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1. Introduction

The problem of holomorphic isometric embedding is a classical problem studied by many mathematicians. 
In a celebrated paper by Calabi [1], many deep results of a holomorphic isometry from a complex manifold 
into a complex space form have been obtained by using his diastasis functions. In particular, given two 
complex space forms with different curvature signs, Calabi proved that there does not exist local holomorphic 
isometric embedding between them with respect to the canonical Kähler metrics. Di Scala and Loi later 
generalized Calabi’s non-embeddability result to Hermitian symmetric spaces of different types in [3].

Following Calabi’s idea of diastasis, Umehara [9] studied the existence of common submanifolds of two 
Kähler manifolds and proved that two complex space forms with different curvature signs cannot have a 
common Kähler submanifold with the induced metrics. In [4], Di Scala and Loi called two Kähler manifolds 
are relatives when they share a common Kähler submanifold. They also proved that a bounded domain with 
its Bergman metric cannot be a relative to a projective algebraic manifold with the induced Fubini–Study 
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metric. In fact, the result of Umehara [9] implies that the complex Euclidean space and a projective algebraic 
manifold with the induced Fubini–Study metric cannot be relatives. More recently, Huang and Yuan [6]
proved that a complex Euclidean space and a Hermitian symmetric space of noncompact type cannot be 
relatives by using different argument. For related problems, the interested reader may refer to [2] and [12].

Cartan–Hartogs domains, introduced by Yin and Roos, are fiber bundles over classical domains in complex 
Euclidean spaces. They are natural generalizations of bounded symmetric domains and ellipsoids, but in 
general they are not homogeneous and their Bergman kernel functions are not rational. The Bergman 
kernels/metrics, proper holomorphic maps of Cartan–Hartogs domains have received considerable attentions 
thanks to the works by Loi–Zedda [7], Tu–Wang [8], Yin [10], etc. In [11], it was asked whether a complex 
Euclidean space and a Cartan–Hartogs domain can be relatives. We try to answer this question in this note.

Let the bounded symmetric domain Ω be the Harish-Chandra realization of an irreducible Hermitian 
symmetric space of noncompact type and let NΩ(z, w) be its generic norm. The Cartan–Hartogs domain is 
defined as MΩ(μ) = {(z, w) ∈ Ω × C

N ||w|2μ < NΩ(z, z)}, where N is a positive integer, μ is a positive real 
number. In particular, when Ω is one of the classic domains of Type I, II, III, IV , Yin [10] obtained the 
Bergman kernels KMΩ(μ) as follows:

• When Ω is of Type I,

KMΩ(μ) = KI(z, w, z̄, w̄) = μ−pqπ−(pq+N)C(Y )det(I − zz̄T )−(p+q+N
μ ),

where z ∈ Ω is a m × n matrix, C(Y ) =
∑pq+1

i=0 b1iΓ(N + i)Y N+i, b1i ∈ R, Y = (1 − X)−1, X =
|w|2(det(I − zz̄T ))

−1
μ ;

• When Ω is of Type II,

KMΩ(μ) = KII(z, w, z̄, w̄) = μ
−(p+1)

2 π−( p(p+1)
2 +N)C(Y )det(I − zz̄T )−(p+1+N

μ ),

where z ∈ Ω is a p × p skew-symmetric matrix, C(Y ) =
∑ p(p+1)

2 +1
i=0 b2iΓ(N + i)Y N+i, b2i ∈ R, Y and X

are the same as above;
• When Ω is of Type III,

KMΩ(μ) = KIII(z, w, z̄, w̄) = μ
−q(q−1)

2 π−( q(q−1)
2 +N)C(Y )det(I − zz̄T )−(q−1+N

μ ),

where z ∈ Ω is a q × q skew-symmetric matrix, C(Y ) =
∑ q(q−1)

2 +1
i=0 b3iΓ(N + i)Y N+i, b3i ∈ R, Y and X

are the same as above;
• When Ω is of Type IV,

KMΩ(μ) = KIV (z, w, z̄, w̄) = μ−nπ−(n+N)C(Y )(1 + |zzT |2 − 2zz̄T )−(n+N
μ ),

where z ∈ Ω ⊂ C
n, C(Y ) =

∑n+1
i=0 b4iΓ(N + i)Y N+i, b4i ∈ R, Y is the same as above, X = |w|2(1 +

|zzT |2 − 2zz̄T )
−1
μ .

