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In this paper, we present four models of irreducible representations of special 
complex Lie algebra sl(2, C) from the special matrix functions point of view. 
These models, which involve differential operators, are transformed into matrix 
difference–differential operators using an integral transformation motivated by the 
integral representation of beta matrix function. We also obtain the matrix identities 
involving one or two variable special matrix functions.
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1. Introduction

Lie theoretic techniques to find special functions identities are available in the literature. In particular, 
Govil and Manocha [4] have exploited models of Lie algebras sl(2) and G(0, 1) to find special function 
identities using an integral transformation, which is motivated by beta integral transformation. Also, Khan 
and Ali [8,9] used models of Lie algebras G(0, 1) and K5 to obtain results involving Hermite polynomials 
and Laguerre–Hermite polynomials. In general, the use of Lie theoretic techniques provide a natural, unified 
and efficient framework for a general treatment of a wide range of special functions arising in mathematical 
physics.

Recently, models of certain Lie algebras have been studied from the special matrix polynomials point 
of view. Khan and her coworkers [10,11] have used the Lie algebraic techniques to find matrix identities 
involving the Hermite and Laguerre matrix polynomials. Jódar and Cortés [6] have considered the matrix 
analogue of Gauss hypergeometric function 2F1 and gave its convergence conditions and integral represen-
tation. Authors [2] have found the convergence conditions of the generalized Gauss hypergeometric matrix 
function, Appell matrix functions and the two variable Kampé de Fériet matrix function. In addition, in-
tegral representations of Appell matrix functions were also determined. In the present paper, we apply the 
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representation theory of the Lie algebra sl(2, C) to matrix hypergeometric functions. In particular, we con-
struct models of Lie algebra sl(2, C) acting on the space of Gauss hypergeometric matrix function 2F1. These 
models are in terms of differential operators. Using a matrix integral transformation, which is motivated 
by the integral representation of beta matrix function, we obtain another set of models of sl(2, C) in terms 
of matrix difference–differential operators acting on the hypergeometric matrix function 3F2. The whole 
exercise leads to new matrix identities involving one and two variable hypergeometric matrix functions. The 
section-wise treatment is as follows.

In Section 2, we review the part of matrix functional calculus that is needed in the sequel. In Section 3, we 
elaborate the representation theory of the special complex Lie algebra sl(2, C). In Section 4, we introduce 
a matrix integral transformation that help us to upgrade the differential models of sl(2, C) to matrix 
difference–differential models of sl(2, C). In Sections 5–8, we present new models of Lie algebra sl(2, C) and 
using the representation theory, find matrix identities, which are believed to be new.

2. Preliminaries

Let Cr×r be the vector space of all r × r matrices with entries from C. For A ∈ C
r×r, σ(A) denotes the 

spectrum of A. The spectral abscissa of A is given by α(A) = max{ �(z) | z ∈ σ(A) }, where �(z) denotes 
the real part of z ∈ C. If β(A) = min{ �(z) | z ∈ σ(A) }, then β(A) = −α(−A). A square matrix A ∈ C

r×r

is said to be positive stable if β(A) > 0. If f(z) and g(z) are holomorphic functions of z ∈ C, defined 
in an open set Ω of the complex plane, and A ∈ C

r×r with σ(A) ⊂ Ω, then using the matrix functional 
calculus [1], we have f(A)g(A) = g(A)f(A). Furthermore, if B ∈ C

r×r such that σ(B) ⊂ Ω and AB = BA, 
then f(A)g(B) = g(B)f(A).

The reciprocal gamma function Γ−1(z) = 1/Γ(z) is an entire function of z ∈ C. The image of Γ−1(z)
acting on A, denoted by Γ−1(A), is a well defined matrix. If A +nI is invertible for all integers n ≥ 0, where 
I denotes the r × r identity matrix, then the reciprocal gamma matrix function is defined as [5]

Γ−1(A) = A(A + I) · · · (A + (n− 1)I)Γ−1(A + nI), n ≥ 1. (2.1)

The matrix analogue of Pochhammer symbol (A)n, A ∈ C
r×r, is given by

(A)n =
{
I, if n = 0
A(A + I) · · · (A + (n− 1)I), if n ≥ 1.

(2.2)

This gives

(A)n = Γ−1(A) Γ(A + nI), n ≥ 1. (2.3)

We shall use the notation Γ 

(
A1, . . . , Ap

B1, . . . , Bq

)
for Γ(A1) · · ·Γ(Ap) Γ−1(B1) · · ·Γ−1(Bq).

