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In [3] it was proved that almost-greedy and semi-greedy bases are equivalent in the 
context of Banach spaces with finite cotype. In this paper we show this equivalence 
for general Banach spaces.
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1. Introduction

Let (X, ‖ · ‖) be a Banach space over F (F denotes the real field R or the complex field C) and let 
B = (en)∞n=1 be a semi-normalized Schauder basis of X with constant Kb and with biorthogonal functionals 
(e∗n)∞n=1, i.e., 0 < infn ‖en‖ ≤ supn ‖en‖ < ∞ and Kb = supN ‖SN (x)‖/‖x‖ < ∞ ∀x ∈ X, where SN (x) =∑N

j=1 e
∗
j (x)ej denotes the algorithm of the partial sums.

As usual supp (x) = {n ∈ N : e∗n(x) �= 0}, given a finite set A ⊂ N, |A| denotes the cardinality of the 
set A, PA is the projection operator, that is, PA(

∑
j ajej) =

∑
j∈A ajej , PAc = IX − PA, 1εA =

∑
n∈A εnen

with |εn| = 1 (where εn could be real or complex), 1A =
∑

n∈A en and for A, B ⊂ N, we write A < B if 
maxi∈A i < minj∈B j.

In 1999, S.V. Konyagin and V.N. Temlyakov introduced the Thresholding Greedy Algorithm (TGA) (see 
[7]): given x =

∑∞
i=1 e

∗
i (x)ei ∈ X, we define the natural greedy ordering for x as the map ρ : N −→ N such 

that supp (x) ⊂ ρ(N) and so that if j < k then either |e∗ρ(j)(x)| > |e∗ρ(k)(x)| or |e∗ρ(j)(x)| = |e∗ρ(k)(x)| and 
ρ(j) < ρ(k). The m-th greedy sum of x is

Gm(x) =
m∑
j=1

e∗ρ(j)(x)eρ(j),
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and the sequence of maps (Gm)∞m=1 is known as the Thresholding Greedy Algorithm associated to B in X. 
Alternatively we can write Gm(x) =

∑
k∈Am(x) e

∗
k(x)ek, where Am(x) = {ρ(n) : n ≤ m} is the greedy set

of x: mink∈Am(x) |e∗k(x)| ≥ maxk/∈Am(x) |e∗k(x)|.
To study the efficiency of the TGA, S.V. Konyagin and V.N. Temlyakov introduced in [7] the so called 

greedy bases.

Definition 1.1. We say that B is greedy if there exists a constant C ≥ 1 such that

‖x− Gm(x)‖ ≤ Cσm(x), ∀x ∈ X,∀m ∈ N,

where σm(x) is the m-th error of approximation with respect to B, and it is defined as

σm(x,B)X = σm(x) := inf
{∥∥∥∥∥x−

∑
n∈C

anen

∥∥∥∥∥ : |C| = m, an ∈ F

}
.

Also, S.V. Konyagin and V.N. Temlyakov characterized greedy bases in terms of unconditional bases 
with the additional property of being democratic, i.e., ‖1A‖ ≤ Cd‖1B‖ for any pair of finite sets A, B with 
|A| ≤ |B|. Recall that a basis B in X is called unconditional if any rearrangement of the series 

∑∞
n=1 e

∗
n(x)en

converges in norm to x for any x ∈ X. This turns out to be equivalent the fact that the projections PA are 
uniformly bounded on all finite sets A, i.e. there exists a constant C ≥ 1 such that

‖PA(x)‖ ≤ C‖x‖, ∀x ∈ X and ∀A ⊂ N.

Another important concept in greedy approximation theory is the notion of quasi-greedy bases introduced 
in [7].

Definition 1.2. We say that B is quasi-greedy if there exists a constant C ≥ 1 such that

‖x− Gm(x)‖ ≤ C‖x‖, ∀x ∈ X,∀m ∈ N. (1)

We denote by Cq the least constant that satisfies (1) and we say that B is Cq-quasi-greedy.

