmetry of the connection coefficients, it is possible to define

four kinds of covariant differentiation of a tensor. Thus, for a tensor a;'- we have:

i _ 40 i a _ Po 40 i _ 40 I o Po i
aj)g fajyk,—kf‘akaj ijaa, aj)y fajk—i—l“kaaj ijaa,
1 2

(2.6)

aé‘k = aé-,k + I‘gka;‘ — Fz‘jaf}, aélk = a;‘-’k + P};aa? — Fjo-‘kag.
3 4

A Riemannian space Ry endowed with a symmetric part of the connection

F;k = %(F;k +F2j) is the associated space to the space GRy. An antisymmetric

part of the connection, a magnitude F;k = %(F;k — F};j) is a tensor called the

2
torsion tensor.

Geodesic mappings. Basic facts related to the geodesic mappings of generalized
Riemannian spaces are given in the sequel according to [5, 7].

A geodesic mapping of a generalized Riemannian space GRy onto GRy is a
diffeomorphism f : GRy — GRy under which the geodesics of the space GRy
correspond to the geodesics of the space GRy.

Let the spaces GRy and GRy be considered in the common system of local
coordinates z!, 22, ..., z"V, with respect to the mapping f. Then the connection
coefficients of these spaces in the corresponding points M (z) and M (z), can be
connected with the next relation:

=i i i
ij :ijJerk. (2.7)

A magnitude P}k is a tensor called deformation tensor of the connection I' of
GRy according to the mapping f : GRy — GRy.

A necessary and sufficient condition for the mapping f to be a geodesic one
is that the deformation tensor P]lk has the next form

Pl = 8y, + 0jaby + €y, (2.8)



where ; is a covariant vector and f;'-k is an antisymmetric tensor. With respect
to (2.7), the equation (2.8) becomes

Ty =Dl + 55w + 0405 + &y (2.9)
Obviously,
=P L@ 17 ¢ =P =T, T (2.10)
wl_1+N w T TNV ) Sk T kT Hgk T gk :

A vector v; has also the next form

1 0 ’§

=— % /]2
Vi= Nyioo ™

, (2.11)

where g = det ||gi;[|, g = det |g;;||. As the magnitude [g/g| is an invariant, we
conclude that the vector 1; is a gradient. Also, for an antisymmetric tensor &7,
it is valid the next relation:
Po=E =0 (2.12)
In [5] the next theorem was proved.

Theorem 2.1. a) A mapping f : GRy — GRy is geodesic if and only if the
2nd kind Cristoffel symbols of these spaces satisfy (2.9).

b)If the mapping f is geodesic, then the equations
Gijlk — Jijlie = 26 G5 + Vi Grj + %5 G + gfkgpj + §§)k§ipﬂ (2.13)
1 2
Gijik = Gigle = 29 Gij + Vi Grg + V5 Gor + E0iTps + EhiTips (2.14)
2 \%]

are satisfied, where (|) and (||) denote covariant derivatives of the corresponding
kind in the spaces GRy and GRy, respectively. Conversely, if one of these
equations is satisfied, then this mapping is geodesic, and the other is satisfied
too. N

Infinitesimal deformations. We are going to define basic terms about infinites-
imal deformations following the research of J. Mikes et al. in [2] about Rie-
mannian spaces and generalizing their considerations to the case of generalized
Riemannian spaces.

Let GRys be a generalized Riemannian space with a metric tensor a,s and
local coordinates y',...,y™. The equations

y =y, aN), rank|ys| =N <M (2.15)

determine the subspace GRy of the space GRy; (GRy C GRyy) with induced
metric g;j. The components of metric tensors ans and g;; are related with the
next relation according to [6]

Gij = aaﬁyfﬁyé- (2.16)



Greek indices «, f3, ... take values 1,..., M and refer to the space GR); but
Latin indices 1, j, ... take values 1, ..., N and refer to the subspace GR .

Let z%(2!,...,2") be a restriction of a vector field defined on a generalized
Riemannian space GRj; onto the subspace GR .

Definition 2.1. The equations
§* =y (z") + e(a"), (2.17)

where € is an infinitesimal, define a family of generalized Riemannian subspaces
GRy of the space GRyy which is said to be the infinitesimal deformation (of
the first order) of the space GRy . The field z*(z*, ...,x™) is the infinitesimal
deformation field or the displacement field.

