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In this work we extend the concept of an invariant measure for a multivalued 
semigroup and, when it has a global attractor, we give different, but equivalent, 
definitions for such a measure. As a consequence we can apply the Birkhoff Ergodic 
Theorem to conclude that time averages converge almost everywhere to the spatial 
average.
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1. Introduction

There have been various attempt to define invariant measures for multivalued applications. The most 
precocious introduced by Vershik in [35], followed by a definition from Aubin, Frankowska and Lasota in [8]
and, because of the increasing attention paid to multivalued dynamical systems during the 80’s and 90’s, 
some other definitions have been proposed, as we can see in [31] and [3–6]. In [5] and [32], authors prove 
the equivalence, under appropriated conditions, of the main definitions in the discrete dynamical system 
context, with some applications to ordinary differential equations in [3–6].

The study of invariant measures for well posed partial differential equations is done in Wang, Luck-
aszewicz, Robinson and Real, and Checkroun’s works, respectively in [38], [29,30] and [17] for autonomous 
dissipative problems. Invariant measures for non-autonomous well posed problems have been studied by 
Luckaszewicz and Robinson in [28].

We can define an invariant measure for a semigroup {S(t)}t∈R+ on a complete metric space X, as a Borel 
probability measure μ satisfying

μ(A) = μ(S(t)−1(A)) ∀ t ≥ 0 and for any Borel subset A ⊂ X.
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Equivalently we can say that μ is invariant for S(·) if
∫
X

ϕ(x)μ(dx) =
∫
X

ϕ(S(t)x)μ(dx)

for any t ≥ 0 and ϕ continuous and bounded on X, [17,28].
In [30] and [28] the authors define a family of Borel probability measures {μt} as invariant for a non-

autonomous system {U(t, τ)}t≥τ if

μt(B) = μτ

(
U(t, τ)−1(B)

)
= (U(t, τ)∗(ντ )) (B), t ≥ τ (in [30]),

or equivalently,∫
A(t)

ϕ(x)μt(dx) =
∫

A(τ)

ϕ(U(t, τ)x)μτ (dx) for each t ≥ τ and each ϕ ∈ C(X), (in [28]).

For multivalued infinite dimensional dynamical systems, the main references related with invariant mea-
sures are connected to Navier–Stokes problems and the concept of statistic solutions, introduced by Foias 
in [20], following Hopf and Prodi previous ideas respectively found in [23] and [33]. Later Vishik and Fursikov 
introduced in [37] a new concept of statistical solutions, defined on a trajectory space determined by an 
evolution problem. More recently, Foias, Rosa and Temam, focusing on Navier–Stokes problems, improved 
this concept, defining a measure on a trajectory space, the Vishik–Fursikov measure, whose projection on the 
phase space at each time t generates a projected statistic solution, called Vishik–Fursikov statistic solution, 
which recover the former concept proposed by Prodi and Foias (see [22] and references therein). The par-
ticular case when the Vishik–Fursikov statistic solutions are stationary coincides, as we are going to prove, 
with an invariant measure for the evolution system associated with the above mentioned trajectory space. 
It is worth to mention the works [12,14] and [13] where we can find the first ideas of an abstract theory 
on statistic solutions for more general evolution problems. The equivalence between invariant measures and 
statistic solutions are pointed in [16] and [25] for a well posed version of the Navier Stokes problem.

In this work, we extend to multivalued evolution problems the main definitions of invariant measures 
and, under suitable conditions, we prove the equivalence of such definitions. As a relevant consequence, we 
can apply the Birkhoff Ergodic Theorem to multivalued dissipative evolution problems in order to conclude 
the convergence of time averages almost everywhere with respect to an invariant measure.

2. Basic definitions, notations and terminologies

For a nonempty metric space X, we use the notations B(X) and P(X) to indicate the Borel σ-algebra on 
X and the set of Borel probability measures on X respectively. P(X) is embedded with the weak topology, 
the coarsest which makes continuous the function μ �→

∫
X
f(x)μ(dx) for each f ∈ C(X, R). The convergence 

of a sequence {μn} in P(X) is given by

μn → μ ⇔
∫
X

f(x)μn(dx) →
∫
X

f(x)μ(dx)

for each f ∈ C(X, R). Since X is a compact metric space, P(X) is a compact metrizable space. On P(X)
we consider the Hutchinson metric given by

d(μ1, μ2) = sup

⎧⎨
⎩
∫

f(x)μ1(dx) −
∫

f(x)μ2(dx)

⎫⎬
⎭ , (2.1)
X X
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where the sup is taken over all real-valued functions f with Lipschitz constant less than or equal to 1. It is 
well known that this metric agrees with the weak topology on P(X) (Proposition 1, [1]).

Given a probability measure μ ∈ P(X), we denote by |μ| the support of μ, that means, |μ| ⊂ X is a 
closed subset satisfying

(1) μ(|μ|C) = 0;
(2) if G ⊂ X is open and G ∩ |μ| 
= ∅, then μ(G ∩ |μ|) > 0.

Remark 2.1. Some authors define support as |μ| = (∪{V ; V is open and μ(V ) = 0})C . Since we are suppos-
ing that X is a metric space, then a probability measure μ on X is tight (Theorem 12.5, [2]) and so, in this 
case, both definitions coincide and μ has a unique well defined support (see Theorem 12.14 and its proof 
in [2]).