For convenience, we consider MΩ(μ) as a subset in Cpq+N in the following sense, where pq = p2 when Ω is 
of type II; pq = q2 when Ω is of type III; pq = n when Ω is of type IV. The Bergman metric on MΩ(μ) is 
given by ωMΩ(μ) =

√
−1∂∂̄ logKMΩ(μ) up to a positive normalization constant. Assume that D ⊂ C

κ is a 
connected open set and ωD is a Kähler metric on D which is not necessarily complete. We assume, without 
loss of generality, 0 is contained in D. The question raised in [11] asks whether there simultaneously exist 
holomorphic isometric immersions F : (D, ωD) → (Cn, ωCn) and L : (D, ωD) → (MΩ(μ), ωMΩ(μ)). In this 
note, we show that there do not exist such immersions mapping 0 to 0.
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Theorem 1.1. Let D ⊂ C be a connected open subset. Suppose that F : D → C
n and L = (G, H) = (g1, · · · ,

gpq, h1, · · · , hN ) : D → MΩ(μ) are holomorphic mappings with L(0) = 0 such that

F ∗ωCn = L∗ωMΩ(μ) on D, (1.1)

where ωCn is the Euclidean metric on Cn. Then F must be a constant map.

Corollary 1.2. There does not exist a Kähler submanifold of a Cartan–Hartogs domain passing through zero 
that is also the submanifold of the complex Euclidean space.

2. Proof of Theorem 1.1

We use the idea in [5,6] to prove Theorem 1.1. Let F = (f1, · · · , fn) : D → C
n, L = (G, H) =

(g1(z), · · · , gpq(z), h1(z), · · · , hN (z)) : D → MΩ(μ) be holomorphic maps satisfying the equation (1.1). 
Without loss of generality, assume that 0 ∈ D and F (0) = 0 by translation. We argue by contradiction by 
assuming that F is not constant.

By equation (1.1), we have

∂∂̄(
n∑

i=1
|fi(z)|2) = ∂∂̄(logKMΩ(μ)(G(z), H(z), G(z),H(z))) for z ∈ D, (2.1)

where KMΩ(μ)(ξ, η) =
∑

l hl(ξ)hl(η) is the Bergman kernel on MΩ(μ) and {hl(ξ)} is an orthonormal basis 
of L2 integrable holomorphic functions over MΩ. Since MΩ(μ) is a complete circular domain, we know that 
KMΩ(μ)(ξ, η) does not contain any nonconstant pure holomorphic terms in ξ, and any nonconstant pure 
anti-holomorphic terms in η. Hence KMΩ(μ)(ξ, ξ) does not contain nonconstant pluriharmonic terms in ξ. 
After normalization, we can assume that KMΩ(μ)(ξ, 0) = 1. By the standard argument, one can get rid of ∂∂̄
in (2.1) to obtain the following functional identity by comparing the pure holomorphic and anti-holomorphic 
terms in z:

n∑
i=1

|fi(z)|2 = logKMΩ(μ)(G(z), H(z), G(z),H(z))). (2.2)

After polarization, (2.2) is equivalent to

n∑
i=1

fi(z)f̄i(w) = logKMΩ(μ)(G(z), H(z), G(w), H(w))) for (z, w) ∈ D × conj(D), (2.3)

where f̄i(w) = fi(w), Ḡ(w) = G(w), H̄(w) = H(w) and conj(D) = {z ∈ C|z̄ ∈ D}.

We proceed in three steps to prove Theorem 1.1.

Step 1. We claim that for any 1 ≤ i ≤ n, fi(z) can be written as a holomorphic polynomials of L(z) =
(G(z), H(z)), shrinking D toward the origin if needed. Namely, there exist holomorphic polynomials Pi(z, X), 
i = 1, 2, · · · , n such that fi(z) = Pi(z, L(z)).

The proof is similar to the algebraic lemma in Proposition 3.1 of [5]. For the sake of completeness, we will 
give the details. In the following, we will denote the Bergman Kernels by KJ(z, w, z, w) (J = I, II, III, IV )
for the four types of Cartan–Hartogs domains. Applying the differentiation ∂

∂w to equation (2.3), for w
near 0, we get the equations:
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n∑
i=1

fi(z)
∂

∂w
f̄i(w) =

∂C(Y (z,w))
∂w

C(Y (z, w)) + k

D(G(z), G(w))
∂D(G(z), G(w))

∂w
, (2.4)

C(Y (z, w)) =
h∑

i=0
biΓ(N + i)Y (z, w)(N+i), Y (z, w) = (1 −X(z, w))−1.

