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We introduce a pseudometric TV on the set MX of all functions mapping a rectangle 
X on the plane R2 into a metric space M , called the total joint variation. We prove 
that if two sequences {fj} and {gj} of functions from MX are such that {fj}
is pointwise precompact on X, {gj} is pointwise convergent on X with the limit 
g ∈ MX , and the limit superior of TV(fj , gj) as j → ∞ is finite, then a subsequence 
of {fj} converges pointwise on X to a function f ∈ MX such that TV(f, g) is finite. 
One more pointwise selection theorem is given in terms of total ε-variations (ε > 0), 
which are approximations of the total variation as ε → 0.

© 2017 Elsevier Inc. All rights reserved.

1. Main results

Pointwise selection principles are existence theorems guaranteeing the existence of a pointwise convergent 
subsequence of a given sequence of functions. The historically first example is the classical Helly’s Theorem 
[25], [32, Section VIII.4]: a uniformly bounded sequence of real monotone functions on a closed interval 
[a, b] in R contains a pointwise convergent subsequence whose limit is a bounded monotone function on 
[a, b]. As a corollary, the monotonicity of functions may be replaced by the uniform boundedness of their 
Jordan’s variations. A far reaching consequence of the latter result is (Theorem C below and) the existence of 
selections of bounded (generalized) variation of univariate multifunctions of bounded (generalized) variation 
whose values are compact subsets of a metric space [10].

The purpose of this paper is to provide pointwise selection theorems for functions of several variables 
valued in an arbitrary metric space. In order to present the results in a simple and principal form and avoid 
(unnecessary) technicalities, we consider the case of bivariate functions on a closed rectangle.

We begin with reviewing definitions and facts needed for our results.
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Given two points x = (x1, x2), y = (y1, y2) ∈ R
2, we write x < y (or x ≤ y) provided x1 < y1 and x2 < y2

(or x1 ≤ y1 and x2 ≤ y2, respectively), and we denote by Iyx = {z ∈ R
2 : x ≤ z ≤ y} = [x1, y1] × [x2, y2]

the rectangle in R2 with the end-points x and y. In what follows, points a, b ∈ R
2, a < b, are fixed, and the 

domain of bivariate functions is the rectangle Iba.
Recall that a function ν : Iba → R is said to be totally monotone if, for all x = (x1, x2), y = (y1, y2) ∈ Iba

with x ≤ y, we have

ν(y1, a2) − ν(x1, a2) ≥ 0, ν(a1, y2) − ν(a1, x2) ≥ 0, and

ν(x1, x2) − ν(y1, x2) − ν(x1, y2) + ν(y1, y2) ≥ 0.

Totally monotone functions are well-studied [1,4,6,23,26–30] (they are called positively monotonely mono-
tone in [26, III.4.3]). We recall the following two results for totally monotone functions, also needed below.

Theorem A ([26, III.5.4], [34]). The points of discontinuity of a totally monotone function on Iba lie on at 
most a countable collection of lines parallel to the coordinate axes in R2.

Theorem B (Helly’s selection principle from [7], [26, III.6.5]). A uniformly bounded sequence of totally 
monotone functions on Iba contains a subsequence, which converges pointwise on Iba to a bounded totally 
monotone function.

There are a number of extensions of Theorem B for multivariate functions of bounded variation in 
various senses: [26,27,30,31] for real valued functions, and [5,19–22] for metric semigroup valued functions 
(see below).

Of main interest in this paper are metric space valued functions on Iba. Our approach to the pointwise 
selection theorems for (sequences of) such functions is based on two notions of pseudometrics, the joint 
increment and joint mixed difference, to be defined as follows.

Let X be a nonempty set (in the sequel, X is a closed interval I = [a, b] in R, or the rectangle Iba in R2), 
(M, d) be a metric space with metric d, and MX be the set of all functions f : X → M mapping X into M . 
Given f ∈ MX and u ∈ M , we set fu(x) = d(u, f(x)) for all x ∈ X (so that fu maps X into [0, ∞)) and 
note that

d(f(x), g(y)) = max
u∈M

|fu(x) − gu(y)| for all f, g ∈ MX and x, y ∈ X. (1.1)

In particular, setting (f − g)u(x) = fu(x) − gu(x) for u ∈ M and x ∈ X, we find

d(f(x), g(x)) = max
u∈M

|(f − g)u(x)|. (1.2)

Although the ‘subtraction’ f − g is given by (u, x) �→ (f − g)u(x) and maps M × X into R, passing to 
h = f − g and hu(x) = fu(x) − gu(x), for the sake of brevity, will be a convenient tool in some proofs below.

The joint increment of two functions f, g ∈ MX on the two-point set {x, y} ⊂ X is (the increment of 
f − g, i.e.) the quantity introduced in [15, Chapter 5] and [16, Section 2] by

|(f, g)(x, y)| = sup
u∈M

|(f − g)u(x) − (f − g)u(y)|

= sup
u∈M

∣∣d(u, f(x)) − d(u, f(y)) − d(u, g(x)) + d(u, g(y))
∣∣. (1.3)

Now suppose X = I = [a, b] is a closed interval in R (a < b). By a partition of I we mean a finite 
collection of points {ti}mi=0 ⊂ I for some m ∈ N such that a = t0 < t1 < · · · < tm−1 < tm = b, which is 
written as {ti}m0 ≺ I.
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The joint variation of two functions f, g ∈ M I is the quantity

V b
a (f, g) = sup

{ m∑
i=1

|(f, g)(ti−1, ti)| : m ∈ N and {ti}m0 ≺ I = [a, b]
}

(1.4)

valued in [0, ∞], where |(f, g)(x, y)| is the joint increment (1.3) with x = ti−1 and y = ti (cf. [15, Section 6.4]
and [16, Section 4]).

The following pointwise selection theorem for M -valued functions on I = [a, b] was established recently 
in [16, Theorem 1 and the beginning of Section 6] in terms of joint variation:

Theorem C. Suppose {fj}, {gj} ⊂ M I are two sequences of functions such that: (a) {fj} is pointwise precom-
pact on I; (b) {gj} is pointwise convergent on I to a function g ∈ M I ; and (c) lim supj→∞ V b

a (fj , gj) < ∞.
Then, there is a subsequence of {fj}, which converges pointwise on I to a function f ∈ M I such that 

V b
a (f, g) < ∞.1

Now, let Iba = [a1, b1] × [a2, b2] be the rectangle in R2. The (Vitali-type) joint mixed difference |(f, g)(Iyx)|2
of two functions f, g ∈ M Ib

a on a subrectangle Iyx = Iy1,y2
x1,x2

⊂ Iba with x ≤ y is defined by

|(f, g)(Iyx)|2 = sup
u∈M

∣∣(f − g)u(x1, x2) − (f − g)u(y1, x2) − (f − g)u(x1, y2) + (f − g)u(y1, y2)
∣∣. (1.5)

If {ti}m0 ≺ [a1, b1] with m ∈ N and {sk}n0 ≺ [a2, b2] with n ∈ N, we say that the collection of subrectangles 
of Iba, given by

Ii,k = [ti−1, ti] × [sk−1, sk] = I ti, sk
ti−1,sk−1

, i = 1, . . . ,m, k = 1, . . . , n, (1.6)

forms (or is) a partition of Iba (in symbols, {Ii,k}m,n
1,1 ≺ Iba).

The (Vitali-type) joint double variation of two functions f, g ∈ M Ib
a is defined by

V2(f, g, Iba) = sup
{ m∑

i=1

n∑
k=1

|(f, g)(Ii,k)|2 : m,n ∈ N and {Ii,k}m,n
1,1 ≺ Iba

}
. (1.7)

The total joint variation (of Vitali–Hardy–Krause-type) of functions f and g as above is given by (means 
of (1.4) and (1.7))2

TV(f, g, Iba) = V b1
a1

(
f(·, a2), g(·, a2)

)
+ V b2

a2

(
f(a1, ·), g(a1, ·)

)
+ V2(f, g, Iba). (1.8)

Our first main result is the following pointwise selection theorem.