If A ∈ C
r×r be such that �(z) > 0 for all eigenvalues z of A, then Γ(A) can be expressed as [5]

Γ(A) =
∞∫
0

e−t tA−I dt. (2.4)

Furthermore, if P and Q are positive stable matrices in Cr×r, then the beta matrix function is defined as

B(P,Q) =
1∫
tP−I (1 − t)Q−Idt. (2.5)
0
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If PQ = QP , then we have [6]

B(P,Q) = Γ(P )Γ(Q)Γ−1(P + Q). (2.6)

Following special matrix functions will be used throughout this work. The generalized hypergeometric matrix 
function is defined as

pFq(A1, . . . , Ap;B1, . . . , Bq; z) =
∑
n≥0

(A1)n · · · (Ap)n (B1)−1
n · · · (Bq)−1

n

zn

n! . (2.7)

The Appell matrix functions F1, F2, F3, F4 are defined by

F1[A,B,B′;C;x, y] =
∑

m,n≥0
(A)m+n(B)m(B′)n(C)−1

m+n

xm yn

m!n! , (2.8)

F2[A,B,B′;C,C ′;x, y] =
∑

m,n≥0
(A)m+n(B)m(B′)n(C)−1

m (C ′)−1
n

xm yn

m!n! , (2.9)

F3[A,A′, B,B′;C;x, y] =
∑

m,n≥0

(A)m(A′)n(B)m(B′)n(C)−1
m+n

m!n! xm yn, (2.10)

F4[A,B;C,C ′;x, y] =
∑

m,n≥0

(A)m+n(B)m+n(C)−1
m (C ′)−1

n

m!n! xm yn. (2.11)

The Kampé de Fériet matrix function is defined as

F
m1:n1,n

′
1

m2:n2,n′
2

(
A : B, C

D : E, F
;x, y

)

=
∑

m,n≥0

m1∏
i=1

(Ai)m+n

n1∏
i=1

(Bi)m
n′

1∏
i=1

(Ci)n
m2∏
i=1

(Di)−1
m+n

n2∏
i=1

(Ei)−1
m

n′
2∏

i=1
(Fi)−1

n

xm yn

m!n! , (2.12)

where A abbreviates the sequence of matrices A1, . . . , Am1 , etc. For convergence of these special matrix 
functions, see [2].

3. Lie algebra sl(2, C)

The complex Lie algebra sl(2, C) = L[SL(2, C)], the Lie algebra of the complex Lie group

SL(2,C) =
{(

a b
c d

)
: a, b, c, d ∈ C, ad− bc = 1

}
, (3.1)

consists of all 2 × 2 matrices

α =
(
α1 α2
α3 −α1

)
, α1, α2, α3 ∈ C, (3.2)

having [12]

g+ =
(

0 −1
0 0

)
, g− =

(
0 0
−1 0

)
, g0 =

(
1/2 0
0 −1/2

)
(3.3)

as its basis.
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These basis elements obey the commutation relations

[g0, g±] = ±g±, [g+, g−] = 2g0. (3.4)

Let ρ be a representation of sl(2, C) on the complex vector space V and let

J+ = ρ(g+), J− = ρ(g−), J0 = ρ(g0). (3.5)

Then the linear operators J+, J−, J0 obey the commutation relations (3.4).
The operator

C = J+J− + J0J0 − J0 (3.6)

commutes with every operator ρ(α), α ∈ sl(2, C).
For complex numbers α, β, γ where γ is neither zero nor a negative integer, Rainville [14] has shown that 

the hypergeometric function 2F1(α, β; γ; x) satisfy exactly 12 differential recurrence relations which allows 
one to raise or lower the parameters α, β, γ. For example

(x∂x + α) 2F1(α, β; γ;x) = α 2F1(α + 1, β; γ;x),

raise the parameter α. However, this operator depends upon α leading to the computation of quantities 
such as Dn(α) 2F1 or [expD(α)] 2F1 rather complicated. To overcome this, Miller [13] introduced new 
variables s, u, t associated with the parameters α, β, γ respectively and defined functions fαβγ(s, u, t, x) =
2F1(α, β; γ; x) sαuβtγ . This leads to 12 differential operators independent of the parameters α, β, γ.

Analogously, we define matrix functions fABC by

fABC(s, u, t, z) = 2F1(A,B;C; z) sA uB tC

=
∞∑

n=0

(A)n(B)n(C)−1
n

n! zn sA uB tC ,

where A, B, C are commuting matrices in Cr×r and C + kI is invertible for all integers k ≥ 0. It can be 
easily verified that the differential operators

EA = s[z∂z + s∂s],

EA = s−1[z(1 − z)∂z + t∂t − s∂s − zu∂u],

EB = s[z∂z + u∂u],

EB = u−1[z(1 − z)∂z + t∂t − u∂u − zs∂s],

EC = t[(1 − z)∂z − s∂s − u∂u + t∂t],

EC = t−1[−z∂z − t∂t + 1],

EAC = st[(1 − z)∂z − s∂s],

EAC = s−1t−1[z(1 − z)∂z − zu∂u + t∂t − 1],

EBC = ut[(1 − z)∂z − u∂u],

EBC = u−1t−1[z(1 − z)∂z − zs∂s + t∂t − 1],

EABC = sut∂z,

EABC = s−1u−1t−1[z(z − 1)∂z + zs∂s + zu∂u − t∂t − z + 1], (3.7)
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satisfy the relations