Here

• when J = I, h = pq + 1, bi = b1i, k = −(p + q + N
μ );

• when J = II, h = p(p+1)
2 + 1, bi = b2i, k = −(p + 1 + N

μ );
• when J = III, h = q(q−1)

2 + 1, bi = b3i, k = −(q − 1 + N
μ );

• when J = IV , h = n + 1, bi = b4i, k = −(n + N
μ ).

In the first three cases,

X(z, w) = H(z)H(w)T (det(I −G(z)G(w)T ))
−1
μ ,

D(G(z), G(w)) = det(I −G(z) ·G(w)T );

in the fourth case,

X(z, w) = H(z)H(w)T (1 + G(z)G(z)TG(w)G(w)T − 2G(z)G(w)T )
−1
μ ,

D(G(z), G(w)) = 1 + G(z)G(z)TG(w)G(w)T − 2G(z)G(w)T .

Since L(0) = 0, after simple calculation, we obtained that D(G(z), G(0)) ≡ 1, Y (z, 0) ≡ 1 and C(Y (z, 0)) =∑h
i=0 biΓ(N + i). Moreover, ∂D(G(z),G(w))

∂w |w=0 is a polynomial of G(z) in all four cases. Denote Dδ = ∂δ

∂wδ . 
Then we can rewrite (2.4) as follows:

F (z) ·D1(F̄ (w)) = φ1(w, g1(z), · · · , gpq(z), h1(z), · · · , hN (z)), (2.5)

where φ1(w, g1(z), · · · , gpq(z), h1(z), · · · , hN (z)) is a holomorphic polynomial in L for fixed w = 0. Now, 
differentiating (2.5), we get for any δ the following equation

F (z) ·Dδ(F̄ (w)) = φδ(w, g1(z), · · · , gpq(z), h1(z), · · · , hN (z)). (2.6)

Here for δ > 0 and the fixed w = 0, φδ(w, g1(z), · · · , gpq(z), h1(z), · · · , hN (z)) is a holomorphic polynomial 
in g1(z), · · · , gpq(z), h1(z), · · · , hN (z).

Now, let L := SpanC{Dδ(F̄ (w))|w=0}δ≥1 be a vector subspace of Cn. Let {Dδj (F̄ (w))|w=0}τj=1 be a basis 
for L. Then for a small open disc Δ0 centered at 0 in C, F̄ (Δ0) ⊂ L. Indeed, for any w near 0, we have 
from the Taylor expansion that

F̄ (w) = F̄ (0) +
∑
δ≥1

Dδ(F̄ )(0)
δ! wδ =

∑
δ≥1

Dδ(F̄ )(0)
δ! wδ ∈ L.

Now, let νj (j = 1 · · · , n − τ) be a basis of the Euclidean orthogonal complement of L. Then, we have

F (z) · νj = 0, for each j = 1, · · · , n− τ. (2.7)

Consider the system consisting of (2.6) at w = 0 (with δ = δ1, · · · , δτ ) and (2.7). The coefficient matrix on 
the left hand side of the system at w = 0 with respect to F (z) is
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Dδ1(F̄ (w))|w=0
...

Dδτ (F̄ (w))|w=0
ν1
...

νn−τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and is obviously invertible. Note that the right hand side of the system of equations consisting of (2.6) at 
w = 0 (with δ = δ1, · · · , δτ ) is a holomorphic polynomial in L = (G, H). By Cramer’s rule, the fi(z) is a 
holomorphic polynomials in (g1(z), · · · , gpq(z), h1(z), · · · , hN (z)).

Step 2. Assume all of the elements g1, · · · , gpq, h1, · · · , hN are holomorphic Nash algebraic functions. 
Recall that a function H is called a holomorphic Nash algebraic function over V ⊂ C

κ if H is holomorphic 
over V and there is a non-zero holomorphic polynomial P (η, X) in (η, X) such that P (η, H(η)) ≡ 0 for 
η ∈ V . By Step 1, we can write

fi(z) = f̂i(g1(z), · · · , gpq(z), h1(z), · · · , hN (z)), 1 ≤ i ≤ n,

where f̂j(·) is a holomorphic polynomial. Then fi(z) is a holomorphic Nash algebraic function. We consider 
the following equation

exp(
n∑

i=1
fi(z)f̄i(w)) = KJ(G(z), H(z), G(w), H(w)), (2.8)

which is equivalent to (2.3). By Lemma 2.2 in [6], one can get that F = (f1, · · · , fn) is a constant map. 
Then Theorem 1.1 is proved.

