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We deduce a product formula for the Whittaker function Wκ,μ whose kernel does 
not depend on the second parameter. Making use of this formula, we define the 
positivity-preserving convolution operator associated with the index Whittaker 
transform, which is seen to be a direct generalization of the Kontorovich-Lebedev 
convolution. The mapping properties of this convolution operator are investigated; 
in particular, a Banach algebra property is established and then applied to yield an 
analogue of the Wiener-Lévy theorem for the index Whittaker transform. We show 
how our results can be used to prove the existence of a unique solution for a class 
of convolution-type integral equations.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let {χλ}λ∈Λ be a family of continuous functions on an interval I ⊂ R, where Λ is some indexing set. A 
functional identity of the form

χλ(x)χλ(y) =
∫
I

χλ(ξ)K(x, y, ξ) dξ,

where the kernel K(x, y, ξ) does not depend on λ, is called a product formula or multiplication formula for 
{χλ}λ∈Λ.

Such product formulas are a very useful tool in the theory of special functions. For instance, the existence 
of product formulas with positive kernels for certain systems of, say, orthogonal polynomials allows us to 
simplify various problems concerning the positivity of special functions [9]. Moreover, and most importantly, 
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product formulas are the key ingredient for introducing the so-called generalized translation and generalized 
convolution operators, whose theory was initiated by J. Delsarte [4] and B. Levitan [16], and which are 
deeply related with eigenfunction expansions with respect to systems of (orthogonal) special functions, 
much like the ordinary translation and convolution is closely connected with the Fourier transform. For 
discussion and examples see e.g. [1,3].

The index Whittaker transform is the integral transform (of index type) defined by

(Wαg)(τ) :=
∞∫
0

g(x)Wα,iτ (x)x−2dx, τ ≥ 0 (1)

where i is the imaginary unit, α < 1
2 is a parameter and Wα,ν(x) is the Whittaker function (cf. Section 2). 

This transformation first appeared in [28] as a particular case of an integral transform having the Meijer-G 
function in the kernel. Its Lp theory was studied in [25]. In its general form, the index Whittaker is connected 
with the Asian option pricing problem in mathematical finance [17]. Furthermore, it includes as a particular 
case the Kontorovich-Lebedev transform, which is one of the most well-known index transforms [29,30] and 
has a wide range of applications in physics (see e.g. [2,8]).

In [24] it is observed that the index Whittaker transform is a generalized Fourier transformation, as it 
constitutes the eigenfunction expansion of a self-adjoint Sturm-Liouville operator. For the particular case of 
the Kontorovich-Lebedev transform, whose kernel is the modified Bessel function of the second kind Kν(x)
(also known as the Macdonald function), the product formula for Kν(x) is well-known — it is given by the 
Macdonald formula, which can be found in standard texts on special functions such as [6] — and has been 
used to introduce the Kontorovich-Lebedev convolution, which was introduced by Kakichev in [13] and has 
been an object of much interest [11,12,20,29,31]. Given that the properties of the index Whittaker transform 
in the general case are similar to those of the Kontorovich-Lebedev transform, one would expect that the 
index Whittaker transform is also associated with a convolution with analogous properties. However, to the 
best of our knowledge, neither an explicit product formula for Wα,ν(x) with kernel not depending on the 
transform variable ν (the key ingredient for such a convolution) is known in the literature, nor the existence 
of such a formula has been deduced through techniques such as those described in [3].

Our main result is to establish a product formula of the form

Wα,ν(x)Wα,ν(y) =
∞∫
0

Wα,ν(ξ)Kα(x, y, ξ) dξ (α, ν ∈ C)

whose kernel Kα(x, y, ξ) is given in closed form in terms of the parabolic cylinder function. For fixed x and y, 
the kernel Kα(x, y, ·) has full support in (0, ∞), making it clear that the partial differential equation approach 
that has been used to prove many product formulas for Sturm-Liouville eigenfunctions would not applicable 
here (cf. [10]). In the case α < 1

2 the kernel turns out to be strictly positive, and this allows us to construct a 
positivity-preserving generalized convolution operator ∗a which is related with the index Whittaker transform 

via the identity 
(
Ψa(f ∗a g)

)
(τ) = (Ψaf)(τ) (Ψag)(τ), where Ψa is a reparameterized version of the transform 

(1) (which will be defined in Section 4). Moreover, we show that the connection between the product formula, 
the index transform Ψa and the convolution ∗a yields various mapping properties for the convolution operator.

The Kontorovich-Lebedev convolution has been applied to the study of existence and uniqueness of 
solutions for integral equations of generalized convolution type ([29]; see also [12]). Here we extend the 
method to the general index Whittaker transform: we prove that an analogue of the Wiener-Lévy theorem 
holds for the index Whittaker transform, and we discuss its application to a class of integral equations of 
the second-kind; in addition, an example is provided where this method yields an explicit expression for 
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the solution of an integral equation with the Whittaker (or the confluent hypergeometric) function in the 
kernel.

The structure of the paper is as follows. Section 2 sets notation and collects some basic facts about special 
functions which will be of use in the sequel. The product formula for the Whittaker function Wα,ν(x) is stated 
and proved in Section 3. Section 4 is dedicated to the index Whittaker convolution operator: in Subsection 
4.1 we start by establishing the relevant properties of the generalized translation operator associated with 
the product formula, which is then used in Subsection 4.2 to define the generalized convolution and to 
derive its main mapping properties; then Subsection 4.3 focuses on the Banach algebra property of the 
convolution in a family of weighted L1 spaces, from which the analogue of the Wiener-Lévy theorem for the 
index Whittaker transform is deduced. Finally, Section 5 treats the application of our results to integral 
equations.

2. Preliminaries

In this paper, the space of continuous functions on the half line (0, ∞) will be denoted by C(0, ∞), and 
the notations Cb(0, ∞), Cc(0, ∞) will stand for its subspaces consisting, respectively, of bounded functions 
and of compactly supported functions. As usual, Lp(E; w(x) dx) denotes the weighted Lp-space with norm

‖f‖Lp(E;w(x) dx) =
(∫

E

|f(x)|pw(x)dx
)1/p

(1 ≤ p < ∞), ‖f‖L∞(E;w(x) dx) = ess sup
x∈E

|f(x)|.

The Whittaker function Wα,ν(x) is the solution of Whittaker’s differential equation d2u
dx2 +

(
−1

4 + α
x +

1/4−ν2

x2

)
u = 0 (α, ν ∈ C) which is determined uniquely by the property

Wα,ν(x) ∼ xαe−
x
2 , x → ∞. (2)

For fixed x, the Whittaker W function is an entire function of the first and the second parameter [19, 
§13.14(ii)], and it admits the integral representation (cf. [21], integral 2.3.6.9)

Wα,ν(x) = e−
x
2 xα

Γ(1
2 − α + ν)

∞∫
0

e−ss−
1
2−α+ν

(
1 + s

x

)− 1
2+α+ν

ds (Rex > 0, Reα < 1
2 + Re ν) (3)

where Γ(·) is the Gamma function [5, Chapter I]. The Whittaker W function is an even function of the 
parameter ν [19, Equation 13.14.31]. For α �= 1

2 ± ν, 32 ± ν, . . ., its asymptotic behavior near the origin is, cf. 
[19, §13.14(iii)]

Wα,ν(x) = O
(
x

1
2−Re ν

)
(Re ν ≥ 0, ν �= 0),

Wα,0(x) = O
(
−x

1
2 log x

)
,

x → 0. (4)

The Whittaker function satisfies the recurrence relation [19, Equation 13.15.13]

x
1
2Wα+ 1

2 ,ν+ 1
2
(x) = (x + 2ν)Wα,ν(x) + (1

2 − α− ν)x 1
2Wα− 1

2 ,ν− 1
2
(x) (5)

and it reduces to the modified Bessel function of the second kind (resp., to an elementary function) when 
the parameter α is equal to zero (resp., equal to 1

2 + ν) [19, §13.18(i), (iii)],

W0,ν(2x) = π− 1
2 (2x) 1

2Kν(x) (6)

W 1
2+ν,ν(x) = x

1
2+νe−x/2. (7)
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By [30, Theorem 1.11], for α ∈ R the asymptotic expansion of the Whittaker function with imaginary 
parameter ν = iτ as τ → ∞ is

Wα,iτ (x) = (2x) 1
2 τα−

1
2 e−πτ/2 cos

(
τ log

( x

4τ

)
+ π

2

(1
2 − α

)
+ τ

)[
1 + O(τ−1)

]
, (8)

the expansion being uniform in 0 < x ≤ M (M > 0).
The confluent hypergeometric function of the second kind Ψ(a, b; x), also known as the Tricomi function 

or the Kummer function of the second kind, can be defined via the Whittaker function as

Ψ(a, b;x) = ex/2x−b/2 W b
2−a, b2− 1

2
(x). (9)

This function is also commonly denoted by U(a, b; x) [19, Chapter 13]. A number of properties are obtained 
directly from this relation, such as the identity xa+νΨ(a + ν, 1 + 2ν; x) = xa−νΨ(a − ν, 1 − 2ν; x) or the 
limiting forms of Ψ(a, b; x) when x → ∞ and x → 0. We also note that the following differentiation formulas 
hold for n ∈ N [5, Equations 6.6(12)–(13)]:

dn

dxn

[
xc−1Ψ(a, c;x)

]
= (−1)n (a− c + 1)n xc−n−1Ψ(a, c− n;x) (10)

dn

dxn

[
xa+n−1Ψ(a, c;x)

]
= (a)n (a− c + 1)n xa−1Ψ(a + n, c;x), (11)

where (a)n is the Pochhammer symbol, (a)0 = 1 and (a)n =
∏n−1

j=0 (a + j) for n ∈ N.
The parabolic cylinder function Dμ(z) is the solution of the differential equation d

2u
dz2 +

(
μ + 1

2 −
z2

4
)
u = 0

which is given in terms of the Whittaker function by

Dμ(z) = 2
μ
2 + 1

4 z−
1
2Wμ

2 + 1
4 ,

1
4

(
z2

2
)
.