Subsequently, P. Wojtaszczyk proved in [8] that B is quasi-greedy in a quasi-Banach space X if and only 
if the algorithm converges, that is,

lim
m→∞

‖x− Gm(x)‖ = 0, ∀x ∈ X.

One intermediate concept between greedy and quasi-greedy bases, almost-greedy bases, was introduced 
by S.J. Dilworth et al. in [5].

Definition 1.3. We say that B is almost-greedy if there exists a constant C ≥ 1 such that

‖x− Gm(x)‖ ≤ Cσ̃m(x), ∀x ∈ X,∀m ∈ N, (2)

where σ̃m(x, B)X = σ̃m(x) := inf{‖x −PA(x)‖ : |A| = m}. We denote by Cal the least constant that satisfies 
(2) and we say that B is Cal-almost-greedy.

In [5], the authors characterized the almost-greedy bases in terms of quasi-greedy and democratic bases.

Theorem 1.4 ([5, Theorem 3.3]). B is almost-greedy if and only if B is quasi-greedy and democratic.



220 P.M. Berná / J. Math. Anal. Appl. 470 (2019) 218–225
We will use the notion of super-democracy instead of democracy. This is a classical concept in this theory.

Definition 1.5. We say that B is super-democratic if there exists a constant C ≥ 1 such that

‖1εA‖ ≤ C‖1ηB‖, (3)

for any pair of finite sets A and B such that |A| ≤ |B| and any choice |ε| = |η| = 1. We denote by Csd the 
least constant that satisfies (3) and we say that B is Csd-super-democratic.

Remark 1.6. It is well known that in Theorem 1.4 we can replace democracy by super-democracy (see for 
instance [1, Theorem 1.3]).

On the other hand, S.J. Dilworth, N.J. Kalton and D. Kutzarova introduced in [3] the concept of semi-
greedy bases. This concept was born as an enhancement of the TGA to improve the rate of convergence. 
To study the notion of semi-greediness, we need to define the Thresholding Chebyshev Greedy Algorithm: 
let Am(x) be the greedy set of x of cardinality m. Define the m-th Chebyshev-greedy sum as any element 
C G m(x) ∈ span{ei : i ∈ Am(x)} such that

‖x− C G m(x)‖ = min

⎧⎨
⎩
∥∥∥∥∥∥x−

∑
n∈Am(x)

anen

∥∥∥∥∥∥ : an ∈ F

⎫⎬
⎭ .

The collection {C G m}∞m=1 is the Thresholding Chebyshev Greedy Algorithm.

Definition 1.7. We say that B is semi-greedy if there exists a constant C ≥ 1 such that

‖x− C G m(x)‖ ≤ Cσm(x), ∀x ∈ X,∀m ∈ N. (4)

We denote by Cs the least constant that satisfies (4) and we say that B is Cs-semi-greedy.

In [3], the following theorem is proved:

Theorem 1.8 ([3, Theorem 3.2]). Every almost-greedy basis in a Banach space is semi-greedy.

In this paper we study the converse of this theorem. In [3], the authors established the following “converse” 
theorem:

Theorem 1.9 ([3, Theorem 3.6]). Assume that B is a semi-greedy basis in a Banach space X which has finite 
cotype. Then, B is almost-greedy.

The objective here is to show that the condition of the finite cotype in the last theorem is not necessary. 
The main result is the following:

Theorem 1.10. Assume that B is a Schauder basis in a Banach space X.

a) If B is Cq-quasi-greedy and Csd-super-democratic, then B is Cs-semi-greedy with constant Cs ≤ Cq +
4CqCsd.

b) If B is Cs-semi-greedy, then B is Csd-super-democratic with constant Csd ≤ 2(CsKb)2 and Cq-quasi-
greedy with constant Cq ≤ Kb(2 + 3(KbCs)2).



P.M. Berná / J. Math. Anal. Appl. 470 (2019) 218–225 221
Remark 1.11. S.J. Dilworth et al. ([3]) proved the item a) with the bound Cs = O(C2
qCd), where Cd is the 

democracy constant. Here, we slightly relax this bound proving that Cs = O(CqCsd).

Corollary 1.12. If B is a Schauder basis in X, B is almost-greedy if and only if B is semi-greedy.