Definition 2.2. Let A = A(z?t,...,z™) be a geometric object from the general-
ized Riemannian space GRy (a scalar function, a vector, a tensor, a connec-
tion,...). An object A= A(z",...,xN €) from the space GRy is the deformed
object A, with respect to the infinitesimal deformation (2.17), if

Aly®) = A(y*). (2.18)

Definition 2.3. Let A = Az, ...,zN) be a geometric object from the space
GRy and let A = Az, ...,2", ¢) be an infinitesimally deformed object A, with
respect to the deformation (2.17). Also, let the equation

AA = A(z',e) — A(z') = A + 262A+ ...+ ""A+ ... (2.19)

be a valid one, then the coefficients A, 62A, ..., 6™A, ... are first, second, etc.
variation of the magnitude A under this infinitesimal deformation.

Summands which have the infinitesimal € of a degree higher than one are
going to be omitted in this research. We will omit mention of the order of
variation as well as infinitesimal deformation supposing it is the first variation
of infinitesimal deformation of the first order in the sequel.

For a variation of a geometric object A from the space GRy the next prop-
erties hold [20] as same as it is valid in the case of a Euclidean space Ey:

e A variation of addition of geometric objects of the same kind is equal to
the sum of variations of these objects.;

e For multiplication and composition (multiplication with contraction) of
geometric objects, Leibnitz role holds.

Definition 2.4. An infinitesimal geodesic deformation is an infinitesimal
deformation GRy of a generalized Riemannian space GRy if it preserves the
geodesic curves of the space GRy .



3. Necessary and sufficient conditions for a geodesic mapping f :

Theorem 2.1 gives necessary and sufficient conditions for a geodesic mapping
of two generalized Riemannian spaces. Here we give their equivalent, which
presents simpler expression of the conditions (2.13) and (2.14).

Theorem 3.1. A mapping [ of a generalized Riemannian space GRx onto a
generalized Riemannian space GRy is geodesic if and only if in the common
system of local coordinates with respect to the mapping f, basic metric tensor of
the space GRy satisfies the neat relation

Tu\e =200 iy +01 g+ G + €Ty + Ty (3.1)

where (|) denotes covariant derivative of the first kind in the space GRy .
1

Proof. (=:) Let us suppose that the mapping f : GRy — GRy is geodesic.
According to Theorem 2.1, a the next relation is a valid one

T =Tk 1,00+t + €. (3.2)

From the definition of the covariant derivative (2.6) and from the equation (3.2)
we obtain

_ _ _ _ = _ =P
9ijlk — Yilk =9ij e — LY. — F?kgip =Gk ik Tp + 15695
Vi1 V1 Vv \2 \2 \2 Vv \2
=P _ —p _
=l — ka)9;y+(rjk - Fﬁk)gzé)
(P i+ 8% 4; + £§’k)§,,vj+(6§’¢k+6£¢j + fﬁ-’k)mf

=20k Gij + i G +5 Gar + ETps + EiTip-

(3.3)

If we exchange g,;|,, from (3.3) into (2.13), we obtain the equation (3.1).
Vi

(«<=:) Let us suppose that the equation (3.1) holds. It is known that in the space
GRy the next equations are valid g;;), =0, 0 =1,...,4 (see [7, 21]), so using
e

the definition of the covariant derivative we have

0
_ = =p _ =P _
ik~ Jillk = (Tik = T8+ (T — L5 Gip- (3.4)

On the other hand, from (3.1) we have

Gijik =2V Gy +i Gk T¥5 G + E0Tps + EnTip 55
1 3.5
= (i} + k07 + &5)Tp; + (150, +¥k07 + £5) -



By comparing the equations (3.4) and (3.5) we conclude the relation (2.9) is a
valid one, i.e. the mapping is geodesic. W

It is easy to prove the next theorem.

Theorem 3.2. A mapping f of a generalized Riemannian space GRy onto a
generalized Riemannian space GRy is geodesic if and only if in the common
system of local coordinates with respect to the mapping f, basic metric tensor of
the space GRy satisfies the next relation

Gijle =2Uk Gij +0i Gy T3 G + ERiTpj + 65]‘?7,’;)7 (3.6)
i) i ki pj U
where (|) denotes covariant derivative of the second kind in the space GRy. W
2
In connection with the previous exposure we give a basic equation of the

theory of geodesic mappings of Riemannian spaces which was proved by N. S.
Sinyukov [22].