It is an entire function of its parameter. An integral representation for this function is [19, Equation 12.5.3]

Dμ(z) = zμ e−
z2
4

Γ
(1

2 (1 − μ)
)

∞∫
0

e−ss−
1
2 (1+μ)

(
1 + 2s

z2

)μ
2

ds (Re z > 0, Reμ < 1). (12)

The asymptotic form of Dμ(z) for large z is [6, Equation 8.4(1)]

Dμ(z) ∼ zμe−
z2
4 z → ∞. (13)

The recurrence relation and differentiation formula for the parabolic cylinder function are [6, Equations 
8.2(14) and 8.2(16)]

Dν+1(z) = zDν(z) − νDν−1(z) (14)
dn

dzn
[
e−

z2
4 Dν(z)

]
= (−1)ne− z2

4 Dν+n(z) (n ∈ N) (15)

and the parabolic cylinder function reduces to an exponential function when its parameter equals zero [6, 
Equation 8.2(9)],

D0(z) = e−
z2
4 . (16)
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3. The product formula for the Whittaker function

The main result of this paper, which will be proved in this section, is the following product formula for 
the Whittaker function of the second kind:

Theorem 3.1. The product Wα,ν(x)Wα,ν(y) of two Whittaker functions of the second kind with different 
arguments admits the integral representation

Wα,ν(x)Wα,ν(y) =
∞∫
0

Wα,ν(ξ) kα(x, y, ξ) dξ
ξ2 (x, y > 0, α, ν ∈ C) (17)

where

kα(x, y, ξ) :=2−1−απ− 1
2 (xyξ) 1

2 exp
(
x

2 + y

2 + ξ

2 − (xy + xξ + yξ)2

8xyξ

)
D2α

(
xy + xξ + yξ

(2xyξ)1/2

)

being Dμ(z) the parabolic cylinder function.

We will prove this theorem through a sequence of lemmas, where we shall assume that α is a negative 
real number and ν is purely imaginary. In the final step of the proof, an analytic continuation argument 
will be used to remove this restriction.

The first lemma gives an alternative product formula which is less useful than (17) because its kernel 
also depends on the second parameter of the Whittaker function.

Lemma 3.2. If α ∈ (−∞, 0) and τ ∈ R, then the integral representation

Wα,iτ (x)Wα,iτ (p)

= (xp)αe−x
2−

p
2

|Γ(1
2 − α + iτ)|2

∞∫
0

ξ−1−αe−
ξ
2Wα,iτ (ξ)

∞∫
0

w−2α exp
(
−w −

( 1
x

+ 1
p

+ w

xp

)
wξ

)
dw dξ

(18)

is valid for x, p > 0.

Proof. From relation 2.21.2.17 in [23] it follows that

Wα,iτ (x)Wα,iτ (p) = (xp) 1
2−iτe−

x
2−

p
2 Ψ

(1
2 − α− iτ, 1 − 2iτ ;x

)
Ψ
(1

2 − α− iτ, 1 − 2iτ ; p
)

= (xp) 1
2−iτe−

x
2 −

p
2

Γ(1 − 2α)

∞∫
0

e−w w−2α[(w + x)(w + p)
]− 1

2+α+iτ

× 2F1

(
1
2 − α− iτ,

1
2 − α− iτ ; 1 − 2α; 1 − xp

(w + x)(w + p)

)
dw

= (xp)αe−x
2−

p
2

Γ(1 − 2α)

∞∫
0

e−w w−2α
2F1

(
1
2 − α− iτ,

1
2 − α + iτ ; 1 − 2α; −

( 1
x

+ 1
p

)
w − w2

px

)
dw. (19)

Here 2F1(a, b; c; z) is the Gauss hypergeometric function [19, Chapter 15]; in the last step we used the 
transformation formula 2F1(a, b; c; z) = (1 − z)−a

2F1
(
a, c − b; c; z

z−1
)
, cf. [19, Equation 15.8.1].

Next, according to integral 2.19.3.5 in [23], the Gauss hypergeometric function in (19) admits the integral 
representation
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2F1

(
1
2 − α− iτ,

1
2 − α + iτ ; 1 − 2α;−

( 1
x

+ 1
p

)
w − w2

px

)

= Γ(1 − 2α)
|Γ(1

2 − α + iτ)|2

∞∫
0

ξ−1−α exp
(
−ξ

2 −
( 1
x

+ 1
p

+ w

xp

)
wξ

)
Wα,iτ (ξ)dξ

and thus we have

Wα,iτ (x)Wα,iτ (p)

= (xp)αe−x
2−

p
2

|Γ(1
2 − α + iτ)|2

∞∫
0

e−w w−2α
∞∫
0

ξ−1−α exp
(
−ξ

2 −
( 1
x

+ 1
p

+ w

xp

)
wξ

)
Wα,iτ (ξ) dξ dw.

(20)

Using the assumption Reα < 0 and the limiting forms (2), (4) of the Whittaker function, we see that the 
integrals 

∫∞
0 e−ww−2α dw and 

∫∞
0 ξ−1−αe−

ξ
2Wα,iτ (ξ)dξ converge absolutely. Therefore, we can use Fubini’s 

theorem to reverse the order of integration in (20); doing so, we obtain (18). �
The previous lemma gives an integral representation for |Γ(1

2 − α + iτ)|2Wα,iτ (x)Wα,iτ (p) whose kernel 
does not depend on τ . Integral representations for |Γ(1

2 − α+ iτ)|2Wα,iτ (x) which share the same property 
are also known. In the next two lemmas we take advantage of these integral representations and of the 
uniqueness theorem for Laplace transforms in order to deduce that the product formula (17) holds when α
is a negative real number and ν = iτ ∈ iR.

Lemma 3.3. The identity

22αx−αWα,iτ (x)
∞∫
0

e−
s
2y− y

2 yα−2 Wα,iτ (y)dy

=
∞∫
0

(
1 + 2s

xξ

)− 1
2
((

1 + 2s
xξ

)1/2
+ 1

)2α

exp
[
−
(x

2 + ξ

2

)(
1 + 2s

xξ

)1/2
]
Wα,iτ (ξ) ξα−2dξ

(21)

holds for α ∈ (−∞, 0), τ ∈ R and x, s > 0.

Proof. Using the change of variable s = 2wξ(1 + w
x ), we rewrite (18) as

|Γ(1
2 − α + iτ)|2Wα,iτ (x)Wα,iτ (p)

= 1
2(xp)αe− x

2−
p
2

∞∫
0

e−
ξ
2 ξα−2Wα,iτ (ξ)

∞∫
0

e−
s
2p s−2α

(
1 + 2s

xξ

)− 1
2
((

1 + 2s
xξ

)1
2 + 1

)2α

× exp
[(x

2 + ξ

2

)(
1 −

(
1 + 2s

xξ

)1
2
)]

ds dξ

= 1
2(xp)αe−

p
2

∞∫
0

e−
s
2p s−2α

∞∫
0

(
1 + 2s

xξ

)− 1
2
((

1 + 2s
xξ

)1
2 + 1

)2α

× exp
[
−
(x

2 + ξ

2

)(
1 + 2s

xξ

)1
2
]
Wα,iτ (ξ) ξα−2dξ ds

(22)

where the absolute convergence of the iterated integral (see the proof of the previous lemma) justifies the 
change of order of integration.
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On the other hand, by relation 2.19.5.18 in [23] we have

|Γ(1
2 − α + iτ)|2Wα,iτ (p) = 22α−1Γ(1 − 2α)pαe−

p
2

∞∫
0

( 1
2y + 1

2p

)−1+2α
e−

y
2 yα−2 Wα,iτ (y) dy

= 22α−1pαe−
p
2

∞∫
0

∞∫
0

e−
s
2y− s

2p s−2αds e−
y
2 yα−2 Wα,iτ (y) dy

= 22α−1pαe−
p
2

∞∫
0

e−
s
2p s−2α

∞∫
0

e−
s
2y− y

2 yα−2 Wα,iτ (y) dy ds.

(23)

Comparing (22) and (23), and recalling the injectivity of Laplace transform, we deduce that (21) holds. �
Lemma 3.4. The product formula (17) holds for α < 0, τ ∈ R and x, y > 0.

Proof. We begin by deriving the following representation for the function of s appearing in the right-hand 
side of (21):

(
1 + 2s

xξ

)− 1
2
((

1 + 2s
xξ

)1/2
+ 1

)2α

exp
[
−
(x

2 + ξ

2

)(
1 + 2s

xξ

)1
2
]

= 1
Γ(−2α) exp

[
−
(x

2 + ξ

2

)(
1 + 2s

xξ

)1
2
] ∞∫

0

exp
(
−u

(
1 + 2s

xξ

)1
2
)
γ(−2α, u) du

= (πxξ)− 1
2

Γ(−2α)

∞∫
0

(
u + x

2 + ξ

2

)
γ(−2α, u)

∞∫
0

y−
1
2 exp

[
−
(
2s + xξ

) 1
4y −

(
u + x

2 + ξ

2

)2 y

xξ

]
dy du

= (πxξ)− 1
2

Γ(−2α)

∞∫
0

e−
s
2y exp

(
−xξ

4y

)
y−

1
2

∞∫
0

(
u + x

2 + ξ

2

)
exp

(
−
(
u + x

2 + ξ

2

)2 y

xξ

)
γ(−2α, u)du dy

where γ(·, ·) is the incomplete Gamma function [6, Chapter IX]. In the first two equalities we have used 
integral 8.14.1 in [19] and integral 2.3.16.3 in [21], respectively, and the positivity of the integrand allows 
us to change the order of integration. Substituting in (21), we find that

Γ(−2α)2 1
2+2απ− 1

2x
1
2−αWα,iτ (x)

∞∫
0

e−
s
2y− y

2 yα−2 Wα,iτ (y)dy

=
∞∫
0

ξ−
5
2+α Wα,iτ (ξ)

∞∫
0

e−
s
2y exp

(
−xξ

4y

)
y−

1
2

×
∞∫
0

(
u + x

2 + ξ

2

)
exp

(
−
(
u + x

2 + ξ

2

)2 y

xξ

)
γ(−2α, u)du dy dξ

=
∞∫
0

e−
s
2y y−

1
2

∞∫
0

ξ−
5
2+α exp

(
−xξ

4y

)
Wα,iτ (ξ)

×
∞∫ (

u + x

2 + ξ

2

)
exp

(
−
(
u + x

2 + ξ

2

)2 y

xξ

)
γ(−2α, u)du dξ dy

(24)
0
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where the order of integration can be interchanged because of the absolute convergence of the triple integral, 
which follows from the inequality γ(−2α, u) ≤ Γ(−2α) and the equalities

∞∫
0

ξ−
5
2+α

∣∣Wα,iτ (ξ)
∣∣
∞∫
0

e−
s
2y y−

1
2 exp

(
−xξ

2y

) ∞∫
0

(
u + x

2 + ξ

2

)
exp

(
−
(
u + x

2 + ξ

2

)2 y

xξ

)
du dy dξ

= x

2

∞∫
0

ξ−
5
2+α

∣∣Wα,iτ (ξ)
∣∣
∞∫
0

exp
(
− s

2y − xξ

4y − y

2 − xy

4ξ − ξy

4x

)
y−

3
2 dy dξ

= 2− 1
2 (πx) 1

2

∞∫
0

ξ−3+α
(
1 + 2s

xξ

)− 1
2 exp

(
−
(x

2 + ξ

2

)(
1 + 2s

xξ

)1
2
)∣∣Wα,iτ (ξ)

∣∣ dξ < ∞

(which follow from integral 2.3.16.3 in [21] and straightforward calculations; the convergence of the latter 
integral can be verified using the limiting forms (2), (4) of the Whittaker function).