Theorem 1. Let {fj}, {gj} ⊂ M Ib
a be two sequences of functions such that

(a) {fj} is pointwise precompact on Iba;
(b) {gj} is pointwise convergent on Iba to a function g ∈ M Ib

a ;
(c) C ≡ lim supj→∞ TV(fj , gj , Iba) < ∞.
Then, there is a subsequence of {fj}, which converges pointwise on Iba to a function f ∈ M Ib

a such that 
TV(f, g, Iba) ≤ C.

1 A sequence {fj} ≡ {fj}∞
j=1 ⊂ MX converges pointwise (or everywhere) on X to a function f ∈ MX if limj→∞ d(fj(x), f(x)) =

0 for all x ∈ X, and {fj} ⊂ MX is pointwise precompact on X if the closure in M of the set {fj(x) : j ∈ N} is compact for all 
x ∈ X.
2 Given x = (x1, x2) ∈ Ib

a and f ∈ MIb
a , the univariate functions f(·, x2) : [a1, b1] → M and f(x1, ·) : [a2, b2] → M are defined 

in the usual manner: f(·, x2)(t) = f(t, x2) for all t ∈ [a1, b1], and f(x1, ·)(s) = f(x1, s) for all s ∈ [a2, b2].
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The novelty of this theorem is threefold as compared to the references following Theorem B. First, 
assumption (b) refers to an arbitrary pointwise convergent sequence {gj} whereas, usually, {gj} con-
sists of a single constant function c : Iba → M . Second, assumption (c) is more general than condition 
supj∈N TV(fj , c, Iba) < ∞ adopted in the literature. Third, (M, d) is an arbitrary metric space in Theorem 1
instead of a metric semigroup from the references. Recall that a triple (M, d, +) is a metric semigroup [10, 
Section 4] if (M, d) is a metric space, (M, +) is an Abelian semigroup with the operation of addition +, 
and d(u, v) = d(u +w, v +w) for all u, v, w ∈ M . In this case, the joint increment (1.3) may be replaced by 
[10,17,18]

|(f, g)(x, y)| = d(f(x) + g(y), f(y) + g(x)), (1.9)

and the joint mixed difference (1.5)—by [5,9,11,12,19–22]

|(f, g)(Iyx)|2 = d
(
f(x1, x2) + g(y1, x2) + g(x1, y2) + f(y1, y2),

g(x1, x2) + f(y1, x2) + f(x1, y2) + g(y1, y2)
)
. (1.10)

Furthermore, if (M, ‖ · ‖) is a normed linear space (over R or C), we may set

|(f, g)(x, y)| = ‖(f − g)(x) − (f − g)(y)‖ = ‖[f(x) + g(y)] − [f(y) + g(x)]‖, (1.11)

|(f, g)(Iyx)|2 = ‖(f − g)(x1, x2) − (f − g)(y1, x2) − (f − g)(x1, y2) + (f − g)(y1, y2)‖. (1.12)

Since quantities (1.3), (1.9), and (1.11) (as well as (1.5), (1.10), and (1.12), respectively) have the same 
properties needed for the selection theorem, the method of proof of Theorem 1 applies to the three mentioned 
cases, and so, Theorem 1 contains the results from the references above as particular cases.

The second main result, Theorem 2 below, is based on the notion of total ε-variation (ε > 0) to be defined 
as follows.

The quantity TV(f, c, Iba) from (1.8) is independent of a constant function c : Iba → M ; it is called the 
total variation of f ∈ M Ib

a and denoted by TV(f, Iba). This notion was employed in [8], [26, III.6.3], [27] (for 
real bivariate functions), [13,14,28,30] (for real multivariate functions), and [5,9,11,12,19–21,33] (for metric 
semigroup valued multivariate functions). The set of all functions of bounded total variation on Iba is denoted 
by

BV(Iba;M) = {f ∈ M Ib
a : TV(f, Iba) < ∞}.3 (1.13)

We equip the set MX (in particular when X = Iba) with the (extended valued) uniform metric given, as 
usual, by

d∞(f, g) ≡ d∞,X(f, g) = sup
x∈X

d(f(x), g(x)) for all f, g ∈ MX . (1.14)

Given ε > 0, the total ε-variation of f ∈ M Ib
a is the quantity

TVε(f, Iba) = inf
{
TV(g, Iba) : g ∈ BV(Iba;M) and d∞(f, g) ≤ ε

}
(1.15)

with the convention that inf ∅ = ∞. In the special case when (M, ‖ · ‖) is a normed linear space, we set 
‖f‖∞ = supx∈Ib

a
‖f(x)‖ and d∞(f, g) = ‖f − g‖∞.

3 This notation should not be confused with a similar notation for multivariate functions of bounded variation in the distributional 
approach [2,35]; cf. also [3, Section 3.12].



974 V.V. Chistyakov, S.A. Chistyakova / J. Math. Anal. Appl. 452 (2017) 970–989
For univariate functions f : I → M with I = [a, b] ⊂ R, a similar notion of ε-variation was introduced in 
[24, Definition 3.2] for M = R

N and considered in [16, equality (4.1)] for an arbitrary metric space (M, d). 
It is to be noted that this notion characterizes regulated functions on I = [a, b].

The following theorem is a pointwise selection principle in terms of total ε-variations:

Theorem 2. Let (M, ‖ · ‖) be a finite-dimensional normed linear space and {fj} ⊂ M Ib
a be a sequence of 

functions such that
(a) A ≡ supj∈N ‖fj(a)‖ < ∞, and
(b) νε ≡ lim supj→∞ TVε(fj , Iba) < ∞ for all ε > 0.
Then, there is a subsequence of {fj}, which converges in M pointwise on Iba to a bounded function 

f ∈ M Ib
a such that TVε(f, Iba) ≤ νε for all ε > 0.

The paper is organized as follows. In Section 2, we present properties of the joint increment and joint 
variation for metric space valued functions of one variable. In Section 3, we study the joint mixed difference, 
joint double variation and total joint variation for metric space valued functions of two real variables: 
Lemmas 2–4 are the main ingredients in the proof of Theorem 1 given in Section 4. Properties of the total 
ε-variation and the proof of Theorem 2 are presented in Section 5.

2. The joint increment and joint variation

2.1. Bounded functions

For a set X, a metric space (M, d), and f ∈ MX , the quantity

|f(X)| ≡ |f(X)|d = sup
x,y∈X

d(f(x), f(y)) ∈ [0,∞]

is known as the diameter of the image f(X) = {f(x) : x ∈ X} ⊂ M , or the oscillation of f on X. By the 
triangle inequality for d and (1.14),

d∞(f, g) ≤ |f(X)| + d(f(y), g(y)) + |g(X)| for all y ∈ X (2.1)

and

|f(X)| ≤ |g(X)| + 2d∞(f, g) for all f, g ∈ MX . (2.2)

Given g ∈ MX , we denote by Bg(X; M) = {f ∈ MX : d∞(f, g) < ∞} the set of all g-bounded functions
on X. The pair (Bg(X; M), d∞) is a metric space, which is complete provided (M, d) is complete. If c : X →
M is a constant function, functions from B(X; M) ≡ Bc(X; M) are said to be (simply) bounded on X. By 
(2.1) and (2.2), B(X; M) = {f ∈ MX : |f(X)| < ∞}.

2.2. The joint increment

For any f, g ∈ MX and x, y ∈ X, the joint increment |(f, g)(x, y)| from (1.3) is well-defined, since, by 
virtue of (1.1) and (1.2),

|(f, g)(x, y)| ≤ d(f(x), f(y)) + d(g(x), g(y)), (2.3)

|(f, g)(x, y)| ≤ d(f(x), g(x)) + d(f(y), g(y)); (2.4)
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and |(f, c)(x, y)| = d(f(x), f(y)) is independent of a constant function c ∈ MX . If F (u) = |(f−g)u(x) −(f−
g)u(y)| is the quantity under the supremum sign in (1.3), then F : M → [0, ∞) and |F (u) −F (v)| ≤ 4d(u, v)
for all u, v ∈ M . Hence, the space M in (1.3) may be replaced by any of its dense subsets.