EAfABC = AfA+I B C ,

EAfABC = (C −A)fA−I B C ,

EBfABC = BfAB+I C ,

EBfABC = (C −B)fAB−I C ,

ECfABC = (C −A)(C −B)C−1fAB C+I ,

ECfABC = −(C − I)fAB C−I ,

EACfABC = A(B − C)C−1fA+I B C+I ,

EACfABC = (C − I)fA−I B C−I ,

EBCfABC = (A− C)BC−1fAB+I C+I ,

EBCfABC = (C − I)fAB−I C−I ,

EABCfABC = ABC−1fA+I B+I C+I ,

EABCfABC = −(C − I)fA−I B−I C−I . (3.8)

Finally the operators

JA = s∂s, JB = u∂u, JC = t∂t (3.9)

satisfy

JA fABC = AfABC , JB fABC = B fABC , JC fABC = C fABC . (3.10)

Let V be the vector space having basis

{fA+kI B+lI C+mI | k, l,m ∈ Z}.

We note that from the operators (3.7) and (3.9), each of the triplet viz.

{J+, J−, J0} ≡ {EA, EA, JA − 1
2JC}, {EB , EB , JB − 1

2JC}

{EC , EC , JC − 1
2JA − 1

2JB − 1
2}, {EAC , EAC ,

1
2JC + 1

2JA − 1
2JB − 1

2}

{EBC , EBC ,
1
2JC − 1

2JA + 1
2JB − 1

2}, {EABC , EABC ,
1
2JA + 1

2JB − 1
2} (3.11)

satisfy the commutation relations (3.4) and hence give us a representation of the Lie algebra sl(2, C). Among 
these six models of representation of sl(2, C) given in (3.11), precisely four models viz. [15]

{EA, EA, JA − 1
2JC}, {EC , EC , JC − 1

2JA − 1
2JB − 1

2},

{EAC , EAC ,
1
2JC + 1

2JA − 1
2JB − 1

2}, {EABC , EABC ,
1
2JA + 1

2JB − 1
2} (3.12)

are distinct and are capable of obtaining interesting matrix function identities.
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4. Integral transforms of matrix functions

In this section, we introduce an integral transformation based on the integral representation of beta 
matrix function [5].

For positive stable matrices B′, C ′ and C ′ −B′, define

h(B′, C ′, x) = I[f(vx)] = Γ
(

C ′

B′, C ′ −B′

) 1∫
0

vB
′−I (1 − v)C

′−B′−I f(vx) dv. (4.1)

From (4.1) we have the following transforms:

I[vf(vx)] = B′ C ′−1
EB′C′ h(B′, C ′, x),

I[∂vf(vx)] = (C ′ − I) LC′ �h(B′, C ′, x)

= (B′ − I)−1(C ′ − I)LB′C′ x∂x h(B′, C ′, x), provided B′ − I is invertible,

I[v∂vf(vx)] = B′ �h(B′, C ′, x)

= x ∂x h(B′, C ′, x),

I[v2∂vf(vx)] = B′ (B′ + I)C ′−1 �EB′C′ h(B′, C ′, x)

= B′ C ′−1
EB′C′ x∂x h(B′, C ′, x), (4.2)

where

EB′h(B′, C ′, x) = h(B′ + I, C ′, x),

LB′h(B′, C ′, x) = h(B′ − I, C ′, x),

EB′C′ = EB′ EC′ ,

LB′C′ = LB′ LC′ ,

� = EB′ − I,

� = I − LB′ . (4.3)

5. Models of representation D
(
−1

2C,A
)

In this section, we have given two models of irreducible representation of sl(2, C) connected via an integral 
transformation defined in (4.1). We also obtain the matrix identities involving the Kampé de Fériet matrix 
function and hypergeometric matrix functions 3F2 and 2F1.