Using, as in the previous proof, the injectivity of Laplace transform, from (24) it follows that

Wα,iτ (x)Wα,iτ (y) = 2−2απ− 1
2

Γ(−2α) x− 1
2+αy

3
2−αe

y
2

∞∫
0

ξ−
5
2+α exp

(
−xξ

4y

)
Wα,iτ (ξ)

×
∞∫
0

(
u + x

2 + ξ

2

)
exp

(
−
(
u + x

2 + ξ

2

)2 y

xξ

)
γ(−2α, u)du dξ.

(25)

Let us compute the inner integral. Since d
duγ(−2α, u) = u−1−2αe−u and

∫ (
u + x

2 + ξ

2

)
exp

(
−
(
u + x

2 + y

2

)2 y

xξ

)
du = −xξ

2y exp
(
−
(
u + x

2 + ξ

2

)2 y

xξ

)
,

we obtain, using integration by parts,

∞∫
0

(
u + x

2 + ξ

2

)
exp

(
−
(
u + x

2 + ξ

2

)2 y

xξ

)
γ(−2α, u)du

= xξ

2y

∞∫
0

u−1−2αe−u exp
(
−
(
u + x

2 + ξ

2

)2 y

xξ

)
du

= Γ(−2α)
(xξ

2y

)1−α

exp
(x

4 + ξ

4 − y

4 + xξ

8y − xy

8ξ − yξ

8x

)
D2α

(
xy + xξ + yξ

(2xyξ)1/2

)
(26)

where we applied relation 2.3.15.3 in [21]. Substituting this in (25), we conclude that (17) holds for all α < 0
and ν = iτ ∈ iR. �
Proof of Theorem 3.1. To simplify the notation, throughout the proof we write fα,ν(t) := t−αWα,ν(t). We 
use an analytic continuation argument to extend the identity (17) to all α, ν ∈ C. To that end, let us prove 
that the right-hand side of (17) is an entire function of each of the variables α and ν. Let M > 0 and 
suppose that 1

M ≤ 1
2 − Reα ≤ M and 0 ≤ Re ν ≤ M . Then for t > 0 we have

∣∣fα,ν(t)∣∣ =
∣∣fα,−ν(t)

∣∣ = e−
t
2

|Γ(1
2 − α + ν)|

∣∣∣∣
∞∫
e−ss−

1
2−α+ν

(
1 + s

t

)− 1
2+α+ν

ds

∣∣∣∣

0



R. Sousa et al. / J. Math. Anal. Appl. 475 (2019) 939–965 947
≤ e−
t
2

|Γ(1
2 − α + ν)|

∞∫
0

e−ss−1(s1/M + s2M )
(
1 + s

t

)M
ds

= 1
|Γ(1

2 − α + ν)|

[
Γ
( 1
M

)
f 1

2 (M− 1
M +1), 12 (M+ 1

M )(t) + Γ(2M)f 1
2 (1−M), 3M2

(t)
]

where we have used the integral representation (3). Moreover, letting n ∈ N, a repeated application of 
the recurrence relation (5) shows that fα+n

2 ,ν+n
2
(t) = p

(1)
n,α,ν

( 1
t

)
fα,ν(t) + p

(2)
n,α,ν

( 1
t

)
fα− 1

2 ,ν− 1
2
(t), where the 

p
(i)
n,α,ν(·) are polynomials of degree at most n whose coefficients depend on α and ν. Therefore, for 1

M ≤
1
2 − Reα ≤ M − 1

2 and −M + 1
2 ≤ Re ν ≤ M we have

∣∣fα+n
2 ,ν+n

2
(t)

∣∣ ≤ ∣∣p(1)
n,α,ν

( 1
t

)
fα,ν(t)

∣∣ +
∣∣p(2)

n,α,ν

( 1
t

)
fα− 1

2 ,ν− 1
2
(t)

∣∣
≤

(∣∣p(1)
n,α,ν

( 1
t

)∣∣ +
∣∣p(2)

n,α,ν

( 1
t

)∣∣)G(α, ν)
[
Γ
( 1
M

)
f 1

2 (M− 1
M +1), 12 (M+ 1

M )(t) + Γ(2M)f 1
2 (1−M), 3M2

(t)
] (27)

where

G(α, ν) =

⎧⎪⎪⎨
⎪⎪⎩

2|Γ(1
2 − α + ν)|−1, 1

2 ≤ Re ν ≤ M

|Γ(1
2 − α + ν)|−1 + |Γ(3

2 − α− ν)|−1, 0 ≤ Re ν < 1
2

|Γ(1
2 − α− ν)|−1 + |Γ(3

2 − α− ν)|−1, −M + 1
2 ≤ Re ν < 0.

Similarly, for 1
M ≤ 1

2 − Reα ≤ M the integral representation (12) gives

∣∣D2α(t)
∣∣ = e−

t2
4

|Γ(1
2 − α)|

t2 Re α

∣∣∣∣
∞∫
0

e−ss−
1
2−α

(
1 + 2s

t2

)α
ds

∣∣∣∣

≤ e−
t2
4 t

|Γ(1
2 − α)|

(t−2M + t−
2
M)

∞∫
0

e−ss−1(s 1
M + sM )

(
1 + 2s

t2

)1
2− 1

M

ds

= t

|Γ(1
2 − α)|

(t−2M + t−
2
M)

[
Γ
( 1
M

)
f 3

4− 1
M , 14

(
t2

2
)

+ Γ(M)f 3
4− 1

2 (M+ 1
M ), 14+ 1

2 (M+ 1
M )

(
t2

2
)]

and, by (14), for each n ∈ N we have D2α+n(t) = p
(3)
n,α(t)D2α(t) +p

(4)
n,α(t)D2α−1(t), being p(j)

n,α(·) polynomials 
of degree at most n with coefficients depending on α, hence

∣∣D2α+n(t)
∣∣ ≤ (

|Γ(1
2 − α)|−1+ |Γ(1 − α)|−1)(|p(3)

n,α,ν(t)| + |p(4)
n,α(t)|

)
t (t−2M + t−

2
M)

×
[
Γ
( 1
M

)
f 3

4− 1
M , 14

(
t2

2
)

+ Γ(M)f 3
4− 1

2 (M+ 1
M ), 14+ 1

2 (M+ 1
M )

(
t2

2
)]
.

(28)

Using the inequalities (27), (28) and the limiting forms (2), (4) for the Whittaker function, one can verify 
without difficulty that

sup
(α,ν)∈RM

∞∫
0

∣∣∣Wα+n
2 ,ν+n

2
(ξ) kα+n

2
(x, y, ξ)

∣∣∣dξ
ξ2 < ∞ (29)

where RM =
{
(α, ν) : 1

M ≤ 1
2 − Reα ≤ M − 1

2 , −M + 1
2 ≤ Re ν ≤ M

}
. Since M and n are 

arbitrary, the known results on the analyticity of parameter-dependent integrals (e.g. [18]) yield that ∫∞
0 Wα,ν(ξ) kα(x, y, ξ) ξ−2αe−

1
2ξ dξ is an entire function of the parameter α and the parameter ν. As the 

left-hand side of (17) is also an entire function of α and ν, by analytic continuation we conclude that the 
product formula (17) extends to all α, ν ∈ C, as we wanted to show. �
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Remark 3.5. (a) The product formula (17) can be equivalently written in terms of the confluent hypergeo-
metric function of the second kind as

(xy)a+νΨ(a + ν, 1 + 2ν;x)Ψ(a + ν, 1 + 2ν; y) =

=
∞∫
0

ξa+νΨ(a + ν, 1 + 2ν; ξ) qa(x, y, ξ) ma(ξ)dξ (x, y > 0, a, ν ∈ C),
(30)

being

ma(ξ) := ξ−2a−1e−ξ,

qa(x, y, ξ) := (xyξ)a− 1
2 e

1
2 (x+y+ξ)k 1

2−a(x, y, ξ)

= 2− 3
2+aπ− 1

2 (xyξ)a exp
(
x + y + ξ − (xy + xξ + yξ)2

8xyξ

)
D1−2a

(
xy + xξ + yξ

(2xyξ)1/2

)
.

(31)

(b) It follows from (6) and (16) that in the particular case α = 0, (17) specializes into

Kν(x)Kν(y) = 1
2

∞∫
0

Kν(ξ) exp
(
−xy

2ξ − xξ

2y − yξ

2x

)
dξ

ξ

which is the Macdonald formula for the product of modified Bessel functions (cf. [6, §7.7.6] and [30, Equation 
(1.103)]).
(c) Since the parabolic cylinder function Dν(t) is a positive function of t > 0 whenever ν ∈ (−∞, 1] (as can 
be seen e.g. from the representation (12)), we have

qa(x, y, ξ) > 0 for all a ≥ 0 and x, y, ξ > 0.