Step 3. Suppose there exist some elements in (g1, · · · , gpq, h1, · · · , hN ), which are not Nash algebraic 
functions. Let R be the field of rational functions in z over D. Consider the field extension

F = R(g1, · · · , gpq, h1, · · · , hN ),

namely, the smallest subfield of the field of rational functions over D containing Nash algebraic functions 
and g1, · · · , gpq, h1, · · · , hN . In the following, we will write L = (G, H) = (g1, · · · , gpq+N ) for simplication, 
and let G = {g1(z), · · · , gl(z)} be the maximal algebraic independent subset in F, thus the transcendence 
degree of F/R(G) is 0. Therefore, there exists a small connected open subset U with 0 ∈ U such that for 
each j with gj /∈ G, we have a holomorphic Nash algebraic function ĝj(z, X1, · · · , Xl) in the neighborhood 
Û of {(z, g1(z), · · · , gl(z))|z ∈ U} in C × C

l such that gj(z) = ĝj(z, g1(z), · · · , gl(z)) for any z ∈ U .
It is easy to check that for fixed w = 0, ∂ log KJ (G(z),H(z),G(w),H(w))

∂w is a rational function in 
(g1, · · · , gpq+N ). In the first step, we have obtained that for each 1 ≤ i ≤ n, fi(z) is a polynomial in 
(g1, · · · , gpq+N ). So there exists a holomorphic Nash algebraic function f̂i(z, X1, · · · , Xl) in Û such that 
fi(z) = f̂i(z, g1(z), · · · , gl(z)) for z ∈ U .

Now, we define

Ψ(z,X,w) =
n∑

i=1
f̂i(z,X)f̄i(w) − logKJ(· · · , Xγ , · · · , ĝj(z,X), · · · , ḡj(w), · · · )

and

Φk(z,X,w) = ∂

∂wk
Ψ(z,X,w)

for (z, X, w) ∈ Û × conj(U), k = 1, 2, · · · , where X = (X1, · · · , Xl).
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For any (z, X) ≈ (0, 0), w = 0, it is easy to check that Φk(z, X, 0) is a holomorphic Nash algebraic function 
in (z, X) for every k. If Φk(z, X, 0) is nonzero and depends on X for some k, then there exists a holomorphic 
polynomial Pk(z, X, t) = Adk

(z, X)tdk + · · · + A0k
(z, X) of degree dk in t, with A0k

(z, X) 	≡ 0 such that 
Pk(z, X, Φk(z, X, 0)) ≡ 0. Since Ψ(z, g1(z), · · · , gl(z), w) ≡ 0 for z ∈ U , thus Φk(z, g1(z), · · · , gl(z), 0) ≡ 0. 
It follows that Pk(z, g1(z), · · · , gl(z), Φk(z, g1(z), · · · , gl(z), 0)) = Pk(z, g1(z), · · · , gl(z), 0) = 0. Therefore, 
we obtain A0k

(z, g1(z), · · · , gl(z)) ≡ 0. This means that {g1(z), · · · , gl(z)} are algebraic dependent over R, 
which contradicts with the assumption. Therefore, ψ(z, X, w) = h(z, w) which does not depend on X by 
Taylor expansion, where h(z, w) is a Nash algebraic function in z.

Now, we have obtained the functional identity for any (z, X, w) ∈ Û × conj(U):

n∑
i=1

f̂i(z,X)f̄i(w) = logKJ(· · · , Xγ , · · · , ĝj(z,X), · · · , ḡj(w), · · · ) + h(z, w).

As in Lemma 2.3 in [6], there exists (z0, w0) ∈ U × conj(U) such that

n∑
i=1

f̂i(z0, X)f̄i(w0) 	≡ 0.

Therefore, 
∑n

i=1 f̂i(z, X)f̄i(w) is a nonconstant holomorphic Nash algebraic function in X. Now we consider 
the following equation

n∑
i=1

f̂i(z0, X)f̄i(w0) = logKJ(X, ĝl+1(z0, X), · · · , ĝpq+N (z0, X), g1(w0), · · · , gpq+N (w0)) + h(z0, w0).