Given x, y ∈ X, the function (f, g) �→ |(f, g)(x, y)| is a pseudometric on MX , i.e., |(f, f)(x, y)| = 0, 
|(f, g)(x, y)| = |(g, f)(x, y)|, and |(f, g)(x, y)| ≤ |(f, h)(x, y)| + |(h, g)(x, y)| for all f, g, h ∈ MX ; moreover,

d(f(x), f(y)) ≤ d(g(x), g(y)) + |(f, g)(x, y)|,

d(f(x), g(x)) ≤ d(f(y), g(y)) + |(f, g)(x, y)| (2.5)

(cf. [15, Section 5.1], [16, Section 3]).
If M = R with the usual metric d(u, v) = |u − v|, then

|(f, g)(x, y)| = max
u∈R

F (u) = max
{
F (f(x)), F (f(y)), F (g(x)), F (g(y))

}
= min

{
|f(x) − f(y)| + |g(x) − g(y)|, |f(x) − g(x)| + |f(y) − g(y)|

}
for all f, g : X → R and x, y ∈ X, and so, |(f − g)(x) − (f − g)(y)| ≤ |(f, g)(x, y)| (this inequality may be 
strict: put f(x) = 0, g(y) = 2, and f(y) = g(x) = 1).

However, in general both inequalities (2.3) and (2.4) may be strict. In fact, let X be a set with at least two 
elements x, y ∈ X, M be a set with at least four elements u1, u2, u3, u4 ∈ M , and d be the discrete metric 
on M (i.e., d(u, v) = 0 if u = v, and d(u, v) = 1 if u �= v). Suppose f, g ∈ MX are such that f(x) = u1, 
f(y) = u2, g(x) = u3, and g(y) = u4. Since F (ui) = 1 for i = 1, 2, 3, 4, and F (u) = 0 if u ∈ M and u �= ui

for i = 1, 2, 3, 4, we find |(f, g)(x, y)| = maxu∈M F (u) = 1. On the other hand, the quantities on the right 
in (2.3) and (2.4) are equal to 2.

2.3. The joint variation of univariate functions

Here we assume that X = I = [a, b] ⊂ R and (M, d) is a metric space. It is clear from (1.4) that 
|(f, g)(s, t)| ≤ V b

a (f, g) for all s, t ∈ I and, by (2.5),

d∞(f, g) ≤ dBV(f, g) ≡ d(f(a), g(a)) + V b
a (f, g) for all f, g ∈ M I . (2.6)

Since (f, g) �→ |(f, g)(s, t)| is a pseudometric on M I , the function V b
a is a pseudometric on M I , possibly 

taking the value ∞. An element from the set BVg(I; M) = {f ∈ M I : V b
a (f, g) < ∞} is said to be a 

function of g-bounded variation on I. By (2.6), BVg(I; M) ⊂ Bg(I; M). If c ∈ M I is constant, functions 
from BV(I; M) ≡ BVc(I; M) are the usual functions of bounded variation, and the quantity

V b
a (f) ≡ V b

a (f, c) = sup
{ m∑

i=1
d(f(ti−1), f(ti)) : m ∈ N and {ti}m0 ≺ [a, b]

}
< ∞

is the usual variation (in the sense of C. Jordan) of f ∈ BV(I; M). The triangle inequality for V b
a also gives, 

for all f, g ∈ M I ,

V b
a (f) ≤ V b

a (g) + V b
a (f, g) and V b

a (f, g) ≤ V b
a (f) + V b

a (g).

Two more properties of V b
a are worth mentioning, namely, the additivity:

V t
a (f, g) + V b

t (f, g) = V b
a (f, g) for all f, g ∈ M I and a ≤ t ≤ b (2.7)
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(see [15, Lemma 6.4.1]); and the (sequential) lower semicontinuity: if f , g, fj, gj ∈ M I (j ∈ N), fj → f and 
gj → g pointwise on I = [a, b] as j → ∞, then

V b
a (f, g) ≤ lim inf

j→∞
V b
a (fj , gj) (2.8)

(see [15, Lemma 6.1.6(a) for ϕ = id]). Property (2.8) and (2.6) imply that if (M, d) is a complete metric 
space, then (BVg(I; M), dBV) is also a complete metric space for all g ∈ M I .

3. The total joint variation of bivariate functions

In this section, X = Iba is the rectangle in R2 and (M, d) is a metric space.

3.1. The space BVg(Iba; M)

For any f, g ∈ M Ib
a and x, y ∈ Iba with x ≤ y, the joint mixed difference |(f, g)(Iyx)|2 from (1.5) is 

well-defined: in fact, (1.2) implies (for instance)

|(f, g)(Iyx)|2 ≤ d(f(x1, x2), g(x1, x2)) + d(f(y1, x2), g(y1, x2))

+ d(f(x1, y2), g(x1, y2)) + d(f(y1, y2), g(y1, y2)). (3.1)

The function (f, g) �→ |(f, g)(Iyx)|2 is a pseudometric on M Ib
a (for x ≤ y), and so, by (1.7) and (1.8), 

functions (f, g) �→ V2(f, g, Iba) and (f, g) �→ TV(f, g, Iba) are also pseudometrics on M Ib
a , possibly taking the 

value ∞.
The (Hardy-type) space of all bivariate functions on the rectangle Iba with values in M of g-bounded 

variation is defined by

BVg(Iba;M) = {f ∈ M Ib
a : TV(f, g, Iba) < ∞}, g ∈ M Ib

a ,

and we employ notation (1.13) for a constant function g = c ∈ M Ib
a .

3.2. The additivity of joint double variation V2

Lemma 1. Given f, g ∈ M Ib
a and a partition {Ii,k}m,n

1,1 ≺ Iba with m, n ∈ N, we have:

V2(f, g, Iba) =
m∑
i=1

n∑
k=1

V2(f, g, Ii,k). (3.2)

Proof. We divide the proof into three steps for clarity.
1. First, let us show that, for any x, y ∈ Iba with x ≤ y,

|(f, g)(Iyx)|2 ≤ |(f, g)(I t, y2
x1,x2

)|2 + |(f, g)(Iy1,y2
t, x2

)|2 if x1 ≤ t ≤ y1, (3.3)

|(f, g)(Iyx)|2 ≤ |(f, g)(Iy1, s
x1,x2

)|2 + |(f, g)(Iy1,y2
x1, s )|2 if x2 ≤ s ≤ y2. (3.4)

We prove only (3.3) (inequality (3.4) is established similarly). Let u ∈ M . Setting h = f − g and taking into 
account definition (1.5), we get

|hu(x1, x2) − hu(y1, x2) − hu(x1, y2) + hu(y1, y2)|
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≤ |hu(x1, x2) − hu(t, x2) − hu(x1, y2) + hu(t, y2)|

+ |hu(t, x2) − hu(y1, x2) − hu(t, y2) + hu(y1, y2)|

≤ |(f, g)(I t, y2
x1,x2

)|2 + |(f, g)(Iy1,y2
t, x2

)|2,

and it remains to take the supremum over all u ∈ M .
As corollaries of (3.3) and (3.4), we have the following two assertions:
(a) if {ti}m0 , {t′i}m

′
0 ≺ [x1, y1] with m, m′ ∈ N and {t′i}m

′
0 ⊂ {ti}m0 , then

m′∑
i=1

|(f, g)(I t′i, y2
t′i−1,x2

)|2 ≤
m∑
i=1

|(f, g)(I ti, y2
ti−1,x2

)|2;

(b) if {sk}n0 , {s′k}n
′

0 ≺ [x2, y2] with n, n′ ∈ N and {s′k}n
′

0 ⊂ {sk}n0 , then

n′∑
k=1

|(f, g)(I y1, s
′
k

x1,s′k−1
)|2 ≤

n∑
k=1

|(f, g)(I y1, sk
x1,sk−1

)|2. (3.5)

2. In this step we show that, for any x, y ∈ Iba with x ≤ y, we have

V2(f, g, Iy1,y2
x1,x2

) = V2(f, g, I t, y2
x1,x2

) + V2(f, g, Iy1,y2
t, x2

) if x1 ≤ t ≤ y1, (3.6)

V2(f, g, Iy1,y2
x1,x2

) = V2(f, g, Iy1, s
x1,x2

) + V2(f, g, Iy1,y2
x1, s ) if x2 ≤ s ≤ y2. (3.7)

Again it suffices to establish only equality (3.6). We may assume that all the quantities in this equality 
are finite.