This positivity property means that, for a ≥ 0, the convolution operator induced by the product formula 
(30) (cf. Section 4) is positivity-preserving.
(d) Useful upper bounds for the kernels of the product formulas (17) and (30) are the following:

∣∣kα(x, y, ξ)
∣∣ ≤ A(y) (xyξ) 1

2−α(xy + xξ + yξ)2α exp
(
−xy

4ξ − xξ

4y − yξ

4x

)
(x, y, ξ > 0, α ∈ R)

∣∣qa(x, y, ξ)∣∣ ≤ A(y) (xyξ)2a− 1
2 (xy + xξ + yξ)1−2a exp

(
ξ − (x(ξ − y) + yξ)2

4xyξ

)
(x, y, ξ > 0, a ∈ R),

(32)

where

A(y) = 2−α−1π− 1
2 ·

(
max
t≥y1/2

t−2αe
t2
4 Dα(t)

)
< ∞ (y > 0)

(in the second upper bound, we replace α by 1
2 − a in the expression of A(y)). These equivalent upper 

bounds follow from the inequality (xy+xξ+yξ)2
2xyξ ≥ y and the fact that, by (13), the function t−2αet

2/4D2α(t)
is bounded on the interval [y1/2, ∞).
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4. The convolution associated with the index Whittaker transform

4.1. Generalized translations

We start this section by defining the generalized translation induced by the Whittaker product formula:

Definition 4.1. Let 1 ≤ p ≤ ∞ and a ≥ 0. The linear operator

(T y
a f)(x) =

∞∫
0

f(ξ)qa(x, y, ξ) ma(ξ)dξ
(
f ∈ Lp

(
(0,∞); ma(x)dx

)
, x, y > 0

)

where ma(ξ) = ξ−2a−1e−ξ and qa(x, y, ξ) is defined by (31), will be called the index Whittaker translation 
operator (of order a).

Observe that the operator T y
a was defined so that (30) reads

(
T y
a

[
ξa+νΨ(a + ν, 1 + 2ν; ξ)

])
(x) = (xy)a+νΨ(a + ν, 1 + 2ν;x)Ψ(a + ν, 1 + 2ν; y),

meaning that we have chosen the confluent hypergeometric form of the product formula for constructing 
the generalized translation operator. As we will see, this choice turns out to be particularly convenient for 
studying the Lp properties of the corresponding convolution operator.

The following lemma gives the closed-form expression for the index Whittaker translation of the power 
function θ(x) = xβ .

Lemma 4.2. For a, β ∈ C, we have

∞∫
0

ξβqa(x, y, ξ) ma(ξ)dξ = (xy)βΨ(β, 1 − 2a + 2β;x + y) (x, y > 0). (33)

In particular, 
∫∞
0 qa(x, y, ξ) ma(ξ)dξ = 1 for a ∈ C and x, y > 0.

Proof. Fix x, y > 0, and suppose that a > 1
2 and β ∈ R. Using the definition (31) and the integral 

representation of D1−2a
(
xy+xξ+yξ
(2xyξ)1/2

)
obtained by exchanging the variables y and ξ in (26), we find that for 

each a > 1
2 we have

qa(x, y, ξ) ξ−2a−1e−ξ =

= 22a−2π− 1
2

Γ(2a− 1) (xy) 1
2 ξ−

3
2 exp

(x
2 + y

2 − xy

4ξ

) ∞∫
0

u2a−2 exp
(
−u−

(
u + x

2 + y

2

)2 ξ

xy

)
du.

Consequently, we may compute

∞∫
0

ξβqa(x, y, ξ) ma(ξ)dξ

= 22a−2π− 1
2

Γ(2a− 1) (xy) 1
2 exp

(x
2 + y

2

) ∞∫
u2a−2e−u

∞∫
ξβ−

3
2 exp

(
−
(
u + x

2 + y

2

)2 ξ

xy
− xy

4ξ

)
dξ du
0 0
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= 22a−β− 1
2

Γ(2a− 1)π
− 1

2 (xy)β exp
(x

2 + y

2

) ∞∫
0

u2a−2
(
u + x

2 + y

2

) 1
2−β

e−uKβ− 1
2

(
u + x

2 + y

2

)
du

= 22a−β− 1
2

Γ(2a− 1)π
− 1

2 (xy)β exp(x + y)
∞∫

x
2 + y

2

t
1
2−β

(
t− x

2 − y

2

)2a−2
e−tKβ− 1

2
(t) dt

= (xy)βΨ(β, 1 − 2a + 2β;x + y)

where the first equality is obtained by changing the order of integration (note the positivity of the integrand), 
the second equality follows from integral 2.3.16.1 in [21] and a few simplifications, the third equality results 
from the change of variables u = t − x

2 − y
2 , and the last equality uses relation 2.16.7.5 in [22]. This proves 

that (33) holds in the case a > 1
2 and β ∈ R.

To extend the result to all a, β ∈ C, we can use an analytic continuation argument similar to that of 
the proof of Theorem 3.1. Indeed, using (28) and the elementary inequality |ξβ | ≤ ξ−M + ξM (ξ > 0, 
β ∈ [−M, M ]) one can verify, as in the previous proof, that

sup
(a,β)∈R̄M

∞∫
0

∣∣ ξβqa−n
2
(x, y, ξ) ξ−2a+n−1∣∣e−ξdξ < ∞

where R̄M =
{
(a, β) : 1

M ≤ Re a ≤ M− 1
2 , −M ≤ Reβ ≤ M

}
, being M > 0 and n ∈ N arbitrary. Both sides 

of (33) are therefore entire functions of the parameter a and the parameter β; consequently, the principle 
of analytic continuation gives (33) in the general case. By (7), the right-hand side of (33) equals 1 when 
β = 0. �

The next proposition gives the basic continuity and Lp properties of the index Whittaker translation 
operator. We consider the weighted Lp spaces

La
p := Lp

(
(0,∞); ma(x)dx

)
(1 ≤ p ≤ ∞, 0 ≤ a < ∞)

with the usual norms

‖f‖p,a =
( ∞∫

0

|f(x)|pma(x)dx
)1/p

(1 ≤ p < ∞), ‖f‖∞ ≡ ‖f‖∞,a= ess sup
0<x<∞

|f(x)|.

Proposition 4.3. Fix a ≥ 0 and y > 0. Then:
(a) If f ∈ La

∞ is such that 0 ≤ f ≤ 1, then 0 ≤ T y
a f ≤ 1;

(b) For each 1 ≤ p ≤ ∞, we have

‖T y
a f‖p,a ≤ ‖f‖p,a for all f ∈ La

p

(in particular, T y
a

(
La
p

)
⊂ La

p);
(c) If f ∈ La

p where 1 < p ≤ ∞, then T y
a f ∈ C(0, ∞), and for 1 < p < ∞ we also have

lim
h→0

‖T y+h
a f − T y

a f‖p,a = 0;

(d) If f ∈ Cb(0, ∞), then (T y
a f)(x) → f(y) as x → ∞;

(e) If f ∈ La
∞ is such that limx→0 f(x) = 0, then limx→0(T y

a f)(x) = 0.
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Proof. Throughout this proof the letter C stands for a constant whose exact value may change from line to 
line.

(a) By Lemma 4.2, if f ≡ 1 then T y
a f ≡ 1. Moreover, Remark 3.5(c) means that T y

a f is nonnegative 
whenever f is nonnegative. Recalling that T y

a is a linear operator, we see that we have 0 ≤ T y
a f ≤ 1

whenever 0 ≤ f ≤ 1.
(b) The case p = ∞ was proved in part (a). Now, for 1 ≤ p < ∞ and f ∈ La

p we have

‖T y
a f‖pp,a =

∞∫
0

∣∣∣∣
∞∫
0

f(ξ)qa(x, y, ξ) ma(ξ)dξ
∣∣∣∣
p

ma(x)dx

≤
∞∫
0

∞∫
0

|f(ξ)|pqa(x, y, ξ) ma(ξ)dξ ma(x)dx

=
∞∫
0

∞∫
0

qa(x, y, ξ) ma(x)dx |f(ξ)|pma(ξ)dξ = ‖f‖pp,a

where we have used the final statement in Lemma 4.2, the fact that qa(x, y, ξ) is positive and symmetric, 
and Hölder’s inequality.

(c) For f ∈ La
p (1 < p < ∞), by Young’s inequality we have

∞∫
0

|f(ξ)|qa(x, y, ξ) ma(ξ)dξ ≤ 1
p
‖f‖pp,a + 1

q

∞∫
0

|qa(x, y, ξ)|qma(ξ)dξ

and therefore the continuity of T y
a f will be proved if we show that, for each 1 ≤ q < ∞, the integral ∫∞

0 |qa(x, y, ξ)|q ma(ξ)dξ converges absolutely and locally uniformly. In fact, let us fix M > 0; then,

qa(x, y, ξ) ≤ A(y) (xyξ) 1
2

(
1 + y

x
+ y

ξ

)
exp

(
x

2 + y

2 − xy

4ξ − (x− y)2ξ
4xy

)

≤ A1(y) ξ
1
2

(
1 + 1

ξ

)
exp

(
− y

4Mξ

)
, 1

M ≤ x ≤ M, ξ > 0 (34)

where A1(y) = A(y) (yM) 1
2 (1 + y)(1 + M) exp(M2 + y

2 ); the first inequality follows by combining (32) with 
the fact that (1 + y

x + y
ξ )−2a ≤ 1 (a ≥ 0), while the bounds for x imply the second inequality. Clearly, (34)

implies that 
∫∞
0 |qa(x, y, ξ)|qma(ξ)dξ converges absolutely and uniformly in x ∈ [ 1

M , M ], and it follows that 
T y
a f ∈ C(0, ∞).
To prove the Lp-continuity of the translation, let f ∈ Cc(0, ∞) and 1 < p < ∞. Fix M > 0 such that the 

support of f is contained in [ 1
M , M ]. Interchanging the role of x and ξ in the estimate (34), we easily see 

that

|T y+h
a f(x)| ≤ ‖f‖∞

M∫
1
M

qa(x, y + h, ξ) ma(ξ)dξ ≤ ‖f‖∞ A2(y + h)x 1
2

(
1 + 1

x

)
exp

(
−y + h

4Mx

)
(35)

where A2(y) = A1(y) 
∫M

1/M ma(ξ)dξ. It is easy to check that the function A2(y) is locally bounded on (0, ∞), 
so it follows from (35) that there exists g ∈ La

p such that |T y+h
a f(x)| ≤ g(x) for all 0 < x < ∞ and all 

|h| < δ (where δ > 0 is sufficiently small). We have already proved that (T y
a f)(x) ≡ (T x

a f)(y) is continuous 
in y, hence by Lp-dominated convergence we conclude that ‖T y+h

a f − T y
a f‖p,a → 0 as h → 0. As in the 
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proof of the Lp-continuity of the ordinary translation, for general f ∈ La
p the result is proved by taking a 

sequence of functions fn ∈ Cc(0, ∞) which tend to f in La
p-norm.