2. Preliminary results

To prove Theorem 1.10, we need the following technical results that we can find in [1] and [5].

2.1. Convexity lemma

Lemma 2.1 ([1, Lemma 2.7]). For every finite set A ⊂ N, we have

co ({1εA : |ε| = 1}) =
{∑

n∈A

znen : |zn| ≤ 1
}
,

where co(S) = {
∑n

j=1 αjxj : xj ∈ S, 0 ≤ αj ≤ 1, 
∑n

j=1 αj = 1, n ∈ N}.

As a consequence, for any finite sequence (zn)n∈A with zn ∈ F for all n ∈ A,

∥∥∥∥∥
∑
n∈A

znen

∥∥∥∥∥ ≤ max
n∈A

|zn|ϕ(|A|),

where ϕ(m) = sup|A|=m,|ε|=1 ‖1εA‖.

2.2. The truncation operator

For each α > 0, we define the truncation function of z ∈ F as

Tα(z) = αsgn (z), |z| > α, Tα(z) = z, |z| ≤ α.

We can extend Tα to an operator in X by

Tα(x) =
∞∑
i=1

Tα(e∗i (x))ei = α1εΓα
+ PΓc

α
(x),

where Γα = {n : |e∗n(x)| > α} and εj = sgn (e∗j (x)) with j ∈ Γα. Hence, this is a well-defined operator for 
all x ∈ X since Γα is a finite set.

This operator was introduced in [3] to prove Theorem 1.8 showing that for quasi-greedy bases, this 
operator is uniformly bounded. A slight improvement of the boundedness constant was given in [1].

Proposition 2.2 ([1, Lemma 2.5]). Assume that B is Cq-quasi-greedy basis in a Banach space X. Then, for 
every α > 0,

‖Tα(x)‖ ≤ Cq‖x‖, ∀x ∈ X.

We shall also use the following known inequality from [5].
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Lemma 2.3 ([5, Lemma 2.2]). If B is a Cq-quasi-greedy basis in X,

min
j∈G

|e∗j (x)|‖1εG‖ ≤ 2Cq‖x‖, ∀x ∈ X,∀G greedy set of x, (5)

with ε = {sgn (e∗j (x))}.

3. Proof of the main result

Using the lemmas of Section 2, we prove Theorem 1.10.

Proof of Theorem 1.10. First, we show the proof of a). Suppose that B is Cq-quasi-greedy and Csd-super-
democratic. To show the semi-greediness, we will follow the same procedure as in the proof of [4, Theorem 4.1]
and [3, Theorem 3.2]. Take x ∈ X and z =

∑
i∈B aiei with |B| = m such that ‖x −z‖ < σm(x) +δ, for δ > 0. 

Let Am(x) the greedy set of x of cardinality m. We write x −z :=
∑∞

i=1 yiei, where yi = e∗i (x) −ai for i ∈ B

and yi = e∗i (x) for i /∈ B. To prove that B is semi-greedy we only have to show that there exists w ∈ X so 
that supp(x −w) ⊂ Am(x) and ‖w‖ ≤ c‖x − z‖ for some positive constant c. If α = maxj /∈Am(x) |e∗j (x)|, we 
take the element w as is defined in [3]:

w :=
∑

i∈Am(x)

Tα(yi)ei + PAc
m(x)(x) =

∞∑
i=1

Tα(yi)ei +
∑

i∈B\Am(x)

(e∗i (x) − Tα(yi))ei.

Of course, w satisfies that supp (x − w) ⊂ Am(x) and we will prove that ‖w‖ ≤ (Cq + 4CqCs)‖x − z‖. To 
obtain this bound, using Proposition 2.2,

‖
∞∑
i=1

Tα(yi)ei‖ ≤ Cq‖x− z‖. (6)

Taking into account that |e∗i (x) − Tα(yi)| ≤ 2α for i ∈ B \Am(x), using Lemma 2.1,
∥∥∥∥∥∥

∑
i∈B\Am(x)

(e∗i (x) − Tα(yi))ei

∥∥∥∥∥∥ ≤ 2αϕ(|B \Am(x)|) ≤ 2 min
j∈Am(x)\B

|e∗j (x− z)|ϕ(|Am(x) \B|). (7)

To improve the bound of Cs as we have commented in Remark 1.11, based on ([6, Lemma 2.1]), we can find 
a greedy set Γ of x − z with the following conditions:

• |Γ| = |B \Am(x)|,
• minj∈Am(x)\B |e∗j (x − z)| ≤ minj∈Γ |e∗j (x − z)|.