Theorem 3.3. A Riemannian space Ry admits a nontrivial geodesic mapping
if and only if there exists a nonsingular symmetric tensor a;; satisfying

Qijsk = Aigjk + AjGik, (3.7)
for a gradient A; 0. A

In the sequel we are giving a generalization of that theorem in the case of
generalized Riemannian spaces.

Theorem 3.4. A generalized Riemannian space GR x admits a nontrivial geodesic
mapping, if and only if there exists a nonsingular symmetric tensor a;; satisfying

@ik =Xigjk + Nigik + HiyGpj + W51 9pis (3.8)

for a gradient \; # 0 and an antisymmetric tensor /L;k so that ij = /L;Z =0.

Proof. Let us suppose that GRy admits a nontrivial geodesic mapping. Then
the equality (3.1) holds, where v, is a gradient vector and §J‘ 5 1S an antisym-
metric tensor given in (2.10).
As the vector vy, is a gradient, i. e. ¥, = 9¢/dx*, we can introduce the

next quantity

Gij = € gi;. (3.9)
After covariant derivative of the first kind of symmetric part in the previous
equation in GRy, i. e.

i = ¢ gy, (3.10)

having in mind the condition (3.1), we have

Gij|k =ViGkj + Vi Gik + E5Tpi + ErGip- (3.11)
1



As the tensor g;; is nonsingular, i. e. det | g;;|| # 0, we conclude from the
equation (3.10) that g;; is also nonsingular. Let us denote an element of the
matrix, which is the inverse of the matrix ||g;;||, with g&.. Then it will be valid

Gio 5L = 6. (3.12)
Let us covariant differentiate this equation in GRy. We obtain
Gicr| ga—j+§i_a§a—jlk =0.
If we multiply this equation with 3% and use (3.12), then we obtain
3 k= —Gap kG5 (3.13)
Comparing with (3.11), we obtain
G |k =—ag*'0, — 5570} — 009% — Epid™- (3.14)
Let us introduce the next notation:
M= = €05 (3.15)
we obtain B o N\, . g
L= N0, + N O, + iy + (3.16)
1
By lowering of indices ¢ and j in GRy in the equation (3.16), we obtain
97 11910935 =\'67gi0 08 + N 0h9iais + 141 Giagis + 1} Giagis.  (3.17)
Let us use the next notation
aap = 029i09i5 N = Gia\s Wk = Gjaltis (3.18)
then we obtain

GaBk=Nagks + NsGka + Hhy9ps + 131 9pa- (3.19)
1

Obviously, a;; is a nonsingular symmetric tensor, A; is a covariant vector, /L;k
is a tensor.
From (3.10), (3.15) and (3.18) we conclude:

aij= 62w§ﬂgoﬁg@, Ai= —ewzbagﬁgﬁ, /L}k = —gékew§ﬂgﬂ. (3.20)
Let us multiply (3.19) with ¢®2, we obtain

(aaﬁg%)\k:%)‘k + ppy,) = 2n. (3.21)
1



We conclude that 7y is a gradient, so it can be presented as the derivative of
the function

l (o7
n= iaaﬁg—ﬁ. (3.22)

Form here it is ang = (27/N)gap, which comparing with the first equation in
(3.18) gives g4 = (2\/N)g“L. Using this equation and the expression for the
tensor ,uék from (3.15) and (3.18), we obtain uék = *(QU/N)%‘/@- It is clear that
the tensor ,uj-k is antisymmetric, and also ugk = —(27]/N):§£,C = 0. Therefore,
Nk = Ak, S0 A is a gradient, and from (3.20) we conclude that A; # 0 if and only
if ¢; # 0. In this way, if the space GRy admits a nontrivial geodesic mapping,
then there exists a nonsingular symmetric tensor a;;, which satisfies the equality
(3.19) for a gradient A\; # 0 and an antisymmetric tensor ,u;k,, plh = pi. =0.
Let us prove conversely statement. By the raising of indices & and 8 in GRy
in the equation(3.19), we conclude in accordance with (3.18) that the tensor

gﬁzaagga—ig@ (3.23)

satisfies the equality (3.16), for A = \,g°%, ,u;f = 1’ ;. 9%L, where the tensor G
is symmetric and nonsingular. But than the element g;; of the inverse matrix
satisfies (3.11) for ¢; = —A*Ja,, §§.’k‘ = — ;" Jaj- In the similar way as in the first
part of the proof we obtain that ¢}, is an antisymmetric tensor which satisfies
Zk = SZp =0.