Let A, B, B′, B′′, C, C ′ and C ′′ be commuting matrices in Cr×r such that each C + kI, C ′ + kI and 
C ′′ + kI are invertible for all integers k ≥ 0. Then, as suggested by (3.12), we give models of the irreducible 
representations of sl(2, C), explicitly, along with the group action of SL(2, C). We begin with the model 
arising from the triplet {EA, EA, JA − 1

2JC}. Consider the following model of representation D
(
−1

2C,A
)

of sl(2, C):

J+ = s(z∂z + s∂s),

J− = s−1(z(1 − z)∂z + t∂t − s∂s − zu∂u),

J0 = s∂s −
1
2 t∂t (5.1)
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with basis functions as

fλ = 2F1(λ,B;C; z) sλuBtC , λ = A, A± I, . . . . (5.2)

The action of the J-operators on fλ is given by

J+fλ = λfλ+I , J−fλ = (C − λ)fλ−I ,

J0fλ =
(
λ− 1

2C
)
fλ, (J+J− + J0J0 − J0)fλ = 1

2C
(

1
2C − I

)
fλ. (5.3)

Indeed,

[J0, J±] = ±J±, [J+, J−] = 2J0. (5.4)

We now determine the multiplier representation [T (g)f ](s, u, t, z) on the space F of all matrix functions 
analytic in the neighborhood of (s0, u0, t0, 0). The group action of SL(2, C) is given in terms of the Lie 
algebra action by

T (g) = exp
(
− b

d
J+

)
exp

(
−cdJ−) exp

(
τJ0) , eτ/2 = d−1, (5.5)

where

g =
(
a b
c d

)
∈ SL(2,C), ad− bc = 1.

The multiplier representation induced by the J-operators (5.1) is given by

T1(g)f(s, u, t, z) = f

(
as + c

d + bs
,

u(as + c)
as + c(1 − z) ,

ts

as + c
,

zs

(d + bs)(as + c(1 − z))

)
. (5.6)

To obtain a model of D 
(
−1

2C,A
)

in terms of matrix difference–differential operators, we put z = vx, v ∈ R. 
As a result, (5.1) turn into

J+ = s(v∂v + s∂s),

J− = s−1 (v(1 − vx)∂v + t∂t − s∂s − vxu∂u) ,

J0 = s∂s −
1
2 t∂t, fλ(vx) = 2F1(λ,B;C; vx) sλuBtC , λ = A, A± I, . . . . (5.7)

Theorem 5.1. Let ρ be the irreducible representation of sl(2, C) on the representation space V having basis 
functions {fλ | λ ∈ S} in terms of Lie algebra operators {J+, J−, J0}. Then the transformation I induces 
another irreducible representation ρ of sl(2, C) on the representation space W = IV having basis functions 
{hλ = I fλ | λ ∈ S} in terms of Lie algebra operators {K+ = IJ+I−1, K− = IJ−I−1, K0 = IJ0I−1}.

The proof of the above theorem follows from the fact that if the operators {J+, J−, J0} and matrix 
functions fλ satisfy equations (5.3) and (5.4), then so does the operators {K+, K−, K0} and matrix func-
tions hλ.

Using Theorem 5.1 we can transform the model (5.7) as

K+ = IJ+I−1 = s(x∂x + s∂s),
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K− = IJ−I−1 = s−1(x(I −B′C ′−1
xEB′C′)∂x + t∂t − s∂s −B′C ′−1

xEB′C′u∂u),

K0 = IJ0I−1 = s∂s −
1
2
t∂t, (5.8)

with basis functions

hλ(B′, C ′, x) = I[fλ(vx)] = 3F2 (λ,B,B′;C,C ′;x) sλuBtC , λ = A, A± I, . . . . (5.9)

The K-operators (5.8) and basis functions hλ satisfy (5.3) as well as (5.4).
The multiplier representation induced by the K-operators on the space W = IF is

[T ′
1(g)h](B′, C ′, x) = [I T1(g) I−1f ](s, u, t, z). (5.10)

To obtain the identities, it is easy to verify that the matrix function

F = F2(A,B′′, B;C ′′, C, s, z) sAuBtC (5.11)

satisfies

(J+J− + J0J0 − J0)F = 1
2C

(
1
2C − I

)
F (5.12)

as well as

[J0J0 − J+J0 − (B′′ + 1
2C −A)J+ − (I+2A− C − C ′′)J0]F

= (A− 1
2C)(C ′′ + 1

2C −A− I)F. (5.13)

In addition, the function

G = (1 − s)−A
2F1

(
A,B;C; z

1 − s

)
sAuBtC (5.14)

satisfies both

(J+J− + J0J0 − J0)G = 1
2C

(
1
2C − I

)
G (5.15)

and [
J0J0 − J+J0 −

(
1
2C −A

)
J+ − (I + 2A− C)J0

]
G = (A− 1

2C)(1
2C −A− I)G. (5.16)

Therefore the matrix function

H1 = F 1:1;2
0:1;2

(
A : B′′;B,B′;
− : C ′′;C,C ′;

s, x

)
sAuBtC (5.17)

satisfies both

(K+K− + K0K0 −K0)H1 = 1
2C

(
1
2C − I

)
H1 (5.18)
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as well as

[K0K0 −K+K0 − (B′′ + 1
2C−A)K+ − (I + 2A− C − C ′′)K0]H1

= (A− 1
2C)(C ′′ + 1

2C −A− I)H1, (5.19)

and the function

H2 = (1 − s)−A
3F2

(
A,B,B′;C,C ′; x

1 − s

)
sAuBtC (5.20)

satisfies

(K+K− + K0K0 −K0)H2 = 1
2C

(
1
2C − I

)
H2 (5.21)

and

[K0K0 −K+K0 − (1
2C −A)K+ − (I+2A− C)J0]H2

= (A− 1
2C)(1

2C −A− I)H2. (5.22)