(d) We start by studying the behavior as x → ∞ of the integral 
∫
Eδ

qa(x, y, ξ) ma(ξ)dξ, where Eδ = {ξ ∈
(0, ∞) : |y−1 − ξ−1| > δ} and δ ∈ (0, y−1) is some fixed constant. We have

qa(x, y, ξ)e−ξ ≤ C
xξ + xy + yξ

|x(ξ − y) + yξ| exp
(
− (x(ξ − y) + yξ)2

8xyξ

)
, x, ξ > 0 (36)

(where C < ∞ is independent of x and ξ). This follows by combining (32) with the boundedness of the 
function |t|e−t2 and the inequality (xy + xξ + yξ)−2a ≤ (xξ)−2a. Furthermore, if x ≥ 2δ−1 and ξ ∈ Eδ, the 
inequalities

xξ + xy + yξ

|x(ξ − y) + yξ| =
∣∣∣∣1 + 2ξ−1

y−1 − ξ−1 + x−1

∣∣∣∣ ≤ 1 + 4
δξ

, exp
(
−x(ξ − y)2

8yξ − yξ

8x

)
≤ exp

(
− (ξ − y)2

4δyξ

)

lead us to

qa(x, y, ξ)ξ−2a−1e−ξ ≤ C ξ−2a−1(1 + ξ−1) exp
(
−ξ

4 − (ξ − y)2

4δyξ

)
, x ≥ 2

δ , ξ ∈ Eδ. (37)

Since the right-hand side of (37) clearly belongs to L1(Eδ), the dominated convergence theorem is applicable, 
and letting x → ∞ in (36) we find that

lim
x→∞

∫
Eδ

qa(x, y, ξ) ma(ξ)dξ =
∫
Eδ

(
lim
x→∞

qa(x, y, ξ)
)
ma(ξ)dξ = 0. (38)

Let us now fix ε > 0, and write Vδ = {ξ ∈ (0, ∞) : |y−1 − ξ−1| ≤ δ}. Since f is continuous, we can choose 
δ > 0 such that |f(ξ) − f(y)| < ε for all ξ ∈ Vδ. By this choice of δ and the positivity of qa(x, y, ξ), we find

∣∣(T y
a f)(x) − f(y)

∣∣ =
∣∣∣∣
∞∫
0

qa(x, y, ξ)
(
f(ξ) − f(y)

)
ma(ξ)dξ

∣∣∣∣

≤
∣∣∣∣
∫
Eδ

qa(x, y, ξ)
(
f(ξ) − f(y)

)
ma(ξ)dξ

∣∣∣∣ + ε

∫
Vδ

qa(x, y, ξ)ma(ξ)dξ

≤ 2‖f‖∞
∫
Eδ

qa(x, y, ξ) ma(ξ)dξ + ε.

By (38), it follows that lim supx→∞
∣∣(T y

a f)(x) − f(y)
∣∣ ≤ ε. Since ε is arbitrary, the proof of part (d) is 

finished.
(e) We begin by claiming that for each δ > 0 we have 

∫∞
δ

qa(x, y, ξ)ma(ξ)dξ → 0 as x → 0. Indeed, if 
x < δ

2 and ξ ≥ δ, combining (36) with the inequalities

xξ + xy + yξ

x(ξ − y) + yξ
= 1 + 2ξ−1

y−1 + x−1 − ξ−1 ≤ 1 + 2δ−1

y−1 + δ−1 , exp
(
−x(ξ − y)2

8yξ − yξ

8x

)
≤ exp

(
−yξ

4δ

)

we see that

qa(x, y, ξ)ξ−2a−1e−ξ ≤ C ξ−2a−1 exp
(
−ξ − yξ

)
, x ≤ δ

, ξ ≥ δ
4 4δ 2
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where the right-hand side belongs to L1([δ, ∞)); hence, if we let x → 0 in (36), by dominated convergence 
we obtain

lim
x→0

∞∫
δ

qa(x, y, ξ) ma(ξ)dξ =
∞∫
δ

(
lim
x→0

qa(x, y, ξ)
)
ma(ξ)dξ = 0. (39)

Let f ∈ Bb(0, ∞) be such that limx→0 f(x) = 0, and let ε > 0. Choose M such that |f(x)| < ε for all x ≤ δ. 
Then,

|(T y
a f)(x)| ≤ ‖f‖∞

∞∫
δ

qa(x, y, ξ) ma(ξ)dξ + ε

δ∫
0

qa(x, y, ξ) ma(ξ)dξ

≤ ‖f‖∞
∞∫
δ

qa(x, y, ξ) ma(ξ)dξ + ε

so that (39) yields lim supx→0 |(T y
a f)(x)| ≤ ε, and hence limx→0(T y

a f)(x) = 0 because ε is arbitrary. �
4.2. Generalized convolution in the spaces La

p

The index Whittaker translation induces, in a standard way, a generalized convolution operator:

Definition 4.4. Let f, g : (0, ∞) → C be complex-valued functions and let a ≥ 0. Write ma(ξ) = ξ−2a−1e−ξ

and let qa(x, y, ξ) be defined as in (31). If the double integral

(f ∗a g)(x) :=
∞∫
0

(T x
a f)(ξ) g(ξ) ma(ξ)dξ =

∞∫
0

∞∫
0

qa(x, y, ξ) f(y) g(ξ) ma(y)dyma(ξ)dξ

exists for almost every 0 < x < ∞, then we call it the index Whittaker convolution (of order a) of the 
functions f and g.

This convolution generalizes the convolution associated with the Kontorovich-Lebedev transform: indeed, 
in the case a = 1

2 it is straightforward to verify, using (16), that

(2π)− 1
2x− 3

2 e−x(f ∗
1/2

g)(2x) = (F ∗
KL

G)(x)

where ∗
KL

is the Kontorovich-Lebedev convolution operator (as defined e.g. in [30, Section 4.1]) and F (x) =

x− 3
2 e−xf(2x), G(x) = x− 3

2 e−xg(2x).
From Definition 4.4 it immediately follows that, for each a ≥ 0, the index Whittaker convolution is 

positivity-preserving (i.e., f ∗a g ≥ 0 whenever f, g ≥ 0) and commutative (i.e., f ∗a g = g ∗a f). Moreover, the 

index Whittaker convolution satisfies Young’s inequality:

Proposition 4.5. Let a ≥ 0 and p1, p2 ∈ [1, ∞] such that 1
p1

+ 1
p2

≥ 1. For f ∈ La
p1

and g ∈ La
p2

, the 

convolution f ∗a g is well-defined and, for r ∈ [1, ∞] defined by 1
r = 1

p1
+ 1

p2
− 1, it satisfies

‖f ∗a g‖r,a ≤ ‖f‖p1,a‖g‖p2,a

(in particular, f ∗a g ∈ La
r).
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Proof. The proof relies on Proposition 4.3(b) and the same reasoning as in the classical case; see e.g. the 
proof of Proposition 1.III.5 of [26]. �

Similar to the case of the classical convolution, the ∗a-convolution of two functions belonging to La
p spaces 

with conjugate exponents defines a continuous function:

Proposition 4.6. Let a ≥ 0 and p, q ∈ [1, ∞] with 1
p + 1

q = 1. If f ∈ La
p and g ∈ La

q , then f ∗a g ∈ Cb(0, ∞).

Proof. The previous proposition ensures the boundedness of f ∗a g. For the continuity, let x0 > 0; then for 
1 < p < ∞ we have

∣∣(f ∗a g)(x) − (f ∗a g)(x0)
∣∣ =

∣∣∣
∞∫
0

(
(T x

a f)(ξ) − (T x0
a f)(ξ)

)
g(ξ)ma(ξ)dξ

∣∣∣
≤ ‖T x

a f − T x0
a f‖p,a‖g‖q,a → 0 as x → x0

by Hölder’s inequality and Proposition 4.3(c). In the case p = ∞ (and by symmetry p = 1), the continuity 
of f ∗a g follows by dominated convergence, using parts (a) and (c) of Proposition 4.3. �

We now turn our attention to the connection between the ∗a-convolution and the index Whittaker trans-
form, which will be our tool for establishing additional Lp properties for the convolution. We shall consider 
the confluent hypergeometric form of the index Whittaker transform, which we define by

(Ψaf)(τ) =
∞∫
0

f(x)xa+iτΨ(a + iτ, 1 + 2iτ ;x) ma(x)dx, τ ≥ 0 (40)

(later, complex values for τ shall also be considered).
Before stating the basic properties of this integral transform, we observe that, by transformation of the 

Whittaker differential equation, the function xa+νΨ(a + ν, 1 + 2ν; x) is a standard solution of the confluent 
hypergeometric-type differential equation

Law(x) = (ν2 − a2)w(x), (41)

where La is the differential operator

Laf = x2 d
2f

dx2 − ((2a− 1)x + x2) df
dx

. (42)

The other standard solution of (41) is xa+ν
1F1(a + ν, 1 + 2ν; x), where 1F1(a + ν, 1 + 2ν; x) denotes the 

confluent hypergeometric function of the first kind [19, Chapter 13].

Theorem 4.7. For a > 0, the index Whittaker transform (40) defines an isometric isomorphism

Ψa : La
2 −→ L2

(
(0,∞); ρa(τ)dτ

)

where ρa(τ) := π−2τ sinh(2πτ)
∣∣Γ(a + iτ

)∣∣2, whose inverse is given by

(Ψ−1
a ϕ)(x) =

∞∫
ϕ(τ)xa+iτΨ(a + iτ, 1 + 2iτ ;x) ρa(τ)dτ (43)
0



R. Sousa et al. / J. Math. Anal. Appl. 475 (2019) 939–965 955
the convergence of the integrals (40) and (43) being understood with respect to the norm of the spaces 
L2

(
(0, ∞); ρa(τ)dτ

)
and La

2 respectively. Moreover, the confluent hypergeometric-type differential operator 
(42) is connected with the Whittaker transform via the identity

[
Ψa(Laf)

]
(τ) = (τ2 + a2) ·

(
Ψaf

)
(τ), f ∈ Da

2 (44)

where

Da
2 :=

{
f ∈ La

2

∣∣∣ f and f ′ locally absolutely continuous on (0,∞), Laf ∈ La
2 , lim

x→∞
x1−2ae−xf ′(x) = 0

}
.