In this work, we are going to use the same notation μ to indicate the Lebesgue extension of a Borel measure μ. 
As the Lebesgue completion Σμ(X) of B(X) contains all subsets of any Borel null set, we assume that μ is 
complete. For an introduction to Lebesgue extensions of measures, see [10], Section 1.5.

Let X1 and X2 be nonempty metric spaces and F a set-valued map from X1 to X2 which we identify with 
its graph, the relation F = Graph(F ) ⊂ X1 ×X2. We say that F is a closed relation (or a closed set-valued 
map) if F ⊂ X1×X2 is closed. Analogously we say that F is a measurable relation (or a measurable set-valued 
map) if F ⊂ X1 ×X2 is measurable. Given x ∈ X1, F (x) = {y ∈ X2; (x, y) ∈ F}, for A ⊂ X1 the image of 
A is the set F (A) =

⋃
{F (x); x ∈ A}, and Dom(F ) = {x ∈ X1; F (x) 
= ∅}. The inverse image of B ⊂ X2 is 

given by F−1(B) = {x ∈ X1; F (x) ∩B 
= ∅}. We say that F is closed-valued (compact-valued, convex-valued,
or bounded-valued) if F (x) is closed (respectively compact, convex, or bounded) for each x ∈ X1.

Remark 2.2. Observe that in [7] authors call F measurable if the inverse image of each open set is measurable. 
Our definition of a measurable relation agrees with [1] instead, as it is done in [32]. Some authors define 
measurability of a multivalued map asking the inverse image of each closed set to be a Borel set. This is 
the case for example in [5]. Nevertheless, in the framework we adopt through this text (we are considering 
complete σ-finite measures on complete separable metric spaces) all those concepts are equivalents, see a 
Remark on p. 307 and Theorem 8.1.4 in [7]. See also Lemma 6.4.2 (i), [11].

A set-valued map F ⊂ X1 ×X2 is called upper semicontinuous at x ∈ Dom(F ) if for any neighborhood 
U of F (x) there exists η > 0 such that for any x′ satisfying d(x, x′) ≤ η, F (x′) ⊂ U . F is called upper 
semicontinuous if it is upper semicontinuous at any x ∈ Dom(F ). Observe that if F is upper semicontinuous 
with closed domain and closed values, then F is closed. The inverse is true if X2 is compact. We refer the 
reader to [7] for elementary facts about set-valued maps.

2.1. Invariant measures for closed relations

Let F ⊂ X × X be a closed relation on X. If F (x) is a single valued set for each x ∈ X, then F is 
a function and in this case we use the notation f rather than F . We say that μ ∈ P(X) is an invariant 
probability measure for a function f : X → X if

μ(A) = μ(f−1(A)), for each Borel subset A of X. (2.2)
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It is common to use the notation f∗(μ) to indicate the measure defined by the right side in the above 
equality, that means, f∗(μ)(A) = μ(f−1(A)), for A ∈ B(X), which is usually referred as push-forward of μ. 
The notation f∗ stands for the application

μ �→ f∗(μ) from X to P(X). (2.3)

When F is set-valued, the application A �→ μ(F−1(A)) does not define a measure and the concept of an 
invariant measure has to be reformulated. There are several ways to do that, and below we present some 
equivalent different definitions of an invariant measure for a closed relation F which agree, in the present 
framework, with the classic definition for single valued maps.

We suppose in this section that X is a compact, complete separable metric space.1

Definition 2.1. ([5,8,32]) We say that μ ∈ P(X) is an invariant measure for a closed relation F if

μ(A) ≤ μ(F−1(A)), for each Borel subset A of X. (2.4)

Remark 2.3. Recall that F is a closed, and so, a Borel measurable subset of X × X, but we do not have 
necessarily that F−1(A) ∈ B(X) for each Borel subset A of X. However, given A ∈ B(X), F ∩ X × A ∈
B(X × X), and then, from Theorem 6.7.3, [11], π1(F ∩ X × A) = F−1(A) is a Souslin (or analytic) set, 
and so, measurable. It is worth to note that in [5] and the subsequent work [6] this definition is slightly 
different, namely: μ(A) ≤ μ(F−1(A)), for each closed subset A of X. This is probably to avoid the use of 
the Lebesgue extension of μ, since according to the approach given by the author, the inverse images of 
closed sets are measurable, as we recall above.

If F = f is a function then (2.4) agrees with (2.2) since

μ(A) ≤ μ(f−1(A)) and μ(AC) ≤ μ(f−1(AC)) = μ((f−1(A))C) ⇒ μ(A) = μ(f−1(A)).

Definition 2.2. ([6]) We say that μ is invariant for a closed relation F on X if
∫
X

ϕ(x)μ(dx) ≤
∫
X

ϕ(F (x))μ(dx) and each ϕ ∈ Cb(X), (2.5)

where, given a subset D ⊂ X, ϕ(D) = sup{ϕ(x), x ∈ D} and Cb(X) stands for the set of bounded continuous 
real-valued functions defined on X.

It follows from Theorem 13.46 and Theorem 15.1 in [2] that μ = f∗(μ) for a measurable function f :
X → X if and only if

∫
X

ϕ(x)μ(dx) =
∫
X

ϕ(x)f∗(μ)(dx) =
∫
X

ϕ(f(x))μ(dx), for ϕ ∈ Cb(X).