This leads to the expansions [7,16]

T ′
1(g)Hi =

∞∑
n=−∞

Rin(g)hA+nI , i = 1, 2. (5.23)

Theorem 5.2. Let A, B, B′, B′′, C, C ′ and C ′′ be commuting matrices in Cr×r such that α(A) < 1,
α(B′′) < β(C ′′), α(B) + α(B′) < β(C) + β(C ′). Then the following matrix generating function holds

F 1:2;1
0:2;1

(
A : B,B′;B′′

− : C,C ′;C ′′ ; x

1 − s
,
−ws

1 − s

)
(1 − s)−A

=
∞∑

n=0

(A)n
n! 2F1 (−nI,B′′;C ′′;w) 3F2 (A + nI,B,B′;C,C ′;x) sn,

|s| < 1, |x/(1 − s)| + |ws/(1 − s)| < 1. (5.24)

Proof. Using (5.10) and (5.23) for i = 1, we get

F 1:2;1
0:2;1

(
A : B,B′;B′′

− : C,C ′;C ′′ ; xs

(d + bs)(as + c(1 − x)) ,
as + c

d + bs

)(
as + c

d + bs

)A

×
(

u(as + c)
as + c(1 − x)

)B (
ts

as + c

)C

=
∞∑

n=0
R1n(g)hA+nI . (5.25)

To obtain the matrix element R1n(g), put x = 0, a = 1, d = 1, c = 0 and using the commutativity of 
matrices, we get
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R1n(g) = (A)n
n! 2F1(−nI,B′′;C ′′;w), (5.26)

where w = 1
b . Putting R1n(g) in (5.25) gives the required identity (5.24). �

Theorem 5.3. Let A, B, B′, C, C ′ be commuting matrices in Cr×r such that α(A) < β(C), α(B) +α(B′) <
β(C ′). Then the following matrix generating function holds

(
1 + c

s

)A−C

(1 − c− s)−A F 2: 1; 0
1: 1; 0

(
B, B′ : A;−
C ′ : C;− ; xs

(s + c)(1 − c− s) ,
cx

s + c

)

=
∞∑

n=−∞

Γ(A + nI)Γ−1(A)
Γ(n + 1) 2F1 (A + nI, A− C + (n + 1)I; (n + 1)I; c)

× 3F2 (A + nI,B,B′;C,C ′;x) sn,∣∣∣ c
s

∣∣∣ < 1, |c + s| < 1,
∣∣∣∣ xs

(s + c)(1 − c− s)

∣∣∣∣ +
∣∣∣∣ xc

(s + c)

∣∣∣∣ < 1. (5.27)

Proof. Using (5.10), (5.23) for i = 2, and proceeding as in the above theorem, with a = 1, d = 1, b = 0, the 
identity (5.27) can be easily obtained. �

In (5.27), the terms corresponding to n = −1, −2, . . . , are well defined in view of the relation

lim
k→−l

1
Γ(k + 1) 2F1 (A + kI, A− C + (k + 1)I; (k + 1)I; c)

= (A− lI)l(A− C − (l − 1)I)l
l! 2F1 (A, A− C + I; (l + 1)I; c) cl. (5.28)

6. Models of representation D(C, −1
2(A + B + I))

This section consists of two models of representation D(C, −1
2 (A +B+I)) of Lie algebra sl(2, C) connected 

via the integral transformation (4.1). We also give the corresponding matrix generating functions.
Consider the model arising from the triplet {EC , EC , JC − 1

2JA − 1
2JB − 1

2}, given by

J+ = t((1 − z)∂z + t∂t − s∂s − u∂u),

J− = −t−1(z∂z + t∂t − 1),

J0 = t∂t −
1
2s∂s −

1
2u∂u − 1

2 ,

fλ = 2F1 (A,B;λ; z) sAuBtλ, λ = C, C ± I, . . . . (6.1)

The action of the J-operators on fλ is

J+fλ = λ−1(λ−A)(λ−B)fλ+I , J−fλ = −(λ− I)fλ−I ,

J0fλ =
(
λ− 1

2(A + B + I)
)
fλ,

(J+J− + J0J0 − J0)fλ = 1
4(A−B + I)(A−B − I)fλ. (6.2)

Indeed the J-operators satisfy (5.4).
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The operators (6.1) induce the following multiplier representation:

T2(g)f(s, u, t, z)