(≥) Let ε > 0 be arbitrary. By definition (1.7) of V2(f, g, I t, y2
x1,x2

), there are partitions {t1i }m1
0 ≺ [x1, t] and 

{s1
k}n1

0 ≺ [x2, y2] with m1, n1 ∈ N such that if I1
i,k = [t1i−1, t

1
i ] × [s1

k−1, s
1
k], i = 1, . . . , m1, k = 1, . . . , n1, then

m1∑
i=1

n1∑
k=1

|(f, g)(I1
i,k)|2 ≥ V2(f, g, I t, y2

x1,x2
) − ε. (3.8)

Similarly, there are partitions {t2i }m2
0 ≺ [t, y1] and {s2

k}n2
0 ≺ [x2, y2] with m2, n2 ∈ N such that if I2

i,k =
[t2i−1, t

2
i ] × [s2

k−1, s
2
k], i = 1, . . . , m2, k = 1, . . . , n2, then

m2∑
i=1

n2∑
k=1

|(f, g)(I2
i,k)|2 ≥ V2(f, g, Iy1,y2

t, x2
) − ε. (3.9)

The union {t1i }m1
0 ∪{t2i }m2

0 is a partition of [x1, y1] (note that x1 = t10 < t11 < · · · < t1m1
= t = t20 < t21 < · · · <

t2m2
= y1), which we denote by {ti}m0 . Here m = m1 +m2, because ti = t1i if i = 0, 1, . . . , m1, and ti = t2i−m1

if i = m1 + 1, . . . , m1 + m2 = m. Furthermore, {s1
k}n1

0 ∪ {s2
k}n2

0 is a partition of [x2, y2], which we denote 
by {sk}n0 . Note that max{n1, n2} ≤ n < n1 + n2. The collection of rectangles Ii,k = [ti−1, ti] × [sk−1, sk], 
i = 1, . . . , m, k = 1, . . . , n, is a partition of Iba. Since {s1

k}n1
0 ⊂ {sk}n0 and {s2

k}n2
0 ⊂ {sk}n0 , inequality (3.5)

implies
n1∑
k=1

|(f, g)(I1
i,k)|2 ≤

n∑
k=1

|(f, g)(Ii,k)|2 if i = 1, . . . ,m1,

n2∑
k=1

|(f, g)(I2
i−m1,k)|2 ≤

n∑
k=1

|(f, g)(Ii,k)|2 if i = m1 + 1, . . . ,m.
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Now it follows from (3.8) and (3.9) that

V2(f, g, Iy1,y2
x1,x2

) ≥
m∑
i=1

n∑
k=1

|(f, g)(Ii,k)|2

=
m1∑
i=1

n∑
k=1

|(f, g)(Ii,k)|2 +
m1+m2∑
i=m1+1

n∑
k=1

|(f, g)(Ii,k)|2

≥
m1∑
i=1

n1∑
k=1

|(f, g)(I1
i,k)|2 +

m1+m2∑
i=m1+1

n2∑
k=1

|(f, g)(I2
i−m1,k)|2

=
m1∑
i=1

n1∑
k=1

|(f, g)(I1
i,k)|2 +

m2∑
i=1

n2∑
k=1

|(f, g)(I2
i,k)|2

≥ V2(f, g, I t, y2
x1,x2

) − ε + V2(f, g, Iy1,y2
t, x2

) − ε.

Due to the arbitrariness of ε > 0, this establishes the inequality ≥ in (3.6).
(≤) By the definition of V2(f, g, Iy1,y2

x1,x2
), given ε > 0, there are partitions {ti}m0 ≺ [x1, y1] and {sk}n0 ≺

[x2, y2] with m, n ∈ N such that, making use of notation (1.6), we find

V2(f, g, Iy1,y2
x1,x2

) ≤
m∑
i=1

n∑
k=1

|(f, g)(Ii,k)|2 + ε. (3.10)

With no loss of generality we may assume that t ∈ {ti}m0 : in fact, if, on the contrary, ti∗−1 < t < ti∗ for 
some i∗ ∈ {1, . . . , m}, then, by virtue of (3.3), we get, for all k = 1, . . . , n,

|(f, g)(Ii∗,k)|2 = |(f, g)(I ti∗ , sk
ti∗−1,sk−1

)|2 ≤ |(f, g)(I t, sk
ti∗−1,sk−1

)|2 + |(f, g)(I ti∗ , sk
t, sk−1

)|2,

so that the double sum on the right in (3.10) does not decrease when the point t is added to {ti}m0 . So, 
since t ∈ {ti}m0 , t = ti0 for some i0 ∈ {0, 1, . . . , m}, whence (3.10) implies

V2(f, g, Iy1,y2
x1,x2

) ≤
i0∑
i=1

n∑
k=1

|(f, g)(Ii,k)|2 +
m∑

i=i0+1

n∑
k=1

|(f, g)(Ii,k)|2 + ε

≤ V2(f, g, I t, y2
x1,x2

) + V2(f, g, Iy1,y2
t, x2

) + ε.

It remains to take into account the arbitrariness of ε > 0.
3. To prove (3.2), let (1.6) be a partition of Iba. Applying successively (3.6), we get

V2(f, g, Iba) = V2(f, g, It1,b2a1,a2
) + V2(f, g, Ib1,b2t1,a2

)

= V2(f, g, It1,b2t0,a2
) + V2(f, g, It2,b2t1,a2

) + V2(f, g, Ib1,b2t2,a2
)

= · · · =
m∑
i=1

V2(f, g, I ti, b2
ti−1,a2

).

Similarly, applying successively (3.7), for each i = 1, . . . , m, we find

V2(f, g, I ti, b2
ti−1,a2

) =
n∑

k=1

V2(f, g, I ti, sk
ti−1,sk−1

) =
n∑

k=1

V2(f, g, Ii,k),

and the desired equality (3.2) readily follows. �
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3.3. Estimates with the total joint variation

Lemma 2. Given f, g ∈ M Ib
a and x, y ∈ Iba with x ≤ y, we have:

|(f, g)(x, y)| ≤ TV(f, g, Iyx), (3.11)

TV(f, g, Ixa ) + TV(f, g, Iyx) ≤ TV(f, g, Iya ). (3.12)

Proof. 1. Let us prove (3.11). Setting h = f − g and taking into account (1.3), (1.5), (1.4), and (1.7), we 
get, for all u ∈ M ,

|hu(x) − hu(y)| = |hu(x1, x2) − hu(y1, y2)|

≤ |hu(x1, x2) − hu(y1, x2)| + |hu(x1, x2) − hu(x1, y2)|

+ | − hu(x1, x2) + hu(y1, x2) + hu(x1, y2) − hu(y1, y2)|

≤ |(f(·, x2), g(·, x2))(x1, y1)| + |(f(x1, ·), g(x1, ·))(x2, y2)| + |(f, g)(Iyx)|2

≤ V y1
x1

(f(·, x2), g(·, x2)) + V y2
x2

(f(x1, ·), g(x1, ·)) + V2(f, g, Iyx)

= TV(f, g, Iyx). (3.13)

It suffices to note that, by (1.3), |(f, g)(x, y)| = supu∈M |hu(x) − hu(y)|.
2. Before we prove (3.12), we establish the following two inequalities:

V y1
x1

(f(·, x2), g(·, x2)) ≤ V y1
x1

(f(·, a2), g(·, a2)) + V2(f, g, Iy1,x2
x1,a2

), (3.14)

V y2
x2

(f(x1, ·), g(x1, ·)) ≤ V y2
x2

(f(a1, ·), g(a1, ·)) + V2(f, g, Ix1,y2
a1,x2

). (3.15)

We prove only (3.14) (a similar proof applies to (3.15)). Given u ∈ M and x1 ≤ s ≤ t ≤ y1, setting 
h = f − g, we find

|hu(s, x2) − hu(t, x2)| ≤ |hu(s, a2) − hu(t, a2)|

+ | − hu(s, a2) + hu(t, a2) + hu(s, x2) − hu(t, x2)|

≤ |(f(·, a2), g(·, a2))(s, t)| + |(f, g)(It,x2
s,a2

)|2.