Proof. The index Whittaker transform in confluent hypergeometric form can be written as the composition 
Ψaf = W1

2−a(Θaf), where Θa : La
2 −→ L2

(
(0, ∞); y−2dy

)
is the isometric operator defined by

(Θaf)(x) := x
1
2−ae−

x
2 f(x), x > 0

and W1
2−a is the operator (1) of the index Whittaker transform in classical form. Therefore, the fact that 

Ψa is an isomorphism and the inversion formula follows from known results on the L2-theory for the index 
Whittaker transform, cf. [25, Section 3]. As for relation (44), it is due to the fact that the index Whittaker 
transform in confluent hypergeometric form arises from the spectral expansion of the differential operator 
(42), cf. [24, Section 3.2] and [27, Section 8]. �

We note that, for a > 0 and ν = iτ , the product formula (30) can be written as

(xy)a+νΨ(a + ν, 1 + 2ν;x)Ψ(a + ν, 1 + 2ν; y) = [Ψa qa(x, y, ·)](τ), (x, y > 0, a > 0, τ ≥ 0).

Applying the inverse Whittaker transform (43), we find that for x, y, ξ > 0 and a > 0 we have

qa(x, y, ξ) =
∞∫

0

(xyξ)a+iτΨ(a + iτ, 1 + 2iτ ;x)Ψ(a + iτ, 1 + 2iτ ; y)Ψ(a + iτ, 1 + 2iτ ; ξ) ρa(τ)dτ (45)

where the integral on the right-hand side converges absolutely, as can be verified using the asymptotic forms 
(8) and 

∣∣Γ(a + iτ)
∣∣ ∼ (2π) 1

2 τa−
1
2 exp(−πτ

2 ), τ → +∞ (cf. [19, Equation 5.11.9]).
The following upper bound on the kernel of the index Whittaker transform turns out to be useful for 

studying the connection with the ∗a-convolution:

Lemma 4.8. Let a ≥ 0 and ν ∈ C belonging to the strip 0 ≤ Re ν ≤ a. Then,
∣∣xa+νΨ(a + ν, 1 + 2ν;x)

∣∣ ≤ 1 for all x ≥ 0.

Proof. By relations 2.17.7.4 in [23] and 3.7(6) in [5], the confluent hypergeometric function admits the 
integral representation

xa+νΨ(a + ν, 1 + 2ν;x) = xa+ 1
2

2

∞∫
1

e−
x
2 (t−1)

(
t− 1
t + 1

)a
2− 1

4

P
1
2−a

− 1
2+ν

(t) dt

= 2−a− 1
2π− 1

2

Γ(a) xa+ 1
2

∞∫
1

e−
x
2 (t−1) (t− 1)a− 1

2

π∫
0

(
t + (t2 − 1) 1

2 cos s
)−a+ν(sin s)2a−1ds dt

(Re a > 0, ν ∈ C)
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where P
1
2−a

− 1
2+ν

(t) is the associated Legendre function of the first kind [5, Chapter III]. Consequently,

∣∣xa+νΨ(a + ν, 1 + 2ν;x)
∣∣ ≤ 2−Re a− 1

2π− 1
2

Γ(a) xa+ 1
2

∞∫
1

e−
x
2 (t−1) (t− 1)Re a− 1

2

×
π∫

0

(
t + (t2 − 1) 1

2 cos s
)Re(−a+ν)(sin s)2Re a−1ds dt

= Γ(Re a)
|Γ(a)| xRe(a+ν)Ψ

(
Re(a + ν), 1 + 2Re ν;x

)
(Re a < 1

2 , ν ∈ C).

(46)

In particular, if a is a positive real number then |xa+νΨ(a +ν, 1 +2ν; x)| ≤ xa+Re νΨ(a +Re ν, 1 +2Re ν; x); 
therefore, to conclude the proof we just need to prove that |xa+νΨ(a + ν, 1 + 2ν; x)| ≤ 1 for a > 0 and 
0 ≤ ν ≤ a (the result for a = 0 being obtained by continuity). Indeed, (3) yields that

0 < xa+νΨ(a + ν, 1 + 2ν;x) = 1
Γ(a + ν)

∞∫
0

e−ssa+ν−1
(
1 + s

x

)−a+ν

ds

≤ 1
Γ(a + ν)

∞∫
0

e−ssa+ν−1ds

= 1 (x > 0, a > 0, 0 ≤ ν ≤ a)

where the last inequality holds because −a + ν ≤ 0. �
The fundamental properties which connect the index Whittaker translation and convolution with the 

index Whittaker transform and its associated differential operator (42) are given in the following proposition.

Proposition 4.9. Let y > 0, a > 0 and τ ≥ 0. Then:
(a) If f ∈ La

2, then 
(
Ψa(T y

a f)
)
(τ) = ya+iτΨ(a + iτ, 1 + 2iτ ; y) (Ψaf)(τ);

(b) If f ∈ La
2 and g ∈ La

1, then 
(
Ψa(f ∗a g)

)
(τ) = (Ψaf)(τ) (Ψag)(τ);

(c) If f ∈ La
2 and g ∈ La

1, then T y
a (f ∗a g) = (T y

a f) ∗a g;
(d) If f ∈ Da

2 , then T y
a f ∈ Da

2 and La(T y
a f) = T y

a (Laf);
(e) If f ∈ Da

2 and g ∈ La
1, then f ∗a g ∈ Da

2 and La(f ∗a g) = (Laf) ∗a g.

Proof. (a) Let f ∈ La
1 ∩ La

2 . The Macdonald-type formula (30), combined with Fubini’s theorem, gives

(
Ψa(T y

a f)
)
(τ) =

∞∫
0

∞∫
0

f(ξ)qa(x, y, ξ) ma(ξ)dξ xa+iτΨ(a + iτ, 1 + 2iτ ;x) ma(x)dx

= ya+iτΨ(a + iτ, 1 + 2iτ ; y)
∞∫
0

f(ξ)ξa+iτΨ(a + iτ, 1 + 2iτ ; ξ) ma(ξ)dξ

= ya+iτΨ(a + iτ, 1 + 2iτ ; y) (Ψaf)(τ).

By denseness and continuity, the equality extends to all f ∈ La
2 , as required.



R. Sousa et al. / J. Math. Anal. Appl. 475 (2019) 939–965 957
(b) For f ∈ La
1 ∩ La

2 and g ∈ La
1 we have

(
Ψa(f ∗a g)

)
(τ) =

∞∫
0

∞∫
0

(T x
a f)(ξ) g(ξ) ma(ξ)dξ xa+iτΨ(a + iτ, 1 + 2iτ ;x) ma(x)dx

=
∞∫
0

g(ξ)
(
Ψa(T ξ

a f)
)
(τ) ma(ξ)dξ

= (Ψaf)(τ)
∞∫
0

g(ξ) ξa+iτΨ(a + iτ, 1 + 2iτ ; ξ) ma(ξ)dξ = (Ψaf)(τ) (Ψag)(τ)

(47)

where we have used Fubini’s theorem and part (a). Again, denseness yields the result.
(c) By the previous properties,

Ψa

[
T y
a (f ∗a g)

]
(τ) = Ψa

[
(T y

a f) ∗a g
]
(τ) = ya+iτΨ(a + iτ, 1 + 2iτ ; y) (Ψaf)(τ) (Ψag)(τ).

Since both T y
a (f ∗a g) and (T y

a f) ∗a g are elements of the space La
2 (see Proposition 4.10 below), this implies 

that T y
a (f ∗a g) = (T y

a f) ∗a g.
(d) Since the integral transform Ψa is generated by the spectral expansion of the operator (42), it is known 

from the general spectral theory of linear differential operators [27] that a function f ∈ La
2 belongs to Da

2 if 
and only if (τ2 +a2) · (Ψaf)(τ) ∈ L2

(
(0, ∞); ρa(τ)dτ

)
. Using this fact and the inequality |xa+iτΨ(a + iτ, 1 +

2iτ ; x)| ≤ 1 (Lemma 4.8), it is easy to see that T y
a f ∈ Da

2 . The identity La(T y
a f) = T y

a (Laf) holds because 
the Whittaker transform of both sides equals (τ2 + a2)ya+iτΨ(a + iτ, 1 + 2iτ ; y)(Ψaf)(τ).

(e) The proof is similar to that of (d). �
We have seen in Proposition 4.5 that if f ∈ La

2 and g ∈ La
p (1 ≤ p < 2) then the Whittaker convolution 

f ∗a g exists and belongs to La
2p
2−p

. Using the index Whittaker transform, this result can be strengthened as 
follows:

Proposition 4.10. Let f ∈ La
2 and g ∈ La

p, where 1 ≤ p < 2 and a > 0. Then f ∗a g ∈ La
2, and we have

‖f ∗a g‖La
2 ≤ Cp‖f‖La

2‖g‖La
p

where Cp =
∥∥xaΨ(a, 1; x)

∥∥
La

q
< ∞ (being 1

p + 1
q = 1).

Proof. The fact that ‖xaΨ(a, 1; x)‖La
q

is finite for each 2 < q ≤ ∞ is easily verified using the limiting forms 
(2), (4). Now, for f, g ∈ Cc(0, ∞) we have

‖f ∗a g‖La
2 =

∥∥(Ψaf) · (Ψag)
∥∥
L2(ρa) ≤ sup

τ≥0

∣∣(Ψag)(τ)
∣∣ · ∥∥Ψaf

∥∥
L2(ρa) ≤

∥∥xaΨ(a, 1;x)
∥∥
La

q
‖g‖La

p
‖f‖La

2

where we denoted L2(ρa) = L2
(
(0, ∞); ρa(τ)dτ

)
; we have used the isometric property of the index Whittaker 

transform, and the final step relies on the inequality |xa+iτΨ(a + iτ, 1 + 2iτ ; x)| ≤ xaΨ(a, 1; x) (proved in 
(46)) and on Hölder’s inequality. As usual, the result for f ∈ La

2 and g ∈ La
p follows from the denseness of 

Cc(0, ∞) in these Lp spaces. �
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Corollary 4.11. (a) If f, g ∈ La
2 (a > 0), then f ∗a g ∈ La

q for all 2 < q ≤ ∞, with

‖f ∗a g‖La
q
≤ Cq‖f‖La

2‖g‖La
2

being Cq =
∥∥xaΨ(a, 1; x)

∥∥
La

q
.