Hence, using ε = {sgn (e∗j (x − z))} and Lemma 2.3,

min
j∈Am(x)\B

|e∗j (x− z)|ϕ(|B \Am(x)|) ≤ Csd min
j∈Γ

|e∗j (x− z)|‖1εΓ‖ ≤ 2CqCsd‖x− z‖. (8)

Thus, using (6), (7), (8), the basis is Cs-semi-greedy with constant Cs ≤ (Cq + 4CqCsd).
Now, we prove b). Assume that B is Cs-semi-greedy.
Super-democracy can be proved using the technique of [3, Proposition 3.3]. Indeed, take A and B with 

|A| ≤ |B| and |ε| = |η| = 1. Select now a set D such that |D| = |A|, D > (A ∪ B) and define z :=
1εA + (1 + δ)1D with δ > 0. It is clear that G|D|(z) = (1 + δ)1D. Then,
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‖z − C G |D|(z)‖ =

∥∥∥∥∥1εA +
∑
i∈D

ciei

∥∥∥∥∥ ,
where the scalars (ci)i∈D are given by the Chebyshev approximation. Then,

‖1εA‖ ≤ Kb‖1εA +
∑
i∈D

ciei‖ ≤ KbCsσ|D|(z) ≤ KbCs‖(1 + δ)1D‖.

If δ goes to 0,

‖1εA‖ ≤ CsKb‖1D‖. (9)

The next step is to obtain that ‖1D‖ ≤ 2KbCs‖1ηB‖. For that, we take the element y := (1 + δ)1ηB + 1D

with δ > 0. Then, G|B|(y) = (1 + δ)1ηB. Hence,

‖y − C G |B|(y)‖ =

∥∥∥∥∥
∑
i∈B

diei + 1D

∥∥∥∥∥ ,
where as before, the scalars (di)i∈B are given by the Chebyshev approximation. Using again the semi-
greediness,

‖1D‖ ≤ 2Kb‖
∑
i∈B

diei + 1D‖ ≤ 2CsKbσ|B|(y) ≤ 2CsKb‖(1 + δ)1ηB‖.

Taking δ → 0, we obtain that

‖1D‖ ≤ 2CsKb‖1ηB‖. (10)

Using (9) and (10),

‖1εA‖ ≤ 2(CsKb)2‖1ηB‖.

Hence, the basis is super-democratic with constant Csd ≤ 2(CsKb)2.
To prove now the quasi-greediness, we will present a more elementary proof than in [3, Theorem 3.6] that 

works for general Banach spaces: take an element x ∈ X with finite support and Am(x) the greedy set of 
x with cardinality m, take D > supp (x) with |D| = |Am(x)| = m and define z := x − Gm(x) + (δ + α)1D, 
where δ > 0 and α = minj∈Am(x) |e∗j (x)|. Then, since Am(z) = D,

‖z − C G m(z)‖ =

∥∥∥∥∥x− Gm(x) +
∑
i∈D

fiei

∥∥∥∥∥ ,
for some scalars (fi)i∈D given by the Chebyshev approximation. Then,

‖x− Gm(x)‖ ≤ Kb

∥∥∥∥∥x− Gm(x) +
∑
i∈D

fiei

∥∥∥∥∥ ≤ KbCsσm(z) ≤ KbCs‖x + (δ + α)1D‖.