Since |(f(·, x2), g(·, x2))(s, t)| = supu∈M |hu(s, x2) − hu(t, x2)|, we get

|(f(·, x2), g(·, x2))(s, t)| ≤ |(f(·, a2), g(·, a2))(s, t)| + |(f, g)(It,x2
s,a2

)|2.

Let {ti}m0 ≺ [x1, y1] with m ∈ N be a partition of [x1, y1]. Setting s = ti−1 and t = ti, summing over 
i = 1, . . . , m, and noting that the collection of rectangles I ti,x2

ti−1,a2
= [ti−1, ti] × [a2, x2], i = 1, . . . , m, is a 

partition of Iy1,x2
x1,a2

= [x1, y1] × [a2, x2], we have

m∑
i=1

|(f(·, x2), g(·, x2))(ti−1, ti)| ≤
m∑
i=1

|(f(·, a2), g(·, a2))(ti−1, ti)| +
m∑
i=1

|(f, g)(I ti,x2
ti−1,a2

)|2

≤ V y1
x1

(f(·, a2), g(·, a2)) + V2(f, g, Iy1,x2
x1,a2

).

Taking the supremum over all {ti}m0 ≺ [x1, y1], we obtain (3.14).
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3. In order to prove (3.12), we note that {a1, x1, y1} ≺ [a1, y1] and {a2, x2, y2} ≺ [a2, y2], and so, the four 
rectangles Ix1,x2

a1,a2
= Ixa , Iy1,x2

x1,a2
, Ix1,y2

a1,x2
, and Iy1,y2

x1,x2
= Iyx form a partition of Iya = Iy1,y2

a1,a2
(draw the picture on 

the plane). By the additivity properties (2.7) and (3.2), we have:

V x1
a1

(f(·, a2), g(·, a2)) + V y1
x1

(f(·, a2), g(·, a2)) = V y1
a1

(f(·, a2), g(·, a2)),

V x2
a2

(f(a1, ·), g(a1, ·)) + V y2
x2

(f(a1, ·), g(a1, ·)) = V y2
a2

(f(a1, ·), g(a1, ·)),

V2(f, g, Iya ) = V2(f, g, Ixa ) + V2(f, g, Iy1,x2
x1,a2

) + V2(f, g, Ix1,y2
a1,x2

) + V2(f, g, Iyx). (3.16)

Since

TV(f, g, Ixa ) = V x1
a1

(f(·, a2), g(·, a2)) + V x2
a2

(f(a1, ·), g(a1, ·)) + V2(f, g, Ixa ),

and by virtue of the line preceding (3.13), (3.14), and (3.15),

TV(f, g, Iyx) ≤ V y1
x1

(f(·, a2), g(·, a2)) + V2(f, g, Iy1,x2
x1,a2

)

+ V y2
x2

(f(a1, ·), g(a1, ·)) + V2(f, g, Ix1,y2
a1,x2

) + V2(f, g, Iyx),

it follows from (3.16) that

TV(f, g, Ixa ) + TV(f, g, Iyx)

≤ V y1
a1

(f(·, a2), g(·, a2)) + V y2
a2

(f(a1, ·), g(a1, ·))

+ V2(f, g, Ixa ) + V2(f, g, Iy1,x2
x1,a2

) + V2(f, g, Ix1,y2
a1,x2

) + V2(f, g, Iyx)

= TV(f, g, Iya ),

which completes the proof of inequality (3.12) and Lemma 2. �
As a corollary of (3.11) and (2.5), we get a counterpart of inequality (2.6) for bivariate functions:

d∞(f, g) ≤ dBV(f, g) ≡ d(f(a), g(a)) + TV(f, g, Iba) for all f, g ∈ M Ib
a ,

which implies

BVg(Iba;M) ⊂ Bg(Iba;M) for all g ∈ M Ib
a . (3.17)

The pair (BVg(Iba; M), dBV) is a metric space, which (taking into account Lemma 4 below) is complete 
provided (M, d) is complete (this can be shown along the same lines as Lemma 3 from [11]).

Lemma 3. Given f, g ∈ M Ib
a with TV(f, g, Iba) < ∞, the function ν : Iba → R, defined by ν(x) = TV(f, g, Ixa )

for all x ∈ Iba, is totally monotone.

Proof. Suppose x, y ∈ Iba are such that x ≤ y. Since

ν(t, a2) = TV(f, g, I t,a2
a1,a2

) = V t
a1

(f(·, a2), g(·, a2)) for a1 ≤ t ≤ b1,

we find from (2.7) that ν(y1, a2) − ν(x1, a2) = V y1
x1

(f(·, a2), g(·, a2)) ≥ 0. Similarly, ν(a1, y2) − ν(a1, x2) =
V y2
x (f(a1, ·), g(a1, ·)) ≥ 0. Furthermore, by the definition of the total joint variation (1.8),

2
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ν(x1, x2) = V x1
a1

(f(·, a2), g(·, a2)) + V x2
a2

(f(a1, ·), g(a1, ·)) + V2(f, g, Ixa ),

ν(y1, x2) = V y1
a1

(f(·, a2), g(·, a2)) + V x2
a2

(f(a1, ·), g(a1, ·)) + V2(f, g, Iy1,x2
a1,a2

),

ν(x1, y2) = V x1
a1

(f(·, a2), g(·, a2)) + V y2
a2

(f(a1, ·), g(a1, ·)) + V2(f, g, Ix1,y2
a1,a2

),

ν(y1, y2) = V y1
a1

(f(·, a2), g(·, a2)) + V y2
a2

(f(a1, ·), g(a1, ·)) + V2(f, g, Iya ),

and so, the additivity property (3.2) of V2 and equality (3.16) imply

ν(x1, x2)− ν(y1, x2) − ν(x1, y2) + ν(y1, y2)

= V2(f, g, Ixa ) −
[
V2(f, g, Ixa ) + V2(f, g, Iy1,x2

x1,a2
)
]

−
[
V2(f, g, Ixa ) + V2(f, g, Ix1,y2

a1,x2
)
]

+
[
V2(f, g, Ixa ) + V2(f, g, Iy1,x2

x1,a2
) + V2(f, g, Ix1,y2

a1,x2
) + V2(f, g, Iyx)

]
= V2(f, g, Iyx) ≥ 0,

which was to be proved. �
3.4. The sequential lower semicontinuity of V2 and TV

Lemma 4. If {fj}, {gj} ⊂ M Ib
a and f, g ∈ M Ib

a are such that fj → f and gj → g pointwise on Iba as j → ∞, 
then

V2(f, g, Iba) ≤ lim inf
j→∞

V2(fj , gj , Iba), (3.18)

TV(f, g, Iba) ≤ lim inf
j→∞

TV(fj , gj , Iba). (3.19)

Proof. Let us prove (3.18). First, we note that

lim
j→∞

|(fj , gj)(Iyx)|2 = |(f, g)(Iyx)|2 for all x, y ∈ Iba with x ≤ y. (3.20)

In fact, the triangle inequality for function (f, g) �→ |(f, g)(Iyx)|2 implies

∣∣|(fj , gj)(Iyx)|2 − |(f, g)(Iyx)|2
∣∣ ≤ |(fj , f)(Iyx)|2 + |(g, gj)(Iyx)|2.

By virtue of inequality (3.1),

|(fj , f)(Iyx)|2 ≤ d(fj(x1, x2), f(x1, x2)) + d(fj(y1, x2), f(y1, x2))

+ d(fj(x1, y2), f(x1, y2)) + d(fj(y1, y2), f(y1, y2)),

and a similar estimate holds for |(g, gj)(Iyx)|2 = |(gj , g)(Iyx)|2. It remains to take into account the pointwise 
convergence of fj to f and gj to g.

By definition (1.7), given {Ii,k}m,n
1,1 ≺ Iba with m, n ∈ N, we have

m∑ n∑
|(fj , gj)(Ii,k)|2 ≤ V2(fj , gj , Iba) for all j ∈ N.
i=1 k=1
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Passing to the limit inferior as j → ∞, we find, by virtue of (3.20),

m∑
i=1

n∑
k=1

|(f, g)(Ii,k)|2 ≤ lim inf
j→∞

V2(fj , gj , Iba).