Further, the tensor g;; can be observed as a metric tensor of a generalized
Riemannian space GRy. For the second kind Christoffel symbols F;k of that
space we have, according to (2.4),

no no 9 ~ = =
Fak:zrka — % In \/ ‘g‘v 9= det HgQH (324)

According to (2.3) we conclude
o 1 ~af} ~
or= 59~ 9ap k- (3.25)
As it is gﬂgaﬁyk 2 gﬂgﬂa,k, we have §%§ag,k = 0, so the previous equation
\2
reduces to 1
Lor= igﬂgﬂ,l« (3.26)

Let us use (3.11) and the definition of the covariant derivative of the first kind.
We have
o 1 ~a ~ ~ ~ ~ ~ ~
ok = Qg_ﬁ(nggﬁ + Thdpa + Yadrs + Yadra + E0i0ps + €51 dpa)

1 o a a 3.27
— 5 (D05 + T8 + Vadf: + 0], + 0,05 + €5e0h) (3.27)



after using §£k = 0. Therefore,

9 — 9 o I3
Yr=L0 — ak:wlnxﬂﬁ—wln\”ﬂ:@ln ‘Z? (3.28)

which means that i is a gradient, i. e. 1 = %. But then for the tensor

9ij = e%gij (3.29)

from (3.11) obviously the condition (3.1) is valid. Therefore, the theorem is
proved. N

Analogously we prove the next theorem:

Theorem 3.5. A generalized Riemannian space GR x admits a nontrivial geodesic
mapping, if and only if there exists a nonsingular symmetric tensor a;; satisfying

@il =Nigjk + AjGik + 1y 9ps + Ky 9pis (3:30)

for a gradient \; # 0 and an antisymmetric tensor u;»k so that uéj = ,uzz =0. N

4. Necessary and sufficient conditions for an infinitesimal geodesic
deformation of the space GRp

In his paper [11] M. L. Gavril’chenko gave a necessary and sufficient condition
that a Riemannian space admits an infinitesimal geodesic deformation, i. e. he
proved following theorem:

Theorem 4.1. A Riemannian space Ry admits infinitesimal geodesic defor-
mations if and only if on Ry there exists a symmetric tensor h;; so that the
condition

hijie = 2¢1.9i5 + ¥igir + ;i (4.1)

1s valid for a gradient vector ¢;. M

In the sequel we are giving a generalization of that theorem which is valid
in the case of generalized Riemannian spaces.

Theorem 4.2. A generalized Riemannian space GR x admits infinitesimal geodesic
deformations if and only if on GRy there exists a symmetric tensor h;j so that
the condition

hijik=2Vrgij + Vigr; + Vigik + E9ps + EirIins (4.2)
1

is valid for a gradient vector ¥; and an antisymmetric tensor §;k so that &) =
&=0.

10



Proof. Let be given an infinitesimal geodesic deformation of the space GRy
with the equation

J" =y () + e @), (43)

where € is a small real parameter. The equations (4.3) define a deformed space
GRy. Obviously, the spaces GRy and GRy, in the common system of local
coordinates (x?), admit a geodesic mapping of one to another, so the equality
(3.1) holds true:

Gij 1k =2k Gij + i G +05 Git + €95 + ErTips (4.4)
1

where ; i is an antisymmetric part of the deformation tensor, and 1; is a gra-

dient vector defined with the function

1 0 g - ~ N
= Niloz In |: ,  g=det HQQH: g=det ||!JQH (4.5)
Further,
0 g, o0 g 0 g
2(N+1)1pi_axiln]§ o7 1+ =g+ ; €)
9 ,edg a ,0g
o t)=9a )