Taking δ → 0,

‖x− Gm(x)‖ ≤ KbCs‖x + α1D‖ ≤ KbCs(‖x‖ + ‖α1D‖). (11)
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Select now y :=
∑

j∈Am(x)(e∗j (x) + δεj)ej +
∑

j∈Ac
m(x) e

∗
j (x)ej +α1D, with δ > 0 and εj = sgn (e∗j (x)) for 

j ∈ Am(x). Then, since Gm(y) =
∑

j∈Am(x)(e∗j (x) + δεj)ej , using Chebyshev approximation,

‖y − C G m(y)‖ =

∥∥∥∥∥∥
∑

j∈Am(x)

aiei +
∑

j∈Ac
m(x)

e∗j (x)ej + α1D

∥∥∥∥∥∥ .
Hence,

‖α1D‖ ≤ 2Kb

∥∥∥∥∥∥
∑

j∈Am(x)

aiei +
∑

j∈Ac
m(x)

e∗j (x)ej + α1D

∥∥∥∥∥∥ ≤ 2KbCsσm(y)

≤ 2KbCs

∥∥∥∥∥∥
∑

j∈Am(x)

(e∗j (x) + δεj)ej +
∑

j∈Ac
m(x)

e∗j (x)ej

∥∥∥∥∥∥ .
Taking δ → 0, ‖α1D‖ ≤ 2KbCs‖x‖. Using the last inequality and (11),

‖x− Gm(x)‖ ≤ KbCs(‖x‖ + 2KbCs‖x‖) ≤ 3(KbCs)2‖x‖.

Thus, ‖x − Gm(x)‖ ≤ 3(KbCs)2‖x‖ for any finite x ∈ X and m ≤ |supp (x)|.
For the general case, we take x ∈ X and Am(x) the greedy set of x with cardinality m. We can find a 

number N ∈ N such that Am(x) ⊂ {1, ..., N}. Then, since Gm(x) = Gm(SN (x)), applying that B is Schauder 
and quasi-greedy for elements with finite support,

‖x− Gm(x)‖ ≤ ‖x− SN (x)‖ + ‖SN (x) − Gm(x)‖
= ‖x− SN (x)‖ + ‖SN (x) − Gm(SN (x))‖
≤ 2Kb‖x‖ + 3(KbCs)2‖SN (x)‖
≤ Kb(2 + 3(KbCs)2)‖x‖.

This completes the proof. �
Proof of Corollary 1.12. The proof follows using Theorem 1.10, Theorem 1.4 and Remark 1.6. �
Remark 3.1. In [2, Section 6-Question 3], the authors ask the following question: if a basis B satisfies 
Property (A) and the inequality (5), is B semi-greedy? We recall that B satisfies Property (A) if there is 
a positive constant Ca such that

‖x + 1εA‖ ≤ Ca‖x + 1ηB‖,

for any x ∈ X, A, B such that |A| = |B| < ∞, A ∩ B = ∅, (A ∪ B) ∩ supp (x) = ∅, |ε| = |η| = 1 and 
maxj |e∗j (x)| ≤ 1. The answer is not due to the example in [1, Subsection 5.5] of a basis B in a Banach 
space such that B satisfies the Property (A) and (5), but is not quasi-greedy, hence is not almost-greedy 
and using Theorem 1.10, B is not semi-greedy.

4. Open questions

As discussed in [8] (see also [4]), one can define the Thresholding Greedy Algorithm and the Thresholding 
Chebyshev Greedy Algorithm in the context of Markushevich bases, that is, {ei, e∗i } is a semi-normalized 
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biorthogonal system, X = span{ei : i ∈ N}X and X∗ = span{e∗i : i ∈ N}w
∗

. In section a) of Theorem 1.10, it 
is enough to work with Markushevich bases instead of Schauder bases. However, in the item b), seems to 
be necessarily to use that B is Schauder to prove the result.

Question 1: Is it possible to remove the condition to be Schauder in section b) of Theorem 1.10?
Another interesting problem is to establish if almost-greediness implies the condition to be Schauder. 

Of course, if B is greedy then B is Schauder since greediness implies unconditionality. As far as we know, 
all of examples of almost-greedy bases in the literature seem to be Schauder bases, but we don’t know if 
almost-greediness implies that B is Schauder or not.

Question 2: If B is an almost-greedy Markushevich basis, is it necessarily Schauder in some order?
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