Therefore, if F = f is a single valued map, Definition 2.2 agrees with the classical concept as well once the 
inequality in (2.5) is true for both, ϕ and −ϕ ∈ Cb(X).

Definition 2.3. ([3,5,31]) For a closed relation F on X, we say that μ is invariant for F if there exists a 
Markov kernel k : X → P(X) that means, a map k associating each point x ∈ X with a probability 

1 Therefore X is a Polish and a Souslin space as well. See Definition 6.1.10 and Definition 6.6.1, [11].
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measure kx on X, in such way that x �→ kx(A) is a measurable real function for each A ∈ B(X), satisfying 
additionally

|kx| ⊂ F (x) for all x ∈ |μ| and μ = k∗(μ), (2.6)

where

k∗(μ)(A) =
∫
X

kx(A)μ(dx) for each A Borel subset of X. (2.7)

This definition also agrees with the usual concept of invariant measure since, if F = f is a function, the 
only Markov kernel k satisfying (2.6) is such that x �→ δf(x), where δf(x) is the Dirac measure concentrated 
at f(x), for any x ∈ |μ|. Therefore, in this case, k∗ as defined in (2.7) coincides with f∗ as defined in (2.3). 
In fact, for A ∈ B(X),

k∗(μ)(A) =
∫
X

δf(x)(A)μ(dx) =
∫

f−1(A)

μ(dx) = μ(f−1(A)) = f∗(μ)(A).

Definition 2.4. ([32,36]) For a closed relation F ⊂ X ×X, we can say that μ is an invariant measure if there 
exists μ12 ∈ P(X ×X) such that

|μ12| ⊂ F and π1∗(μ12) = μ = π2∗(μ12).

If F = f is a function and graphf : X → X×X is given by x �→ (x, f(x)) then consider μ12 = graphf ∗(μ), 
which is the only possible measure on X ×X supported by {(x, f(x)); x ∈ X} such that π1∗(μ12) = μ. In 
this case one can easily prove that μ = π2∗(μ12) if and only if μ satisfies (2.2).

Now we consider the set XZ of bi-infinite sequences ξ = (ξi)i∈Z in X, endowed with the product topology, 
which is compact since X is assumed compact. In XZ we define

d(ξ, η) = sup{min(d(ξi, ηi), 1/|i|); i ∈ Z},

where min(d, 1/0) = d by convention. It can be proved that d(·, ·) is a metric in XZ yielding the product 
topology and, for ε > 0,

d(ξ, η) ≤ ε ⇔ d(ξi, ηi) ≤ ε for all i such that |i| ≤ 1/ε.

In particular, the projection π0 : XZ → X is Lipschitz with constant equal 1.
Let s : XZ → XZ be the shift homeomorphism defined by

(s(ξ))i = ξi+1, i ∈ Z.

We denote by XF the sample path space for F , that means, XF = {ξ ∈ XZ; ξi+1 ∈ F (ξ), i ∈ Z} and use 
the same notation s for the shift homeomorphism restricted to XF .

Definition 2.5. ([5,32]) We call μ ∈ P(X) an invariant measure for F if there exists ν ∈ P(XZ) such that

|ν| ⊂ XF , s∗(ν) = ν, and π0∗(ν) = μ,

where π0(ξ) = ξ0 for ξ ∈ XZ.
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If F = f is a bijection on X, π0 : Xf → X induces an invertible conjugacy of s and f , that means, 
f ◦ π0 = π0 ◦ s, and then a measure ν is invariant for s if and only if the push-forward π0∗(ν) is invariant 
for f .

Remark 2.4. If ν ∈ P(XZ) is invariant for s, then πk∗(ν) = π0∗(ν) for all k ∈ Z.

For a closed relation F on a compact space X all those definitions are in fact equivalent, which is proved 
in [6] and [31]. Our first purpose in this work is to consider analogous definitions of invariant measures for 
multivalued semigroups on compact spaces and to guarantee that, under some additional conditions, they 
are still equivalent in that context.

3. Invariant measures for multivalued semigroups

Recall that an invariant measure for a semigroup {S(t)}t∈R+ on a complete metric space X is a measure 
μ ∈ P(X) satisfying

μ(A) = μ(S(t)−1(A)) ∀ t ≥ 0 and for any A ∈ B(X).

Equivalently, we can say that μ ∈ P(X) is invariant for S(·) if
∫
X

ϕ(x)μ(dx) =
∫
X

ϕ(S(t)x)μ(dx)

for each t ≥ 0 and ϕ ∈ Cb(X), [17,28]. In what follows we present some different (but equivalent) ways 
to define an invariant measure for a multivalued system which agree with the above definition for the 
single-valued case.

Let us firstly suppose that X is a complete separable metric space. We are going to consider a multivalued 
semigroup {V (t)}t∈R+ on X, that means, a family of set-valued operators V (t) : X → P(X) such that for 
each t ≥ 0 and E ⊂ X

(1) V (0) = Id;
(2) V (t1 + t2)E ⊂ V (t1)V (t2)E for t1, t2 ∈ R

+.

Because we want to consider curves linking points on the images of V (·), we consider in this text multi-
valued semigroups which are generated by semiflows, as we describe below.