?be.cause it is valid g = g + €dg, so we can ¢; in (4.4) exchange with et);. Also,
o =T — Tl =T0% + €Ty, — T =€dl’,
so we can exchange &, with e£f, . Therefore,

é@lkZG[?l/)k(gg +€09ij) + Vi(grs + €0gr;) + 1 (gik + €gin)

+E&0.(gps + €09p5) + & (gip + €69ip)]
= (2094 + Vigrs + Vigik + Eps + Epip) + € -

As it is 0
lek:@Jrﬂnglk:E@le (4.6)
we conclude that
59ﬁlk =2¢19ij + Vigrj + Vigik + E59p; + Erin: (4.7)

Let us denote the symmetric tensor dg;; with h;;. Then we have (4.2).

Let us prove the opposite part of the theorem. Namely, let the equation
(4.2) be a valid one. Let us observe a deformation g;; = g;; + €dg;; such that
09ij = hij- - B

11



As it is €Gi; = €gi; + €2 0g;;j, we can exchange €g;; with €g;;, so we have

0

~ N

Gij|k + €09ij1k = €(2V1gi; + Vigrj + Vjgik + E9p; + Ergin)s (4.8)
1 1

Gij |k =20k Gij + Vidkj + V3 Gik + E5Gpj + & pTips (4.9)
1
therefore, the deformation is a geodesic one. W

Also, the next theorem can be analogously proved.

Theorem 4.3. A generalized Riemannian space GR x admits infinitesimal geodesic
deformations if and only if on GRy there exists a symmetric tensor h;; so that
the condition

hz’ij =2¢1.9i5 + Vigrj + Vigik + Eigpi + EiGins (4.10)

1s valid for a gradient vector v; and an antisymmetric tensor §;k so that §fk =
&.=0. N

Now we can prove the theorem which gives necessary and sufficient condi-
tions that the space GRy admits a nontrivial geodesic deformation.

Theorem 4.4. A generalized Riemannian space GRy admits nontrivial in-
finitesimal geodesic deformations if and only if GRy admits nontrivial geodesic
mappings.

proof. (=:) Let the space GRy admits a nontrivial geodesic deformation.
Then the condition (4.2), where 9, # 0, can be written as

(hij — 2?/192)11@:1/%9& +¥9ik + &k 9ps + ErYivs (4.11)

i. e. in GRy there exists a tensor a;; = h;; — 21 g;; which satisfies the equation
(3.8) for A\; = ; and u?k = jk Therefore, GRy admits nontrivial geodesic
mapping.

(«<:) On the contrary, a tensor h;; = a;; + 2Ag;j, where a;; is the solution
of the equation (3.8), satisfies the condition (4.2), so GRy admits nontrivial
geodesic deformation according to Theorem 4.2. W

The corresponding theorem for Riemannian spaces of the first class was
proved in 1971 in the paper [16]. Later it was proved for all Riemannian spaces.
Also, according to [2, 3], the next Riemannian spaces do not admit nontrivial
geodesic deformations: symmetric spaces, recurrent spaces, double symmetric
spaces, double recurrent spaces, m-recurrent spaces and semisymmetric spaces

12



D) of nonconstant curvature. On the contrary, for spaces of constant curvature
and for equidistant spaces geodesic deformations exists.

In the case of generalized Riemannian spaces, there are defined so-called
generalized equidistant spaces. Namely, according to [4, 8], a generalized Rie-
mannian space GRy with a nonsymmetric metric tensor g;; is called generalized
equidistant space, if there exists a non-vanishing one-form ¢ in GRy, ¢; # 0,
satisfying

Pisj = PYij (4.12)

where (;) denotes covariant derivative with respect to the symmetric part of the
connection of the space GRy. For p # 0 generalized equidistant spaces belong
to the primary type, and for p = 0 to the particular. The equation (4.12) is
equivalent to the next equations:

Pilj = PYij — Ffjsﬁp, Pilj = PYij — F?i@p (4.13)
1 Vv 2 N
where (|) denotes covariant derivative of the corresponding kind in the space
GRy. It was proved in [4, 8] that generalized equidistant spaces of the primary
type admit nontrivial geodesic mappings. As the direct corollary of Theorem
4.4 we have the next corollary.

Corollary 4.1. FEach generalized equidistant space of primary type admits non-
trivial geodesic deformations.
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