Now, (3.18) follows by taking the supremum over all partitions of Iba.
Inequality (3.19) is a consequence of (1.8), (2.8), (3.18), and the fact that, given a finite collection of 

sequences in [0, ∞], the sum of their limits inferior does not exceed the limit inferior of their sum. �
4. Proof of Theorem 1

Proof of Theorem 1. 1. By extracting appropriate subsequences of {fj} and {gj}, again denoted by {fj} and 
{gj}, respectively, we may assume that TV(fj , gj , Iba) is finite for all j ∈ N and limj→∞ TV(fj , gj , Iba) = C. 
It follows that the sequence {TV(fj , gj , Iba)}∞j=1 is bounded in [0, ∞).

Given j ∈ N and x ∈ Iba, we set νj(x) = TV(fj , gj , Ixa ). Since

νj(x) ≤ TV(fj , gj , Iba) for all j ∈ N and x ∈ Iba,

the sequence {νj}∞j=1 of functions νj : Iba → [0, ∞) is uniformly bounded. By Lemma 3, each function νj is 
totally monotone, and so, Theorem B implies the existence of subsequences of {fj} and {gj}, again denoted 
by {fj} and {gj}, respectively, and a totally monotone function ν : Iba → [0, ∞) such that

lim
j→∞

νj(x) = ν(x) for all x ∈ Iba. (4.1)

By Theorem A, the points of discontinuity of ν lie on at most a countable set of lines parallel to the 
coordinate axes in R2.

2. Let Q1 be the subset of [a1, b1] consisting of all rational points from [a1, b1], points a1 and b1, and those 
points t ∈ [a1, b1], for which the line segment {t} × [a2, b2] contains points of discontinuity of ν. Similarly, 
denote by Q2 the subset of [a2, b2] consisting of all rational points from [a2, b2], points a2 and b2, and those 
points s ∈ [a2, b2], for which the line segment [a1, b1] × {s} contains points of discontinuity of ν. Since the 
sets Q1 and Q2 are countable, we may assume that Q1 = {ti}∞i=1 and Q2 = {sk}∞k=1.

Now, we apply Theorem C and the Cantor diagonal procedure. The sequence of univariate functions 
{fj(t1, ·)}∞j=1 ⊂ M [a2,b2] has the following properties. By inequality (3.15) and definition (1.8), we get

V b2
a2

(fj(t1, ·), gj(t1, ·)) ≤ V b2
a2

(fj(a1, ·), gj(a1, ·)) + V2(fj , gj , I t1,b2
a1,a2

)

≤ TV(fj , gj , Iba) for all j ∈ N,

and so,

lim sup
j→∞

V b2
a2

(fj(t1, ·), gj(t1, ·)) ≤ lim
j→∞

TV(fj , gj , Iba) = C < ∞.

Furthermore, assumption (a) in Theorem 1 implies that the set {fj(t1, s) : j ∈ N} is precompact in M
for all s ∈ [a2, b2], and assumption (b) implies that the sequence {gj(t1, ·)}∞j=1 is pointwise convergent on 
[a2, b2] to the function g(t1, ·) ∈ M [a2,b2]. By Theorem C, there is an increasing sequence {J1(j)}∞j=1 ⊂ N

(i.e., a subsequence of {j}∞j=1) such that the sequence of functions {fJ1(j)(t1, ·)}∞j=1 ⊂ M [a2,b2] converges in 
M pointwise on [a2, b2] to a function denoted by f(t1, ·) ∈ M [a2,b2].

Inductively, if k ∈ N, k ≥ 2, and a subsequence {Jk−1(j)}∞j=1 of {j}∞j=1 is already chosen, we consider the 
sequence {fJk−1(j)(tk, ·)}∞j=1 ⊂ M [a2,b2], which has the following properties. Inequality (3.15) and definition 
(1.8) imply
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V b2
a2

(
fJk−1(j)(tk, ·), gJk−1(j)(tk, ·)

)
≤ V b2

a2

(
fJk−1(j)(a1, ·), gJk−1(j)(a1, ·)

)
+ V2

(
fJk−1(j), gJk−1(j), I

tk,b2
a1,a2

)
≤ TV

(
fJk−1(j), gJk−1(j), I

b
a

)
for all j ∈ N,

and so,

lim sup
j→∞

V b2
a2

(
fJk−1(j)(tk, ·), gJk−1(j)(tk, ·)

)
≤ lim sup

j→∞
TV(fJk−1(j), gJk−1(j), I

b
a)

≤ lim
j→∞

TV(fj , gj , Iba) = C < ∞.

Furthermore, the set {fJk−1(j)(tk, s) : j ∈ N} is precompact in M for all s ∈ [a2, b2], and the sequence 
{gJk−1(j)(tk, ·)}∞j=1 is pointwise convergent on [a2, b2] to the function g(tk, ·) ∈ M [a2,b2]. Applying Theorem C, 
we find a subsequence {Jk(j)}∞j=1 of {Jk−1(j)}∞j=1 such that the sequence of functions {fJk(j)(tk, ·)}∞j=1
converges in M pointwise on [a2, b2] to a function denoted by f(tk, ·) ∈ M [a2,b2].

Since, for all k ∈ N, the sequence {Jj(j)}∞j=k is a subsequence of {Jk(j)}∞j=1, denoting the diagonal 
sequences {fJj(j)}∞j=1 and {gJj(j)}∞j=1 again by {fj} and {gj}, respectively, we find that {fj} converges in 
M pointwise on the set Q1 × [a2, b2] to the function f : Q1 × [a2, b2] → M .

Similarly, starting from the just defined sequences {fj} and {gj}, applying inequality (3.14) (in place 
of (3.15)) and the ‘diagonal arguments’ similar to the above, we extract a new subsequence {fJj(j)}∞j=1 of 
{fj}, which converges in M pointwise on the set [a1, b1] ×Q2 to the function f : [a1, b1] ×Q2 → M .

Thus, with no loss of generality we may assume that the sequence {fj} (the corresponding g-sequence 
being denoted by {gj}) converges in M pointwise on the set Q = (Q1 × [a2, b2]) ∪ ([a1, b1] × Q2) to the 
function f : Q → M .

3. Let us prove now that the sequence {fj(x)}∞j=1 converges in M at each point x ∈ Iba \Q. Let ε > 0 be 
arbitrary. By the density of Q in Iba and the continuity of ν at x, there exists y ∈ Q such that x < y and 
|ν(y) − ν(x)| ≤ ε. From (4.1), there is N0 = N0(ε) ∈ N such that |νj(x) − ν(x)| ≤ ε and |νj(y) − ν(y)| ≤ ε

for all j ≥ N0. By (3.11) and (3.12), if j ≥ N0, we have

|(fj , gj)(x, y)| ≤ TV(fj , gj , Iyx)

≤ TV(fj , gj , Iya ) − TV(fj , gj , Ixa ) = νj(y) − νj(x)

≤ |νj(y) − ν(y)| + |ν(y) − ν(x)| + |ν(x) − νj(x)| ≤ 3ε.

Being convergent, the sequences {fj(y)}∞j=1, {gj(x)}∞j=1, and {gj(y)}∞j=1 are Cauchy in M , and so, there is 
N1 = N1(ε, x, y) ∈ N such that, for all j, k ≥ N1,

d(fj(y), fk(y)) ≤ ε, d(gj(x), gk(x)) ≤ ε, and d(gj(y), gk(y)) ≤ ε.

By (2.4), we get

|(gj , gk)(x, y)| ≤ d(gj(x), gk(x)) + d(gj(y), gk(y)) ≤ 2ε, j, k ≥ N1.

Applying (2.5) and the triangle inequality for (f, g) �→ |(f, g)(x, y)|, we find

d(fj(x), fk(x)) ≤ d(fj(y), fk(y)) + |(fj , fk)(x, y)|

≤ ε + |(fj , gj)(x, y)| + |(gj , gk)(x, y)| + |(gk, fk)(x, y)|

≤ ε + 3ε + 2ε + 3ε = 9ε for all j, k ≥ max{N0, N1}.
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Thus, {fj(x)}∞j=1 is a Cauchy sequence in M , which together with assumption (a) establishes its convergence 
in M to an element denoted by f(x) ∈ M .