=
(
a + c

t

)−1
f

(
s(d + bt), u(d + bt), c + at

d + bt
,
(c + at)(d + bt)

t

(
z − bt

d + bt

))
. (6.3)

Putting z = vx in (6.1) and using Theorem 5.1, the following K-model is obtained:

K+ = t((C ′ − I)(B′ − I)−1LB′C′∂x − x∂x + t∂t − s∂s − u∂u),

K− = −t−1(x∂x + t∂t − 1),

K0 = t∂t −
1
2s∂s −

1
2u∂u − 1

2 , (6.4)

hλ(B′, C ′, x) = 3F2 (A,B,B′;λ,C ′;x) sAuBtλ, λ = C, C ± I, . . . . (6.5)

The matrix operators (6.4) with basis functions (6.5) satisfy (5.4) and

K+hλ = λ−1(λ−A)(λ−B)hλ+I , K−hλ = −(λ− I)hλ−I ,

K0hλ =
(
λ− 1

2(A + B + I)
)
hλ,

(K+K− + K0K0 −K0)hλ = 1
4(A−B + I)(A−B − I)hλ. (6.6)

The multiplier representation induced by the matrix operators (6.4) on the space W = IF is

[T ′
2(g)h](B′, C ′, x) = [I T2(g) I−1f ](s, u, t, z). (6.7)

The matrix function

F = F3(A,A′′, B,B′′;C; z, t)sAuBtC (6.8)

satisfies

(J+J− + J0J0 − J0)F = 1
4(A−B + I)(A−B − I)F (6.9)

as well as [
J0J0 + J−J0 +

(
A + B + I

2 − C

)
J− − (2C −A−B −A′′ −B′′ − I)J0

]
F

=
[
A + B + I

2 (C + I) −
(
A + B + I

2 − C

)(
A′′ + B′′ + I − A + B + I

2 −A′′B′′
)]

F. (6.10)

Therefore

H = F 0:3;2
1:1;0

(
− : A,B,B′;A′′, B′′;

C : C ′;−;
x, t

)
sAuBtC (6.11)

satisfies both

(K+K− + K0K0 −K0)H = 1(A−B + I)(A−B − I)H (6.12)
4
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and
[
K0K0 + K−K0 +

(
A + B + I

2 − C

)
K− − (2C −A−B −A′′ −B′′ − I)K0

]
H

=
[
A + B + I

2 (C + I) −
(
A + B + I

2 − C

)(
A′′ + B′′ + I − A + B + I

2 −A′′B′′
)]

H. (6.13)

Using the expansions

T2(g)F =
∞∑

n=−∞
in(g)fC+nI , (6.14)

T ′
2(g)H =

∞∑
n=−∞

in(g)hC+nI (6.15)

we can obtain matrix generating functions, stated in the following theorems.

Theorem 6.1. Let A, A′′, B, B′′, C be commuting matrices in Cr×r such that α(A′′) +α(B′′) < 2, β(C) > 1, 
α(A) + α(B) < 2. Then the following matrix generating function holds

(
1 + c

t

)C−I

F3

(
A,A′′, B,B′′;C;

(
1 + c

t

)
z, c + t

)

=
∞∑

n=−∞
Γ
(

A′′ + nI,B′′ + nI, C

A′′, B′′, C + nI, (n + 1)I

)
2F1 (A′′ + nI,B′′ + nI; (n + 1)I; c)

× 2F1 (A,B;C + nI; z) tn, |c/t| < 1, |c + t| < 1, max{|(1 + c/t)z|, |c + t|} < 1. (6.16)

Theorem 6.2. Let A, A′′, B, B′, B′′, C, C ′ be commuting matrices in Cr×r such that α(A′′) + α(B′′) < 2, 
β(C) > 1, α(A) + α(B) + α(B′) < β(C ′). Then the following matrix generating function holds

(
1 + c

t

)C−I

F 0:3;2
1:1;0

(
− : A,B,B′;A′′, B′′

C : C ′;−
(
1 + c

t

)
x, c + t

)

=
∞∑

n=−∞
Γ
(

A′′ + nI,B′′ + nI, C

A′′, B′′, C + nI, (n + 1)I

)
2F1 (A′′ + nI,B′′ + nI; (n + 1)I; c)

× 3F2 (A,B,B′;C + nI, C ′;x) tn,

|c/t| < 1, |c + t| < 1, max{|(1 + c/t)x|, |c + t|} < 1. (6.17)

Using (6.3), (6.7), (6.14), (6.15) and proceeding exactly in the same manner as in Theorem 5.2, the matrix 
identities given in (6.16) and (6.17) can be easily obtained. The terms corresponding to n = −1, −2, . . . , 
are well defined in view of the relation (5.28).