Definition 3.1. A generalized semiflow G on X is a family of maps ϕ : [0, +∞) → X satisfying

(H1) For each z ∈ X there exists at least one ϕ ∈ G with ϕ(0) = z;
(H2) If ϕ ∈ G and τ > 0, ϕτ ∈ G, where ϕτ (·) := ϕ(· + τ);
(H3) If ϕ, ψ ∈ G and ψ(0) = ϕ(t) for some t > 0, then the map θ given by

θ(τ) =
{

ϕ(τ) for τ ∈ [0, t],
ψ(τ − t) for τ ∈ (t,+∞)

belongs to G;
(H4) If {ϕn}n∈N ⊂ G and ϕn(0) → z, there exists ϕ ∈ G and a subsequence {ϕnj

} ⊂ {ϕn} such that 
ϕ(0) = z and ϕnj

(t) → ϕ(t) for each t ≥ 0.
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Definition 3.2. A multivalued semigroup determined by G is a family of set-valued operators {V (t)}t∈R+ on 
X given by

V (t)E := {ϕ(t);ϕ ∈ G, ϕ(0) ∈ E}

for E ⊂ X. V (t)x = V (t){x}, for x ∈ X.

When considering multivalued semigroups determined by a generalized semiflow, thanks to (H3) we have 
the equality

V (t1 + t2)E = V (t1)V (t2)E, for t1, t2 ∈ R
+ and E ⊂ X,

instead of having just an inclusion. Furthermore, we also get from (H4) that each V (t) is compact-valued, 
closed and upper semicontinuous, [15].

Therefore, since each V (t) is a closed subset of X ×X, we can define the following.

Definition 3.3. We say that μ ∈ P(X) is an invariant measure for a multivalued semigroup {V (t)}t∈R+ on 
X if

μ(A) ≤ μ(V (t)−1(A)) for each t ∈ [0,∞)

and each A ∈ B(X).

We suppose in addition that the semigroup {V (t)}t∈R+ possesses a global attractor A, a compact set 
which is the minimal closed subset of X that attracts all bounded subsets of X in the following sense, for 
any bounded subset B ⊂ X, and ε > 0, there exists T > 0 such that t > T implies V (t)B ⊂ Oε(A), where 
Oε(A) is the ε neighborhood of A. Under our hypotheses A is invariant, that means, V (t)A = A for any 
t ≥ 0, (in fact, the maximal compact invariant subset of X). We observe that the invariance of the attractor 
A is guaranteed in this case by Hypotheses (H3) and (H4), see [15] and [34] for detailed studies on attractors 
for multivalued semigroups determined by generalized semiflows.

We emphasize that, as it occurs with semigroups, if there exists an invariant measure μ for {V (t)}t∈R+ , 
|μ| ⊂ A. The proof follows the ideas in [17], Lemma 4.7 (on the single-valued case) and, in order to adapt 
it for a multivalued context, we appeal to arguments used in the proof of Poincare’s Recurrence Theorem 
for set-valued dynamical systems, [8], Theorem 2.2.

Proposition 3.1. Let X be a complete metric space and {V (t)}t∈R+ a multivalued semigroup on X determined 
by a generalized semiflow G which has a global attractor A. If μ is an invariant measure for {V (t)}t∈R+ , 
then its support |μ| is contained in A.

Proof. Let δ > 0 and Aδ := {y ∈ X; dist(y, A) < δ}. We claim that μ(Aδ) = 1 for any δ > 0. In fact, for 
R > 0, x ∈ X and A = BR(x) ∩ AC

δ , we consider the sets

AN = ∪n≥NV (1)−n(A) and A∞ = ∩N≥0AN .

We clearly have that:

(1) A ⊂ A0;
(2) AN ⊂ AN−1 for N ∈ N and, in particular, each AN ⊂ A0 for N ∈ N;
(3) AN = V (1)−NA0.
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Since μ is invariant for V (·),

μ(A0) ≤ μ(V (1)−N (A0)) = μ(AN ) ≤ μ(A0).

Therefore

μ(A∞) = μ(A0).

Thus we have

μ(A ∩A∞) = μ(A ∩A0) = μ(A).

However, as A attracts bounded sets, there exists T > 0 such that V (t)A ⊂ Aδ for t ≥ T , and so we can 
conclude that V (1)N (A) = V (N)A ⊂ Aδ if N > T , then A ∩ AN = ∅ if N > T . Therefore μ(A) = 0. As R
was arbitrarily chosen, μ(AC

δ ) = 0. The result follows observing that A = ∩δ>0Aδ. �
The above theorem and the invariance of the attractor enable us to limit our study to a compact space, 

considering the multivalued semigroup V (·) restricted to the attractor A. Therefore, from now on, we are 
going to suppose X a compact, complete and separable metric space.

Below we give some different definitions for an invariant measure for a multivalued semigroup and then 
we prove that, under appropriate hypotheses, they are all equivalent.

Definition 3.4. We can say that μ ∈ P(X) is invariant for V (·) if
∫
X

ϕ(x)μ(dx) ≥
∫
X

ϕ(V (t)x)μ(dx) for each t ≥ 0 and each ϕ ∈ Cb(X),

where, given a subset D ⊂ X, ϕ(D) = sup{ϕ(x), x ∈ D}.2

Definition 3.5. Suppose that there exists μ ∈ P(X) and a family of Markov kernels {kt}t∈R+ , kt : X → P(X), 
such that

for all t ≥ 0 |ktx| ⊂ V (t)(x) for all x ∈ |μ| and μ = kt∗(μ).

Then we call μ invariant for V (·).