4. At the end of step 2 and in step 3 we have shown that the function f : Iba = Q ∪ (Iba \Q) → M is the 
pointwise limit on Iba of a subsequence {fjk}∞k=1 of the original sequence {fj}∞j=1. Since gjk → g pointwise 
on Iba as k → ∞, we conclude from (3.19) that

TV(f, g, Iba) ≤ lim inf
k→∞

TV(fjk , gjk , Iba) ≤ lim sup
j→∞

TV(fj , gj , Iba) = C < ∞,

and so, f ∈ BVg(Iba; M). This completes the proof of Theorem 1. �
Clearly, Theorem C follows from Theorem 1: it suffices to consider functions of two variables depending 

on one fixed variable.

5. The total ε-variation and proof of Theorem 2

In order to prove Theorem 2, we need two lemmas. Note that, by (1.15), the function ε �→ TVε(f, Iba), 
which maps (0, ∞) into [0, ∞], is nonincreasing.

Lemma 5. Given f ∈ M Ib
a , where (M, d) is a metric space, we have:

(a) limε→+0 TVε(f, Iba) = TV(f, Iba) in [0, ∞];
(b) |f(Iba)| ≤ TVε(f, Iba) + 2ε for all ε > 0;
(c) if f ∈ B(Iba; M) and ε ≥ |f(Iba)|, then TVε(f, Iba) = 0.

Proof. (a) First, suppose TV(f, Iba) < ∞, i.e., f ∈ BV(Iba; M). Definition (1.15) implies TVε(f, Iba) ≤
TV(f, Iba) for all ε > 0, and so,

C ≡ lim
ε→+0

TVε(f, Iba) ≤ TV(f, Iba). (5.1)

To prove the reverse inequality, we apply the definition of C: given η > 0, there is δ = δ(η) > 0 such 
that TVε(f, Iba) < C + η for all ε ∈ (0, δ). Let {εk}∞k=1 ⊂ (0, δ) be such that εk → 0 as k → ∞. Then, 
for each k ∈ N, by the definition of TVεk(f, Iba), there is gk ∈ BV(Iba; M) such that d∞(f, gk) ≤ εk and 
TV(gk, Iba) ≤ C + η. Since εk → 0, gk converges uniformly (hence, pointwise) on Iba to f as k → ∞, and so, 
inequality (3.19) implies

TV(f, Iba) ≤ lim inf
k→∞

TV(gk, Iba) ≤ C + η for all η > 0.

Thus, TV(f, Iba) ≤ C.
Now, if TV(f, Iba) = ∞, we claim that the quantity C from (5.1) is infinite as well; in fact, the arguments 

following (5.1) show that TV(f, Iba) ≤ C < ∞, which is a contradiction.
(b) Given ε > 0, we may assume that TVε(f, Iba) < ∞. By definition (1.15), for each η > 0 there is 

g = gη ∈ BV(Iba; M) such that d∞(f, g) ≤ ε and TV(g, Iba) ≤ TVε(f, Iba) + η. Making use of (2.2) with 
X = Iba and (3.11) (when function f in (3.11) is constant), we get

|f(Iba)| ≤ |g(Iba)| + 2d∞(f, g) ≤ TV(g, Iba) + 2ε ≤ TVε(f, Iba) + η + 2ε,

and the desired inequality follows due to the arbitrariness of η > 0.
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(c) Setting g(x) = f(a) for all x ∈ Iba, we find

d∞(f, g) = sup
x∈Ib

a

d(f(x), f(a)) ≤ |f(Iba)| ≤ ε,

and so, by (1.15), 0 ≤ TVε(f, Iba) ≤ TV(g, Iba) = 0. �
In the case when (M, ‖ · ‖) is a normed linear space (over R or C), the joint increment |(f, g)(x, y)| and 

joint mixed difference |(f, g)(Iyx)|2 for functions f ∈ M Ib
a may be understood either (i) as in (1.3) and (1.5)

via the induced metric d(u, v) = ‖u − v‖ on M , or (ii) as in (1.11) and (1.12) directly via the norm ‖ · ‖. In 
both cases (i) and (ii), definitions (1.8) of TV(f, g, Iba) and (1.15) of TVε(f, Iba) remain unchanged. In the 
proofs of Lemma 6 and Theorem 2 below, Theorem 1 is applied in the particular case when gj = c for all 
j ∈ N and some (no matter which) constant function c ∈ M Ib

a . Recall also that ‖f‖∞ = supx∈Ib
a
‖f(x)‖ and 

d∞(f, g) = ‖f − g‖∞.

Lemma 6. If (M, ‖ · ‖) is a finite-dimensional normed linear space, f ∈ M Ib
a , {fj} ⊂ M Ib

a , and fj → f

pointwise on Iba as j → ∞, then

TVε(f, Iba) ≤ lim inf
j→∞

TVε(fj , Iba) for all ε > 0. (5.2)

Proof. Given ε > 0, we may assume (passing to a subsequence of {fj} if necessary) that the right-hand 
side in (5.2) is Cε ≡ limj→∞ TVε(fj , Iba) < ∞. Then, for every η > Cε, there is j0 = j0(ε, η) ∈ N such that 
η > TVε(fj , Iba) for all j ≥ j0, and so, definition (1.15) implies the existence of gj ∈ BV(Iba; M) such that

‖fj − gj‖∞ = d∞(fj , gj) ≤ ε and TV(gj , Iba) ≤ η. (5.3)

Since fj → f pointwise on Iba as j → ∞, the sequence {fj} is pointwise bounded on Iba, i.e., for each x ∈ Iba
there is a constant A(x) > 0 such that ‖fj(x)‖ ≤ A(x) for all j ∈ N. This implies, for all x ∈ Iba and j ≥ j0,

‖gj(x)‖ ≤ ‖gj(x) − fj(x)‖ + ‖fj(x)‖ ≤ ‖gj − fj‖∞ + A(x) ≤ ε + A(x),

and so, {gj}∞j=j0
is a pointwise bounded sequence on Iba. Since M is finite-dimensional, the sequence {gj}∞j=j0

is pointwise precompact on Iba. Furthermore, by (5.3), {gj}∞j=j0
has uniformly bounded total variations on 

Iba. By Theorem 1, there are a subsequence {gjk}∞k=1 of {gj}∞j=j0
and a function g ∈ BV(Iba; M) such that 

gjk → g pointwise on Iba as k → ∞. Noting that fjk → f pointwise on Iba as k → ∞, from (5.3) we get

‖f − g‖∞ ≤ lim inf
k→∞

‖fjk − gjk‖∞ ≤ ε.

By virtue of (1.15), (3.19), and (5.3), it follows that

TVε(f, Iba) ≤ TV(g, Iba) ≤ lim inf
k→∞

TV(gjk , Iba) ≤ η for all η > Cε,

and so, TVε(f, Iba) ≤ Cε, which was to be proved. �
For functions of one variable f : [a, b] → R

N , a counterpart of Lemma 6 was established in [24, Proposi-
tion 3.6].

Proof of Theorem 2. 1. Assumption (b) implies that, given ε > 0, there are j0(ε) ∈ N and a constant 
K(ε) > 0 such that TVε(fj , Iba) < K(ε) for all j ≥ j0(ε).
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Let {εk}∞k=1 ⊂ (0, ∞) be such that εk → 0 as k → ∞. Then, for each k ∈ N, we have TVεk(fj , Iba) < K(εk)
for all j ≥ j0(εk), and so, by definition (1.15), for each j ≥ j0(εk) there is g(k)

j ∈ BV(Iba; M) such that

∥∥fj − g
(k)
j

∥∥
∞ = d∞

(
fj , g

(k)
j

)
≤ εk and TV

(
g
(k)
j , Iba

)
≤ K(εk). (5.4)

By assumption (a), given k ∈ N, j ≥ j0(εk), and x ∈ Iba, we have

‖g(k)
j (x)‖ ≤ ‖g(k)

j (x) − fj(x)‖ + ‖fj(x) − fj(a)‖ + ‖fj(a)‖

≤ ‖g(k)
j − fj‖∞ + |fj(Ixa )| + A,

where the term in the middle is estimated from Lemma 5(b):

|fj(Ixa )| ≤ |fj(Iba)| ≤ TVεk(fj , Iba) + 2εk ≤ K(εk) + 2εk.