(b) Let 1 ≤ p1 < 2 and 1 ≤ p2 ≤ 2 such that 1
p1

+ 1
p2

≤ 3
2 . Let r be defined by 1

r = 1
p1

+ 1
p2

− 1. If f ∈ La
p1

and g ∈ La
p2

(a > 0), then f ∗a g ∈ La
s for all s ∈ [2, r].

Proof. Both results can be deduced from Proposition 4.10 by arguing as in the proofs of Theorem 5.5(ii) 
and Corollary 5.6 of [7]. �
4.3. The convolution Banach algebra La,ν

In this subsection we focus on the properties of the index Whittaker convolution in the family of spaces 
{La,ν}ν≥0, where

La,ν := L1
(
(0,∞);xa+νΨ(a + ν, 1 + 2ν;x) ma(x)dx

)
(0 < a < ∞, ν ≥ 0)

being ma(x) = x−2a−1e−x. We observe that, by the limiting forms of the confluent hypergeometric function 
of the second kind,

f ∈ La,ν if and only if f ∈ L1
(
(0, 1];x−a−ν−1dx

)
∩ L1

(
[1,∞);x−2a−1e−xdx

)
(ν > 0)

f ∈ La,0 if and only if f ∈ L1
(
(0, 1];−x−a−1 log x dx

)
∩ L1

(
[1,∞);x−2a−1e−xdx

) (48)

and therefore the spaces La,ν are ordered:

La,ν1 ⊂ La,ν2 whenever ν1 > ν2. (49)

It is also interesting to note that the family {La,ν}ν≥0 contains the space La
1. Indeed, (7) yields Ψ(2a, 1 +

2a; x) ≡ x−2a, which means that La
1 = La,a.

The following lemma gives some properties of the index Whittaker transform in the spaces La,ν which 
will be needed in what follows.

Lemma 4.12. Let 0 < a < ∞ and ν ≥ 0. If f ∈ La,ν , then its index Whittaker transform Ψaf is well-defined 
as an absolutely convergent integral, and it satisfies

(Ψaf)(τ) −−−−→
τ→∞

0. (50)

Moreover, if Ψaf is identically zero, then f(x) = 0 for almost every x > 0.

Proof. The absolute convergence of the integral (40) follows from the inequality (46) and the inclusion 
La,ν ⊂ La,0. By (8) we have limτ→∞ xa+iτΨ(a + iτ, 1 + 2iτ ; x) = 0 for each x > 0, hence dominated 
convergence gives (50).

Now, suppose that (Ψaf)(τ) = 0 for all τ ≥ 0. Since, by integral 2.16.8.3 in [22], the Whittaker transform 
can be written as
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(Ψaf)(τ) = 22−2a

|Γ(a + iτ)|2

∞∫
0

f(x)
∞∫
0

exp
(
− t2

4x
)
t2a−1K2iτ (t)dtma(x)dx

= 22−2a

|Γ(a + iτ)|2

∞∫
0

K2iτ (t) t2a−1
∞∫
0

exp
(
− t2

4x
)
f(x)ma(x)dx dt

(the application of Fubini’s theorem being easily justified), this means that the Kontorovich-Lebedev trans-
form of the function t2a−1∫∞

0 exp
(
− t2

4x
)
f(x) ma(x)dx vanishes identically. By the injectivity property of the 

Kontorovich-Lebedev transform (see [29, Theorem 6.5]), it follows that

∞∫
0

exp
(
− t2

4x
)
f(x) ma(x)dx = 0 for almost every t > 0.

Now, the left-hand side is the Laplace transform of the function x2a−1e−1/xf( 1
x ) evaluated at z = t2

4 . Using 
the inverse theorem for the Laplace transform and a reasoning similar to that in the proof of Theorem 6.5 
of [29], it follows that f(x) = 0 for almost every x > 0, and this completes the proof. �
Proposition 4.13. Let a > 0 and ν ≥ 0. For f, g ∈ La,ν , the index Whittaker convolution f ∗a g is well-defined 

and satisfies

‖f ∗a g‖La,ν ≤ ‖f‖La,ν‖g‖La,ν

(in particular, f ∗a g ∈ La,ν). Moreover, properties (a) and (b) in Proposition 4.9 are valid when f and g

belong to La,ν and τ is a complex number such that |Im τ | ≤ ν.

Proof. For a and ν as in the statement, we have

‖f ∗a g‖La,ν ≤
∞∫
0

∞∫
0

∞∫
0

|f(y)|qa(x, y, ξ)ma(y)dy |g(ξ)|ma(ξ)dξ xa+νΨ(a + ν, 1 + 2ν;x)ma(x)dx

=
∞∫
0

∞∫
0

∞∫
0

xa+νΨ(a + ν, 1 + 2ν;x)qa(x, y, ξ)ma(x)dx |f(y)|ma(y)dy |g(ξ)|ma(ξ)dξ

=
∞∫
0

|f(y)| ya+νΨ(a + ν, 1 + 2ν; y)ma(y)dy
∞∫
0

|g(ξ)| ξa+νΨ(a + ν, 1 + 2ν; ξ)ma(ξ)dξ

= ‖f‖La,ν‖g‖La,ν

where the positivity of the integrand justifies the change of order of integration, and the second equal-
ity follows from the product formula (30). The final statement is proved using the same calculations as 
before. �
Corollary 4.14. The Banach space La,ν , equipped with the convolution multiplication f · g ≡ f ∗a g, is a 

commutative Banach algebra without identity element.

Proof. Proposition 4.13 shows that the Whittaker convolution defines a binary operation on La,ν for which 
the norm is submultiplicative. The commutativity and associativity of the Whittaker convolution in the 
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space La,ν follows from the property 
(
Ψa(f ∗a g)

)
(τ) = (Ψaf)(τ) (Ψag)(τ) and the injectivity property of 

Lemma 4.12.
Suppose now that there exists e ∈ La,ν such that f ∗a e = f for all f ∈ La,ν . This means that

(Ψaf)(τ) (Ψae)(τ) = (Ψaf)(τ) for all f ∈ La,ν and τ ≥ 0.

Clearly, this implies that (Ψae)(τ) = 1 for all τ ≥ 0, which contradicts Lemma 4.12. This shows that there 
exists no identity element for the Whittaker convolution on the space La,ν . �

In order to prove the Wiener-Lévy theorem for the index Whittaker transform, we need the following 
lemma on the existence of additional solutions for the functional equation associated with the product 
formula (30).

Lemma 4.15. Let a > 0 and ν ≥ 0. Suppose that the function ω(x) is such that there exists C > 0 for which

∣∣ω(x)
∣∣ ≤ C xa+νΨ(a + ν, 1 + 2ν;x) for almost every x > 0 (51)

and that ω(x) is a nontrivial solution of the functional equation

ω(x)ω(y) =
∞∫
0

ω(ξ) qa(x, y, ξ) ma(ξ)dξ (x, y > 0). (52)

Then ω(x) = xa+ρΨ(a + ρ, 1 + 2ρ; x) for some ρ ∈ C with |Re ρ| ≤ ν.

Proof. To start, we claim that

La,x qa(x, y, ξ) = La,y qa(x, y, ξ) = (53)

= −
∞∫

0

(xyξ)a+iτΨ(a + iτ, 1 + 2iτ ;x)Ψ(a + iτ, 1 + 2iτ ; y)Ψ(a + iτ, 1 + 2iτ ; ξ) (τ2 + a2)ρa(τ)dτ

where La,x and La,y denote the differential operator (42) acting on the variables x and y respectively. Indeed, 
this identity is obtained via differentiation of (45) under the integral sign; recall that xa+νΨ(a +ν, 1 +2ν; x)
satisfies the differential equation (41). The validity of differentiation under the integral sign is justified by the 
absolute and locally uniform convergence of the differentiated integrals, which is verified in a straightforward 
way using the differentiation formula (11) and the asymptotic expansion (8).

Now, assuming that the right-hand side of the functional equation (52) can also be differentiated under 
the integral sign, it follows from (53) that

(
La,x ω(x)

)
ω(y) =

(
La,y ω(y)

)
ω(x) (x, y > 0). (54)

Here the possibility of interchanging derivative and integral follows again from the locally uniform conver-
gence of the differentiated integrals, which can be straightforwardly checked using (51), the identity

∂

∂x
qa(x, y, ξ) =

(
1 + a

x

)
qa(x, y, ξ) +

(yξ
x

− y − ξ
)
qa− 1

2
(x, y, ξ)

(which is a consequence of (15)) and the upper bound (32) for the function qa(x, y, ξ).
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Notice that (54) holds for arbitrary values of x and y. Therefore, we must have

La,x ω(x)
ω(x) = La,y ω(y)

ω(y) = λ

for some λ ∈ C, meaning that ω(x) is a solution of the confluent hypergeometric-type equation

Laω(x) = (ρ2 − a2 )ω(x)

where ρ is a complex number such that ρ2 = λ + a2. This implies that ω(x) is a linear combination of 
xa+ρΨ(a +ρ, 1 +2ρ; x) and xa+ρ

1F1(a +ρ, 1 +2ρ; x). But 1F1(a +ρ, 1 +2ρ; x) is, for all ρ ∈ C, unbounded as 
x goes to infinity [19, Equation 13.2.23], violating (51). In addition, the limiting forms for Ψ(a +ρ, 1 +2ρ; x)
(which follow from (2), (4)) show that 

∣∣xa+ρΨ(a + ρ, 1 + 2ρ; x)
∣∣≤ C xa+νΨ(a + ν, 1 + 2ν; x) holds if and 

only if |Re ρ| ≤ ν. Therefore, we must have ω(x) = xa+ρΨ(a + ρ, 1 + 2ρ; x) for ρ belonging to the strip 
|Re ρ| ≤ ν. �

As a consequence of Corollary 4.14, Lemma 4.15 and the elementary theory of Banach algebras, we find 
that an analogue of the Wiener-Lévy theorem is valid for the index Whittaker transform:

Theorem 4.16. Let f ∈ La,ν , λ ∈ C and ν > 0. Suppose that λ + (Ψaf)(τ) �= 0 for all τ in the closed strip 
|Im τ | ≤ ν, including infinity. Then there exists a unique function η ∈ La,ν such that

1
λ + (Ψaf)(τ) = λ + (Ψaη)(τ) (|Im τ | ≤ ν). (55)

Proof. The proof is entirely analogous to the proof of Theorem 15.15 of [29], appealing to Corollary 4.14
and Lemma 4.15 in place of the analogous results for the Kontorovich-Lebedev convolution. �
Remark 4.17. The converse of this theorem is also true, i.e. if for some τ0 with |Im τ0| ≤ ν we have λ +
(Ψaf)(τ0) = 0, then no function η ∈ La,ν can satisfy (55). Indeed, from (49) and the condition η ∈ La,ν it 
follows that the integral defining (Ψaη)(τ) converges absolutely whenever |Im τ | ≤ ν, so if λ +(Ψaf)(τ0) = 0
then (55) will fail at τ = τ0, regardless of the choice of η ∈ La,ν .