Definition 3.6. A measure μ can also be called invariant for V (·) if there exists a family of measures 
{μt

12}t∈R+ ⊂ P(X ×X) such that

for each t ≥ 0, |μt
12| ⊂ V (t) ⊂ X ×X and π1∗(μt

12) = μ = π2∗(μt
12).

Finally, we can define an invariant measure for V (·) as a projection of a measure defined on the space 
of complete trajectories of {V (t)}t∈R+ . For this purpose we are going to suppose that G is a continuous 
generalized semiflow, that means, each ϕ ∈ G is a continuous function from [0, +∞) to X.

A function ξ : R → X is said to be a complete trajectory of {V (t)}t∈R+ if ξ(t + s) ∈ V (t)ξ(s) for each 
t ≥ 0 and s ∈ R. Let K be the set of all complete trajectories of V (·) on X, which is nonempty, since we are 
supposing the existence of a global attractor A for V (·), and it is known that, given any point x ∈ A, there 

2 As V (t) is measurable and ϕ is continuous, ϕ is measurable, see [6], Notation 6.1.
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is a complete trajectory ξ of V (·) such that ξ(0) = x and ξ(t) ∈ A for any t ∈ R. In fact, A is precisely 
the union of all bounded complete trajectory of V (·), see [34]. As we are considering {V (t)}t∈R to be a 
multivalued semigroup determined by a continuous generalized semiflow, then K ⊂ Cloc(R, X), the set of 
continuous bounded maps from R to X with the topology of uniform convergence on compacts. It follows 
from Theorem 2.3, [9], that K is a compact subset of Cloc(R, X).

Definition 3.7. We define in K the translation group {T (τ)}τ∈R, given by

T (τ)ξ = ξτ , ξτ (·) = ξ(· + τ), τ ∈ R.

Definition 3.8. Suppose that there exists a measure ν ∈ P(Cloc), where Cloc stands for Cloc(R, X), such that 
|ν| ⊂ K, ν is an invariant measure for the translation group {T (τ)}τ∈R, and π0∗(ν) = μ. That means, for 
any τ ∈ R,

ν = T (τ)∗(ν)

and, for any A ∈ B(X),

μ(A) = ν({ξ ∈ K; ξ(0) ∈ A}).

Then we say that μ is invariant for {V (t)}t∈R+ .

Remark 3.1. A measure ν defined on a curve space and carried by the space K of complete trajectories of a 
flow is a special case of the trajectory statistical solutions defined in [12], which derive from the (space-time) 
Vishik–Fursikov measures that appear on Navier–Stokes problems [22]. In the particular situation when ν is 
invariant under the translation semigroup, (as in the above definition), ν is called an invariant (space-time) 
Vishik–Fursikov measure. It is known that each Vishik–Fursikov measure can be projected to a family of 
statistical solutions on the phase space X and, in this case, the statistical solution is named Vishik–Fursikov 
statistical solution, and a Vishik–Fursikov statistical solution which does not vary with the time is called a 
stationary Vishik–Fursikov statistical solution, a particular case of stationary statistical solutions. We are 
proving here that an invariant measure on the trajectory space K (an “invariant trajectory measure”) can 
be projected to an invariant measure for the flow on the phase space X (a “stationary statistical solution”) 
and, reciprocally, an invariant measure on the space phase X can be lifted to an invariant measure on the 
trajectory space K. However, we are doing that under topological conditions on X and K that are stronger 
of those asked on related spaces in [12]. We refer the reader to [22], Remarks 4, 5 and 6, where it can be 
also found the most relevant related references for the different notions of statistical solutions mentioned 
above. See also [14] for further references and an abstract approach for trajectory statistical solutions and 
statistical solutions.

3.1. On the equivalence of the above definitions

Theorem 3.1. Let X be a compact, complete and separable metric space, and {V (t)}t∈R a multivalued semi-
group on X determined by a continuous generalized semiflow for which the set K of all bounded complete 
trajectories is nonempty.3 Then Definitions 3.3, 3.4, 3.5, 3.6 and 3.8 are all equivalents.

Proof. Definition 3.3 ⇒ Definition 3.6: It follows exactly as the same proof of (1) ⇒ (3) in Theorem 3.1, 
[32].

3 Here instead of supposing the existence of a global attractor we assume that X is compact and K is a nonempty set.
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Definition 3.6 ⇒ Definition 3.5: Once X is a complete metric separable space, both X and X ×X are 
Souslin spaces, (see Definition 6.6.1, p. 19, [11]). Then, for each t ≥ 0, it follows from Proposition 10.4.12, 
p. 363, [11], that there exists a Markov kernel k̃t : X → P(X ×X) such that,

(1) |k̃tx| ⊂ {x} ×X;
(2) for each B ∈ B(X ×X) and each E ∈ B(X),

μt
12(B ∩ π−1

1 (E)) =
∫
E

k̃tx(B)(π1∗μ
t
12)(dx).

Observe that, from Corollary 6.6.7, p. 22, [11] every Borel subset of a Souslin space is a Souslin space. 
Therefore, the class of Souslin sets contains the class of Borel sets, and thus the application x �→ k̃tx(B) is 
Borel measurable for each B ∈ B(X). For the notion of class of sets see [10], Definition 1.2.1, p. 3.