7. Models of representation D(A, C, −1
2A, −1

2(B + C + I))

We now consider the model arising from the triplet {EAC , EAC , 1
2JC + 1

2JA − 1
2JB − 1

2}. We have

J+ = st((1 − z)∂z − s∂s),

J− = s−1t−1(z(1 − z)∂z − zu∂u + t∂t − 1),
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J0 = 1
2 t∂t + 1

2s∂s −
1
2u∂u − 1

2 , (7.1)

along with the basis functions

fλ = 2F1(A− C + λ, B; λ; z)sA−C+λ uB tλ, λ = C,C ± I, . . . , (7.2)

as a model of representation D(A, C, −1
2A, −1

2(B + C + I)).
Action of the J-operators (7.1) on basis functions (7.2) is given by

J+fλ = λ−1 (A− C + λ) (B − λ)fλ+I ,

J−fλ = (λ− I)fλ−I ,

J0fλ =
(
λ + 1

2(A−B − C − I)
)
fλ,

(J+J− + J0J0 − J0)fλ = 1
4(A + B − C + I) (A + B − C − I)fλ. (7.3)

The computation of the group action from the Lie derivatives (7.1) gives

[T3(g)f ](s, u, t, z) =
(
a− c

st

)−1
f

(
s

d− bst
,

sut

ast− cz
, at− c

s
,
(dz − bst)(ast− c)
(d− bst)(ast− cz)

)
. (7.4)

Using Theorem 5.1, the J-model (7.1) induces the following K-model:

K+ = st
(
(B′ − I)−1 (C ′ − I)LB′C′∂x − x∂x − s∂s

)
,

K− = s−1t−1
(
x(I −B′C ′−1

xEB′C′)∂x −B′C ′−1
xEB′C′u∂u + t∂t − 1

)
,

K0 = 1
2 t∂t + 1

2s∂s −
1
2u∂u − 1

2 , (7.5)

along with the basis functions

hλ(B′, C ′, x) = 3F2(A− C + λ, B, B′; λ,C ′; z)sA−C+λ uB tλ, λ = C,C ± I, . . . . (7.6)

Indeed the K-operators (7.5) satisfy (7.3). The multiplier representation induced by the K-operators (7.5)
on the space W = IF is

[T ′
3(g)h](B′, C ′, x) = [I T3(g) I−1f ](s, u, t, z). (7.7)

The function

F = F1(A,B,B′′;C; z, st)sAuBtC (7.8)

satisfies

(J+J− + J0J0 − J0)F = 1
4((A + B − C)2 − I)F. (7.9)

It therefore follows that

H = F 1:2;1
1:1;0

(
A : B,B′; B′′;
C : C ′; −;

x, st

)
sAuBtC (7.10)
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satisfies

(K+K− + K0K0 −K0)H = 1
4((A + B − C)2 − I)H. (7.11)

The expansions

T3(g)F =
∞∑

n=−∞
in(g)fC+nI , (7.12)

T ′
3(g)H =

∞∑
n=−∞

in(g)hC+nI (7.13)

lead to the following matrix identities under special cases:

Theorem 7.1. Let A, B, B′′ and C be commuting matrices in Cr×r such that α(A) < β(C), α(B) < 1, 
α(B′′) < 1. Then the following matrix generating function holds

(1 − w)C−I(1 − wz)−BF1

(
A,B,B′′;C; z(1 − w)

1 − wz
, (1 − w)y

)

=
∞∑

n=−∞
Γ
(

A + nI,B′′ + nI, C

A,B′′, C + nI, (n + 1)I

)
2F1(A + nI,B′′ + nI; (n + 1)I;−wy)

× 2F1(A + nI,B;C + nI; z)yn,

|w| < 1, |wz| < 1,
∣∣∣∣z(1 − w)

1 − wz

∣∣∣∣ < 1, |(1 − w)y| < 1. (7.14)

Proof. Using Equations (7.4), (7.12) and particular values a = 1, d = 1, b = 0, the matrix elements in(g)
are given by

in(g) = Γ
(

A + nI,B′′ + nI, C

A,B′′, C + nI, (n + 1)I

)
2F1(A + nI,B′′ + nI; (n + 1)I;−wy), (7.15)

which leads to the matrix identity (7.14). �
Theorem 7.2. Let A, B, B′, B′′, C and C ′ be commuting matrices in Cr×r such that α(A) < β(C), α(B) +
α(B′) < β(C ′) + 1, α(B′′) < 1. Then the following matrix generating function holds

(1 − w)C−IF (3)

(
− :: A;−; B,B′ : −;B′′;−
− :: C;−; C ′ : −;−;− ;x(1 − w), y(1 − w), wx

)

=
∞∑

n=−∞
Γ
(

A + nI,B′′ + nI, C

A,B′′, C + nI, (n + 1)I

)
2F1(A + nI,B′′ + nI; (n + 1)I;−wy)