Then one can get a contradiction with the similar argument in Lemma 2.2 in [6].
Combining the above three steps, we can show that F must be a constant map. The proof of Theorem 1.1

is complete.

3. Generalization

Let Ωj(j = 1, 2, · · · , m) be classic domains and the corresponding Cartan–Hartogs domain be MΩj
(μj)

with the Bergman metric ωMΩj
(μj). Indeed, we can prove the following slightly more general result by the 

same argument:

Theorem 3.1. Let D ⊂ C be a connected open subset. Suppose that F : D → C
n and L = (G1, · · · , Gm) :

D → MΩ = MΩ1 × · · · ×MΩm
are holomorphic mappings with L(0) = 0 such that

F ∗ωCn =
m∑
j=1

νjG
∗
jωMΩj

(μj) on D (3.1)

for certain positive constants ν1, · · · , νm. Then F must be a constant map. Furthermore, if all μ′
js are 

positive, then G is also a constant map.

References

[1] E. Calabi, Isometric imbedding of complex manifolds, Ann. of Math. (2) 58 (1953) 1–23.
[2] X. Cheng, A. Di Scala, Y. Yuan, Kähler submanifolds and the Umehara algebra, arXiv:1601.05907.
[3] A. Di Scala, A. Loi, Kähler maps of Hermitian symmetric spaces into complex space forms, Geom. Dedicata 125 (2007) 

103–113.

http://refhub.elsevier.com/S0022-247X(17)30294-9/bib5B435Ds1
http://refhub.elsevier.com/S0022-247X(17)30294-9/bib434459s1
http://refhub.elsevier.com/S0022-247X(17)30294-9/bib5B444C315Ds1
http://refhub.elsevier.com/S0022-247X(17)30294-9/bib5B444C315Ds1


1268 X. Cheng, Y. Niu / J. Math. Anal. Appl. 452 (2017) 1262–1268
[4] A. Di Scala, A. Loi, Kähler manifolds and their relatives, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (3) (2010) 495–501.
[5] X. Huang, Y. Yuan, Holomorphic isometry from a Kähler manifold into a product of complex projective manifolds, Geom. 

Funct. Anal. 24 (3) (2014) 854–886.
[6] X. Huang, Y. Yuan, Submanifolds of Hermitian symmetric spaces, in: Analysis and Geometry, in: Springer Proc. Math. 

Stat., vol. 127, Springer, Cham, 2015, pp. 197–206.
[7] A. Loi, M. Zedda, Balanced metrics on Cartan and Cartan–Hartogs domains, Math. Z. 270 (3–4) (2012) 1077–1087.
[8] Z. Tu, L. Wang, Rigidity of proper holomorphic mappings between equidimensional Hua domains, Math. Ann. 363 (1–2) 

(2015) 1–34.
[9] M. Umehara, Kähler submanifolds of complex space forms, Tokyo J. Math. 10 (1) (1987) 203–214.

[10] W. Yin, The Bergman kernels on Cartan–Hartogs domains, Chin. Sci. Bull. 44 (21) (1999) 1947–1951.
[11] Y. Yuan, Private communication.
[12] Y. Yuan, Local holomorphic isometries, old and new results, preprint.

http://refhub.elsevier.com/S0022-247X(17)30294-9/bib5B444C325Ds1
http://refhub.elsevier.com/S0022-247X(17)30294-9/bib5B4859315Ds1
http://refhub.elsevier.com/S0022-247X(17)30294-9/bib5B4859315Ds1
http://refhub.elsevier.com/S0022-247X(17)30294-9/bib5B4859325Ds1
http://refhub.elsevier.com/S0022-247X(17)30294-9/bib5B4859325Ds1
http://refhub.elsevier.com/S0022-247X(17)30294-9/bib5B4C5A5Ds1
http://refhub.elsevier.com/S0022-247X(17)30294-9/bib5B54575Ds1
http://refhub.elsevier.com/S0022-247X(17)30294-9/bib5B54575Ds1
http://refhub.elsevier.com/S0022-247X(17)30294-9/bib5B555Ds1
http://refhub.elsevier.com/S0022-247X(17)30294-9/bib5B595Ds1

	Submanifolds of Cartan-Hartogs domains and complex Euclidean spaces
	1 Introduction
	2 Proof of Theorem 1.1
	3 Generalization
	References