We are going to prove that there exists a subset A ∈ B(X), such that π1∗μ
t
12(AC) = 0, and |k̃tx| ⊂

{x} ×V (t)x for each x ∈ A. In fact, otherwise, there should exist A1 ∈ B(X) with π1∗μ
t
12(A1) > 0, and such 

that for x ∈ A1, k̃tx(({x} ×V (t)x)C) = k̃tx(X×(V (t)x)C∪X\{x} ×V (t)x) = k̃tx({x} ×(V (t)x)C) > 0. (See [2], 
p. 441 and use the fact that (V (t)x)C is open.) From item(1) above, k̃tx({x} × (V (t)x)C) = k̃tx(V (t)C) and 
so,

μt
12(V (t)C) = μt

12(V (t)C ∩ π−1
1 (X)) =

∫
X
k̃tx(V (t)C)(π1∗μ

t
12)(dx)

≥
∫
A1

k̃tx(V (t)C)(π1∗μ
t
12)(dx) > 0,

which is a contradiction. Now we define ktx ∈ P(X), for x ∈ A, as ktx(E) = π2∗k̃
t
x(E) = k̃tx(X × E) for 

E ∈ B(X). For x ∈ AC , we define ktx as follows. Let f : X → X be a measurable selection of V (t) (for a 
fixed t). The existence of such f is assured by, for example, Lemma 1.1, p. 1204, [32]. Then for x ∈ AC we 
define ktx = δf(x). Therefore |ktx| ⊂ V (t)x for each x ∈ X, and

μ(E) = π2∗μ
t
12(E) = μt

12(X × E) =
∫
X

k̃tx(X × E)(π1∗μ
t
12)(dx) =

∫
X

ktx(E)μ(dx).

We observe that the definition of ktx for x ∈ AC does not have any effect on the above integral, since 
π1∗μ

t
12(AC) = 0.

Definition 3.5 ⇒ Definition 3.4: (see [6], Proposition 6.1) It follows from Proposition 2.1, p. 442, [6], that

∫
X

ϕ(x)μ(dx) =
∫
X

⎛
⎝∫

X

ϕ(w)ktx(dw)

⎞
⎠μ(dx)

for any bounded and continuous function ϕ : X → R. Since |ktx| ⊂ V (t)x for each t ≥ 0 and x ∈ X, we have 
that

∫
X

(∫
X
ϕ(w)ktx(dw)

)
μ(dx) =

∫
X

(∫
V (t)(x) ϕ(w)ktx(dw)

)
μ(dx) ≤

∫
X

(∫
V (t)(x) ϕ(V (t)x)ktx(dw)

)
μ(dx) =

∫
X
ϕ(V (t)x)ktx(V (t)(x))μ(dx) =

∫
ϕ(V (t)x)μ(dx).
X
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Definition 3.4 ⇒ Definition 3.3: From Lemma 6.1, [6], it follows that the inequality in Definition (3.4)
remains true for ϕ = 1A for any Borel subset A ⊂ X, then

μ(A) =
∫
X

1A(x)μ(dx) ≤
∫
X

1A(V (t)x)μ(dx) =
∫

V (t)−1A

μ(dx) = μ(V (t)−1A).

Definition 3.3 ⇔ Definition 3.8
Firstly let us observe that, according with Theorem 3.2, [32], Definition 3.3 is equivalent to the existence, 

for each t ≥ 0, of a measure νt in XZ whose support is included inside XV (t), the set of bi-infinite sequences 
ω = (ωi)i∈Z satisfying ωi+1 ∈ V (t)ωi, for i ∈ Z, and such that νt = s∗νt and μ = π0∗νt.4 The equivalence 
follows from Theorem 2.5, [19].5 �

Besides, it is worth to mention that in the proof of Theorem 2.5 in [19] it is assumed that K[0,T ] :=
{ξ|[0,T ]; ξ ∈ K} is compact on uniform topology for each T > 0, which we are not supposing in this text. 
Nevertheless, this assumption is used only to conclude that the map

KT : V (t) → P(K[0,T ])
(x0, xt) �→ {ξ[0,T ]; ξ ∈ K and ξ(0) = x0, ξ(t) = xt}

is measurable, which can be concluded just observing that KT is closed. The measurability follows from 
Lemma 6.4.2 (i), [11] and Theorem 8.1.4, [7].

The existence of at least one invariant measure for {V (t)}t∈R+ is assured by the following.

Theorem 3.2. Let IV be the set of all Borel probability measures μ ∈ P(X) which are invariant for 
{V (t)}t∈R+ . Then IV is a nonempty, compact and convex set.

This result follows from Theorem 2.5 in [19]. See also Theorem 3.2, [32].

4. On the convergence of the time averages

The first important consequence of the above equivalences is the viability of applying the Birkhoff Ergodic 
Theorem to multivalued dissipative evolution problems to conclude the convergence of time averages almost 
everywhere with respect to an invariant measure.

Theorem 4.1. Let X be a complete separable metric space and {V (t)}t∈R+ a multivalued semigroup deter-
mined by a continuous generalized semiflow G on X which possesses a global attractor A, and let μ be an 
invariant measure for {V (t)}t∈R+ . Let ϕ ∈ L1(X, μ). For μ-almost every u0 ∈ X, there exists at least one 
ξ ∈ G satisfying ξ(0) = u0 such that the limit

lim
τ→∞

1
τ

τ∫
0

ϕ(ξ(t))dt (4.1)

exists.