× 3F2(A + nI,B,B′;C + nI, C ′;x)yn,

|w| < 1, |x(1 − w)| + |wx| < 1, |y(1 − w)| < 1, (7.16)

where F (3) is a matrix analogue of general triple hypergeometric function, defined by
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F (3)

(
− :: A;−; B,B′ : −;B′′;−
− :: C;−; C ′ : −;−;− ;x(1 − w), y(1 − w), wx

)

=
∑

m,n,p≥0
(A)m+n(B)m+p(B′)m+p(B′′)n(C)−1

m+n(C ′)−1
m+p

× (x(1 − w))m(y(1 − w))n(wx)p

m!n! p! . (7.17)

Proof. Using Equations (7.7), (7.13) and the result

I
[
(1 − wz)−BF1(A,B,B′′;C; z(1 − w)

1 − wz
, (1 − w)y)

]
= F (3), (7.18)

the matrix identity (7.16) can be obtained easily. �
The terms corresponding to n = −1, −2, . . . , are well defined in view of the relation (5.28). For conver-

gence of hypergeometric matrix functions of several variables, see [3].

8. Models of representation D(A, B, C, −1
2(A + B + C))

In this section, we give a model of irreducible representation of sl(2, C) arising from the triplet 
{EABC , EABC , 1

2JA + 1
2JB − 1

2} and find the corresponding matrix generating function. Consider

J+ = sut∂z,

J− = s−1u−1t−1(z(z − 1)∂z − t∂t + zs∂s + zu∂u − z + 1),

J0 = 1
2(s∂s + u∂u − 1),

fλ = 2F1(A− C + λ,B − C + λ;λ; z)sA−C+λ uB−C+λ tλ, λ = C, C ± I, . . . . (8.1)

The action of the J-operators on fλ is given by

J+ = λ−1(A− C + λ)(B − C + λ)fλ+I ,

J− = −(λ− I)fλ−I ,

J0 = 1
2(2λ + A + B − 2C − I)fλ,

(J+J− + J0J0 − J0)fλ = 1
4(A−B + I)(A−B − I)fλ. (8.2)

The multiplier representation T4 of SL(2, C) induced by the J-operators (8.1) is:

[T4(g)f ](s, u, t, z) =
(
a + c(1 − z)

sut

)−1

× f

(
as− cz

ut
, au− cz

st
, t

(
asut + c− cz

asut− cz

)
, (zd− bsut)

(
a− c(z − 1)

sut

))
. (8.3)

Putting z = vx in the model (8.1) and using the transformation I, we get the following transformed model:

K+ = sut(B′ − I)−1(C ′ − I)LB′C′∂x,

K− = s−1u−1t−1(x(B′C ′−1
xEB′C′ − I)∂x + B′C ′−1

xEB′C′(s∂s + u∂u − 1) − t∂t + 1),
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K0 = 1
2(s∂s + u∂u − 1),

hλ(B′, C ′, x) = 3F2(A− C + λ,B − C + λ,B′;λ,C ′;x) sA−C+λ uB−C+λ tλ. (8.4)

Indeed, the K-operators (8.4) satisfy (8.2). The function

F = 2F1(A,B;C; z + sut)sAuBtC (8.5)

satisfies

(J+J− + J0J0 − J0)F = 1
4(A−B + I)(A−B − I)F.

It therefore follows that

H = F 2:1;0
1:1;0

(
A,B : B′; −;
C : C ′; −;

x, sut

)
sAuBtC (8.6)

satisfies

(K+K− + K0K0 −K0)H = 1
4(A−B + I)(A−B − I)H. (8.7)

The expansion

[T4(g)F ](s, u, t, z) =
∞∑

n=−∞
pn(g)fC+nI (8.8)

gives a matrix generating function relation stated in the following theorem.

Theorem 8.1. Let A, B, C be commuting matrices in Cr×r such that α(A) + α(B) < β(C). Then the 
following matrix generating function holds

(
1 + c(1 − z)

y

)C−I (
1 − cz

y

)A+B−C

2F1

(
A,B;C;

(
1 + c(1 − z)

y

)
(z + y − cz)

)

=
∞∑

n=−∞
Γ(A + nI)Γ(B + nI)Γ(C)Γ−1(A)Γ−1(B)Γ−1(C + nI)Γ−1(1 + n)I

× 2F1(A + nI,B + nI; (1 + n)I; c)2F1(A + nI,B + nI;C + nI; z)yn, (8.9)

|cz/y| < 1, |c(1 − z)/y| < 1,
∣∣∣∣
(

1 + c(1 − z)
y

)
(z + y − cz)

∣∣∣∣ < 1.

The terms corresponding to n = −1, −2, . . . , are well defined in view of the relation (5.28).
The expansion arising from the K-operators does not lead to an elegant identity and is therefore not 

included.
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