In this way we have shown that

sup
j≥j0(εk)

∥∥g(k)
j (x)

∥∥ ≤ 3εk + K(εk) + A for all k ∈ N and x ∈ Iba, (5.5)

and, by the second inequality in (5.4),

sup
j≥j0(εk)

TV
(
g
(k)
j , Iba

)
≤ K(εk) for all k ∈ N. (5.6)

2. Applying the Cantor diagonal procedure, let us show that, for each k ∈ N, there are a subsequence of 
{g(k)

j }∞j=j0(εk), denoted by {g(k)
j }∞j=1, and a function g(k) ∈ BV(Iba; M) such that

lim
j→∞

d
(
g
(k)
j (x), g(k)(x)

)
≡ lim

j→∞

∥∥g(k)
j (x) − g(k)(x)

∥∥ = 0 for all x ∈ Iba. (5.7)

Putting k = 1 in (5.5) and (5.6), we find that the sequence of functions {g(1)
j }∞j=j0(ε1) has uniformly 

bounded total variations (bounded by K(ε1)) and is uniformly bounded on Iba (by constant 3ε1+K(ε1) +A), 
and so, since M is finite-dimensional, the sequence is pointwise precompact on Iba. By Theorem 1, there are 
a subsequence {J1(j)}∞j=1 of {j}∞j=j0(ε1) and a function g(1) ∈ BV(Iba; M) such that g(1)

J1(j)(x) → g(1)(x) in 

M as j → ∞ for all x ∈ Iba. Choose the least number j1 ∈ N such that J1(j1) ≥ j0(ε2). Inductively, if k ∈ N, 
k ≥ 2, a subsequence {Jk−1(j)}∞j=1 of {j}∞j=j0(ε1) and a number jk−1 ∈ N such that Jk−1(jk−1) ≥ j0(εk) are 

already chosen, we get the sequence of functions {g(k)
Jk−1(j)}

∞
j=jk−1

⊂ BV(Iba; M), which, by virtue of (5.5)
and (5.6), satisfies the following two conditions:

sup
j≥jk−1

∥∥g(k)
Jk−1(j)

∥∥
∞ ≤ 3εk + K(εk) + A and sup

j≥jk−1

TV
(
g
(k)
Jk−1(j), I

b
a

)
≤ K(εk).

By Theorem 1, there are a subsequence {Jk(j)}∞j=1 of {Jk−1(j)}∞j=jk−1
and a function g(k) ∈ BV(Iba; M)

such that g(k)
Jk(j)(x) → g(k)(x) in M as j → ∞ for all x ∈ Iba. Noting that, for each k ∈ N, {Jj(j)}∞j=k is a 

subsequence of {Jk(j)}∞j=jk−1
⊂ {Jk(j)}∞j=1, we conclude that the diagonal sequence {g(k)

Jj(j)}
∞
j=1, which was 

denoted by {g(k)
j }∞j=1 at the beginning of step 2, satisfies (5.7).

The corresponding (diagonal) subsequence {fJj(j)}∞j=1 of {fj}∞j=1 is again denoted by {fj}∞j=1.
3. By virtue of (3.17), {g(k)}∞k=1 ⊂ BV(Iba; M) ⊂ B(Iba; M). In this step, we show that {g(k)}∞k=1 is a 

Cauchy sequence in B(Iba; M) with respect to the uniform metric d∞(f, g) = ‖f − g‖∞. To do this, we make 
use of an idea from [24, p. 49], which has been applied for univariate functions.
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Let η > 0 be arbitrary. Since εk → 0 as k → ∞, there is k0 = k0(η) ∈ N such that εk ≤ η for all k ≥ k0. 
Now, let k1, k2 ∈ N be arbitrary such that k1 ≥ k0 and k2 ≥ k0. By (5.7), for each x ∈ Iba, there is j1 ∈ N, 
depending on x, η, k1, and k2, such that if j ≥ j1, we have

d
(
g
(k1)
j (x), g(k1)(x)

)
≤ η and d

(
g
(k2)
j (x), g(k2)(x)

)
≤ η.

Thus, if j ≥ j1, it follows from (5.4) and the triangle inequality for d that

d
(
g(k1)(x), g(k2)(x)

)
≤ d

(
g(k1)(x), g(k1)

j (x)
)

+ d
(
g
(k1)
j (x), fj(x)

)
+ d

(
fj(x), g(k2)

j (x)
)

+ d
(
g
(k2)
j (x), g(k2)(x)

)
≤ η + εk1 + εk2 + η ≤ 4η.

Since x ∈ Iba is arbitrary, we get d∞
(
g(k1), g(k2)

)
≤ 4η for all k1, k2 ≥ k0.

4. Being finite-dimensional, (M, d) is complete, and so, the space B(Iba; M) with the uniform metric d∞
is also complete. By step 3, there is g ∈ B(Iba; M) such that {g(k)}∞k=1 converges uniformly on Iba to g (i.e., 
d∞(g(k), g) → 0) as k → ∞. Now, we show that fj → g pointwise on Iba as j → ∞.

Let x ∈ Iba and η > 0 be arbitrary. Choose and fix k = k(η) ∈ N such that εk ≤ η and d∞(g(k), g) ≤ η. 
By (5.7), there is j2 ∈ N, depending on x, η, and k, such that d(g(k)

j (x), g(k)(x)) ≤ η for all j ≥ j2, and so, 
(5.4) implies

d
(
fj(x), g(x)

)
≤ d

(
fj(x), g(k)

j (x)
)

+ d
(
g
(k)
j (x), g(k)(x)

)
+ d

(
g(k)(x), g(x)

)
≤ εk + d

(
g
(k)
j (x), g(k)(x)

)
+ d∞

(
g(k), g

)
≤ η + η + η = 3η for all j ≥ j2.

Thus, we have shown that a suitable subsequence {fjk}∞k=1 of the original sequence {fj}∞j=1 converges 
pointwise on Iba to the function g ∈ B(Iba; M). Applying Lemma 6 and setting f = g, we conclude that

TVε(f, Iba) ≤ lim inf
k→∞

TVε(fjk , Iba) ≤ lim sup
j→∞

TVε(fj , Iba) = νε < ∞

for all ε > 0. This completes the proof of Theorem 2. �
A simple consequence of Theorem 2 is as follows. Assume that assumption (b) in Theorem 2 is replaced by 

condition limj→∞ |fj(Iba)| = 0. Then a subsequence of {fj} converges pointwise on Iba to a constant function. 
In fact, given ε > 0, there is j0 = j0(ε) ∈ N such that |fj(Iba)| ≤ ε for all j ≥ j0, and so, Lemma 5(c) implies 
TVε(fj , Iba) = 0 for all j ≥ j0. This yields

νε = lim sup
j→∞

TVε(fj , Iba) ≤ sup
j≥j0

TVε(fj , Iba) = 0 for all ε > 0.

By Theorem 2, a subsequence of {fj} converges pointwise on Iba to a function f ∈ M Ib
a such that TVε(f, Iba) =

0 for all ε > 0. Now, Lemma 5(b) gives |f(Iba)| = 0, i.e., f is a constant function on Iba.
In order to compare Theorems 1 and 2, we suppose that, in Theorem 1, gj = c is a constant function for 

all j ∈ N. Let uj , vj , u ∈ M , uj �= vj (j ∈ N), be such that uj → u and vj → u in M as j → ∞, and define 
the sequence {fj} ⊂ M Ib

a of Dirichlet-type functions by

fj(x1, x2) =
{

uj if x1 ∈ [a1, b1] and x2 ∈ [a2, b2] are rational,
v otherwise.
j
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Clearly, |fj(Iba)| = d(uj , vj) → 0 as j → ∞, and so, as it was shown above, Theorem 2 can be applied to the 
sequence {fj}. On the other hand, we already have V b1

a1
(fj(·, a2)) = ∞ (e.g., if a2 is rational), which implies 

TV(fj , Iba) = ∞ for all j ∈ N, and so, Theorem 1 is inapplicable.
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