4 Here s stands for the shift homeomorphism restricted to XV (t).
5 We observe that the concatenation of solutions (property H2 in Definition 3.1) is an essential tool in the proof of Theorem 2.5 

in [19], despite not being explicitly requested there.
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Proof. We know from Proposition 3.1 that the support |μ| of μ is inside the attractor A then, if we consider 
μ ∈ P(A) given by μ(B) = μ(B) for B ∈ B(A), clearly μ is an invariant measure for the multivalued 
semigroup {V (t)}t∈R+ restricted to the attractor A (which is invariant). Therefore, from Theorem 3.1 and 
Definition 3.8 there is a measure ν ∈ P(Cloc) whose support |ν| is inside K (which is nonempty), invariant 
for the translation semigroup {T (t)}t∈R+ and such that μ = π0∗(ν).6

Thus, from the Ergodic Birkhoff Theorem, given any ψ ∈ L1(Cloc, ν), there is a set Eψ ∈ B(Cloc), with 
ν(Eψ) = 0 such that for ξ ∈ Cloc \ Eψ, the limit

lim
τ→∞

1
τ

τ∫
0

ψ(T (t)ξ)dt

exists, (see [26], p. 10, and [18], Theorem VIII.7.5). The result follows as in the proof of Theorem 1, [22]. 
In fact, given ϕ ∈ L1(A, μ), consider ψ = ϕ ◦ π0. Thanks to Theorem 13.46, [2], ψ ∈ L1(Cloc, ν). Let 
E = A \ π0(Cloc \ Eψ). Note that π−1

0 (E) = π−1
0 (A) \ π−1

0 (π0(Cloc \ Eψ)) ⊂ Eψ and then,

μ(E) = ν(π−1
0 (E)) ≤ ν(Eψ) = 0.7

Our claim follows by observing that if u0 ∈ A \E and ξ ∈ K is such that ξ(0) = u0, then ξ ∈ Cloc \Eψ, since

1
τ

τ∫
0

ψ(T (t)ξ)dt = 1
τ

τ∫
ϕ(ξ(t))dt,

and it is enough to note that μ(E ∪ AC) = μ(E), and ϕ ∈ L1(X, μ) implies ϕ|A ∈ L1(A, μ). �
To carry on the proof of the next theorem we are going to use generalized Banach limits, as defined 

below.

Definition 4.1. Let B+ the set of bounded real-valued functions on R+ endowed with sup norm. A generalized 
Banach limit, denoted by LIMt→∞, is any linear functional on B+ such that

(1) LIMt→∞g(t) ≥ 0 for g ∈ B+ with g(s) ≥ 0 for s ∈ R
+;

(2) LIMt→∞g(t) = limt→∞ g(t) if the usual limit limt→∞ g(t) exists.

For the existence of a generalized Banach limit and its properties see [17,21,27,29].
The next theorems partially extend to the multivalued context some results proved on [17] and [29].

Theorem 4.2. Let X be a complete separable metric space and {V (t)}t∈R+ a multivalued semigroup deter-
mined by a continuous generalized semiflow G on X which possesses a global attractor A. Given a generalized 
Banach limit LIMt→∞ and ξ ∈ G, there exists a unique μ ∈ P(X), μ invariant for {V (t)}t∈R+ , such that

LIMt→∞
1
t

t∫
0

ϕ(ξ(τ))dτ =
∫
X

ϕ(x)μ(dx), for any ϕ ∈ C(X).

6 Precisely, Cloc stands here for Cloc(R, A). Note also that A = ∪t∈R{ξ(t); ξ ∈ K}, so K is in fact the same set introduced before 
Definition 3.8. In other words, it does not really matter if we define K as the set of bounded complete trajectories on X or the set 
of bounded complete trajectories on A.
7 Despite not necessarily being Borel sets, E and π−1

0 (E) are both measurable, since their complements are Souslin sets. See 
Definition 1.5.1, Theorem 1.5.6, (ii), [10]. See also Definition 6.6.1 and Theorem 6.7.3, [11].

We observe additionally that the relation μ = π0∗(ν) remains true for the Lebesgue extensions of μ and ν. This is a simple 
consequence of Corollary 1.5.8, [10].
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Proof. Consider the set G, endowed with the topology of uniform convergence on compacts of (0, ∞). Given 
ξ ∈ G, we can define a positive linear functional on C(G) by setting

Fξ(ϕ) = LIMt→∞
1
t

t∫
0

ϕ(T (τ)ξ)dτ, for ϕ ∈ C(G).

The set G can be regarded as a closed subset of Cloc(R+, X) (the set of continuous functions from [0, +∞)
to X endowed with the topology of uniform convergence on compacts). In fact, suppose that {ξn}n∈N ⊂ G
converges to ξ uniformly on compacts of [0, +∞). Then from Definition 3.1, (H4), we have that ξ ∈ G. From 
Theorem 11.5, [24], we know that, in this space, the uniform convergence on compacta coincides with the 
compact open topology, then there is a metric for this topology such that Cloc(R+, X) is complete. We also 
have that Cloc(R+, X) is separable, since X is supposed to be. Therefore, G is a complete separable metric 
space.

Consider on G the translation semigroup {T (t)}t∈R+ which is clearly continuous in the following sense: 
T (t)ξ is continuous at any t ≥ 0 for fixed ξ ∈ G and it is continuous at any ξ ∈ G for any fixed t ∈ [0, +∞). 
The set U := π+K := {ξ|[0,∞); ξ ∈ K} is a global compact attractor for {T (·)}. Actually, let D be a bounded 
subset of G and suppose that for some ε > 0, given a sequence Tk → ∞, it is possible to find a sequence 
{ξk} ⊂ D such that T (tk)ξk /∈ Oε(U), with tk > Tk.

Now chose Tk a sequence such that t ≥ Tk implies V (t)D ⊂ Oεk(A) for some sequence εk → 0, with 
D := π0(D). Then there exists a ∈ A such that ξk(tk) → a. From Definition 3.1, (H4) and Theorem 2.2, [9]
we know that there exists ξa ∈ G, ξa(0) = a, such that ξtkk → ξa uniformly on compacts of (0, +∞). From 
Theorem 15, [34], ξa ∈ U . It remains to prove that ξtkk → ξa on compacts of [0, +∞) and, in order to do that, it 
is enough to prove that τk → 0 implies ξtkk (τk) → a. Suppose this is not true. Then there exists a subsequence 
{ξtkn

kn
} ⊂ {ξtkk } such that d(ξtkn

kn
(τkn

), a) ≥ ε0 for some ε0 > 0. We can also suppose that d(ξtkn

kn
(0), a) < ε0

therefore, for each n ∈ N, there exists skn
∈ [0, τkn

] such that d(ξtkn

kn
(skn

), a) = ε0. From the compactness 
of A and the choice of {tk} we know that there is some a1 ∈ A such that ξtkn

kn
(skn

) = ξkn
(tkn

+ skn
) → a1

with d(a1, a) = ε0. Thus there exists ξa1 , with ξa1(0) = a1 such that ξtkn

kn
(skn

+ t) → ξa1(t) for t > 0. Since 

ξ
tkn

kn
(skn

+ t) → ξa(t) for t > 0 we have that ξa(t) = ξa1(t) for t > 0 and then, letting t → 0 we conclude 
that a = a1, which is a contradiction (see the proof of Theorem 2.3, [9]).

Then we can conclude that U is a global compact attractor for {T (·)}.
We can apply Theorem 2.1, [17], to guarantee that there exists ν̄ ∈ P(G), whose support |ν̄| is such that 

|ν̄| ⊂ U , ν̄ is invariant for {T (·)} and satisfies

Fξ(ϕ̄) =
∫
G

ϕ̄(ξ)ν̄(dξ), for any ϕ̄ ∈ C(G).

Define ν ∈ P(K) by ν = π+∗(ν̄). Then ν is invariant for T (t), t ∈ R and, from Theorem 3.1
(Definition 3.3 ⇔ Definition 3.8), it follows that μ = π0∗(ν) is an invariant measure for {V (t)}t∈R+ . To end 
the proof it is enough to note that, given ϕ ∈ C(X), if we define ϕ̄(ξ) = ϕ(π0(ξ)), then ϕ̄ ∈ C(G) and

LIMt→∞
1
t

t∫
0

ϕ(ξ(τ))dτ = LIMt→∞
1
t

t∫
0

ϕ̄(T (τ)ξ)dτ =
∫
G

ϕ̄(ξ)ν̄(dξ) =
∫
X

ϕ(x)μ(dx).

Uniqueness follows from Theorem 15.1, [2]. �
Now it is natural to ask if it is possible to obtain an invariant measure for {V (t)}t∈R+ from a given initial 

measure. The next theorem gives a positive answer for this question.
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Theorem 4.3. Let X be a complete separable metric space and {V (t)}t∈R+ a multivalued semigroup deter-
mined by a continuous generalized semiflow G on X which possesses a global attractor A. Given a generalized 
Banach limit LIMt→∞ and μ0 ∈ P(X), there exists ν0 ∈ P(G) such that μ0 = π0∗(ν0) and a unique 
μ ∈ P(X), μ invariant for {V (t)}t∈R+ , such that

LIMt→∞
1
t

t∫
0

∫
G

ϕ ◦ π0(T (τ)ξ)ν0(dξ)dτ =
∫
X

ϕ(x)μ(dx), for any ϕ ∈ Cb(X), (4.2)

where Cb(X) stands for the set of continuous and bounded real valued functions on X.

Proof. Given μ0 ∈ P(X), there exists ν0 ∈ P(G) such that μ0 = π0∗(ν0). This is a consequence of The-
orem 3.1, [14] (see also Theorem 3.1 [12]). Then, as we have done in the proof of the above theorem, we 
apply Theorem 2.2, [17], to conclude that there exists a unique ν ∈ P(G) such that |ν| ⊂ U , ν is invariant 
for {T (t)}t∈R+ , and

LIMt→∞
1
t

t∫
0

∫
G

ϕ̄(T (τ)ξ)ν0(dξ)dτ =
∫
G

ϕ̄(ξ)ν(dξ), for any ϕ̄ ∈ Cb(G).

Let μ := π0∗(ν). From Theorem 3.1, Definition 3.3 ⇔ Definition 3.8, we know that μ is invariant for 
{V (t)}t∈R+ . Given ϕ ∈ Cb(X), consider ϕ̄ := ϕ ◦ π0 ∈ Cb(G). Then 4.2 follows by observing that

∫
X

ϕ(x)μ(dx) =
∫
X

ϕ(x)π0∗(ν)(dx) =
∫
G

ϕ(π0(ξ))ν(dξ) =
∫
G

ϕ̄(ξ)ν(dξ). �
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