5. Application to convolution integral equations

In this final section we demonstrate that the index Whittaker convolution, and especially the analogue of 
the Wiener-Lévy theorem proved above, can be used to study the existence of solution for integral equations 
of the second kind which can be represented as index Whittaker convolution equations, in the sense defined 
as follows:

Definition 5.1. The integral equation of the second kind

f(x) +
∞∫
0

J(x, y)f(y) dy = h(x), (56)

where h is a known function and f is to be determined, is said to be a index Whittaker convolution equation
if there exists a > 0 and θ ∈ La,0 such that J(x, y) = (T x

a θ)(y) ma(y) ≡ (T x
a θ)(y) y−2a−1e−y. In other 

words, (56) is a index Whittaker convolution equation if it can be written in the form

f(x) + (f ∗a θ)(x) = h(x) (57)

for some a > 0 and θ ∈ La,0.
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Suppose that h, θ ∈ La,ν (being a > 0 and ν ≥ 0), and consider the ∗a-convolution integral equation (57). 
Applying the index Whittaker transform to both sides of the convolution equation, we get

(Ψaf)(τ)
[
1 + (Ψaθ)(τ)

]
= (Ψah)(τ) (|Im τ | ≤ ν). (58)

Now, Theorem 4.16 and the subsequent remark show that the condition

1 + (Ψaθ)(τ) �= 0 throughout the strip |Im τ | ≤ ν

is a necessary and sufficient condition for the existence of a unique η ∈ La,ν satisfying

1
1 + (Ψaθ)(τ) = 1 + (Ψaη)(τ) (|Im τ | ≤ ν), (59)

and if this holds then from (58) we obtain (Ψaf)(τ) = (Ψah)(τ)
[
1 + (Ψaη)(τ)

]
(|Im τ | ≤ ν) or, equivalently,

f(x) = h(x) + (h ∗a η)(x) = h(x) +
∞∫
0

Jη(x, y)h(y) dy (60)

where Jη(x, y) = (T x
a η)(y) ma(y). In summary, we have proved the following:

Theorem 5.2. Let J(x, y) = (T x
a θ)(y) ma(y) where θ ∈ La,ν (a > 0, ν ≥ 0), and suppose that 1 +(Ψaθ)(τ) �= 0

for all τ in the strip |Im τ | ≤ ν, including infinity. Then the integral equation (57) has, for any h ∈ La,ν

a unique solution f ∈ La,ν which can be represented in the form (60) for some η ∈ La,ν . Conversely, if 
1 + (Ψaθ)(τ0) = 0 for some τ0 with |Im τ0| ≤ ν, then the equation (57) is not solvable in the space La,ν.

We point out that as long as (Ψaθ)(τ)
1+(Ψaθ)(τ) = O(τ−2), the representation (60) for the solution of the integral 

equation can be rewritten as

f(x) = h(x)−
∞∫
0

∞∫
0

(Ψaθ)(τ)
1 + (Ψaθ)(τ) (xy)a+iτΨ(a+ iτ, 1+2iτ ;x)Ψ(a+ iτ, 1+2iτ ; y) ρa(τ)dτ h(y) ma(y)dy (61)

(here we used (43) and Proposition 4.9(a)). In many cases of interest, the index Whittaker transform (Ψaθ)(τ)
can be computed in closed form using integration formulas for the confluent hypergeometric function (see 
[23, Section 2.19]), so that (61) becomes an explicit expression for the solution of the convolution integral 
equation, which can be evaluated using numerical integration.

The index Whittaker translation of the power function θ(x) = xβ , whose closed form was computed in 
Lemma 4.2, yields a large family of ∗a-convolution integral equations to which this theorem can be applied:

Corollary 5.3. Let h ∈ La,ν (a > 0, ν ≥ 0), λ ∈ C, and β ∈ C with Reβ > a + ν. The integral equation

f(x) + λ

∞∫
0

(xy)βΨ(β, 1 − 2a + 2β;x + y) f(y) ma(y)dy = h(x), (62)

has a unique solution f ∈ La,ν if and only if the condition

Γ(β) + λ 2β−2a Γ
(
β − a + iτ

)
Γ
(
β − a− iτ

)
�= 0

holds for all τ ∈ C in the strip |Im τ | ≤ ν, including infinity.
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Proof. Let θ(x) = λ xβ. It is clear from (48) that θ ∈ La,ν . We have seen in Lemma 4.2 that

(T x
a θ)(y) = λ (xy)βΨ(β, 1 − 2a + 2β;x + y).

The index Whittaker transform Ψaθ is computed using relation 2.19.3.7 in [23]:

(Ψaθ)(τ) = λ

∞∫
0

xβ+a+iτΨ(a + iτ, 1 + 2iτ ;x) ma(x)dx = λ

Γ(β) Γ(β − a + iτ)Γ(β − a− iτ), |Im τ | ≤ ν.

The corollary is therefore obtained by setting θ(x) = λxβ in Theorem 5.2. �
It should be emphasized that Theorem 5.2 is not just an existence and uniqueness theorem for the 

solution of ∗a-convolution integral equations: under a mild assumption, (61) provides an explicit expression 

for the solution which involves integration with respect to the parameters of the confluent hypergeometric 
function. However, if we are able to determine a closed-form expression for the function η ∈ La,ν which 
satisfies (59), then the representation (60) yields a more tractable explicit expression for the solution which 
does not involve index integrals. This is illustrated in the following corollary:

Corollary 5.4. If h ∈ Ln+ 1
2 ,ν where n ∈ N0 and 0 ≤ ν < 1

2 , then the integral equation

f(x) + n!
π

∞∫
0

(x
y

)n+1
Ψ(n + 1, 2;x + y) f(y) e−ydy = h(x), (63)

has a unique solution f ∈ Ln+ 1
2 ,ν , which is given by

f(x) = h(x) + (h ∗
n+ 1

2
ηn)(x) = h(x) +

∞∫
0

∞∫
0

qn+ 1
2
(x, y, ξ)h(y) ηn(ξ) mn+ 1

2
(y)dymn+ 1

2
(ξ)dξ

where

ηn(x) := π− 3
2 n! Γ(3

2 + n)x 3
2+n

n∑
k=0

(−1)k+1

(1
2 + k) k! (n− k)!

Ψ(1
2 , 1 − k;x). (64)

We observe that (63) is a natural generalization of the so-called Lebedev integral equation

f(x) +
√

2
π3

∞∫
0

f(y)e
−x−y

x + y
dy = h(x),

which is obtained in the case n = 0 (via the elementary transformation f(x) = x−1e−xf(2x), h(x) =
x−1e−xh(2x)). This Lebedev integral equation was introduced in [15]; it is a Kontorovich-Lebedev convo-
lution equation, and its solution was derived in [29, Section 17.1]. The existence of a closed-form solution 
for the generalized Lebedev equation (63) is noteworthy because the function Ψ(a, 2; ·) (and the closely 
related Whittaker function Wα, 12

) is a particular case of the confluent hypergeometric function which is 
often encountered in problems in physics and chemistry [14].

Proof of Corollary 5.4. The integral equation (63) is the particular case of (62) which is obtained by setting 
a = n + 1 , β = n + 1 and λ = n! . In this case, (Ψn+ 1 θ)(τ) = 1 Γ(1 + iτ)Γ(1 − iτ) = 1 . Clearly, 
2 π 2 π 2 2 cosh(πτ)
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if |Im τ | < 1
2 then Re[cosh(πτ)] > 0, hence the solvability condition 1 + (Ψn+ 1

2
θ)(τ) �= 0 holds in the 

strip |Im τ | ≤ ν < 1
2 and, according to Theorem 5.2, the unique solution of (63) is the function f(x) =

h(x) + (h ∗
n+ 1

2
η)(x), where η is the function satisfying

(Ψn+ 1
2
η)(τ) = 1

1 + (Ψn+ 1
2
θ)(τ) − 1 = − 1

2 cosh2(πτ2 )
.

It remains to show that the function (64) satisfies this requirement. Using integral 2.16.48.14 of [22] and 
recalling the identity (6), we find that

∞∫
0

1
2 cosh2(πτ2 )

x− 1
2+iτΨ(1

2 + iτ, 1 + 2iτ ;x) ρ1/2(τ)dτ = π−1x
1
2 Ψ(1

2 , 1;x). (65)

Now, by (11) and the recurrence relation for the Gamma function we have

∣∣Γ( 1
2 + iτ

)∣∣2 dn

dxn

[
x− 1

2+n+iτΨ
(1

2 + iτ, 1 + 2iτ ;x
)]

=
∣∣Γ(1

2 + iτ
)∣∣2∣∣( 1

2 + iτ
)
n

∣∣2x− 1
2+iτΨ

(1
2 + n + iτ, 1 + 2iτ ;x

)

=
∣∣Γ(1

2 + n + iτ
)∣∣2x− 1

2+iτΨ
(1

2 + n + iτ, 1 + 2iτ ;x
)
.

Therefore, multiplying both sides of (65) by xn and then applying dn

dxn , we obtain

∞∫
0

1
2 cosh2(πτ2 )

x− 1
2+iτΨ(1

2 + n + iτ, 1 + 2iτ ;x) ρn+1/2(τ)dτ = π−1 dn

dxn

[
x

1
2+nΨ(1

2 , 1;x)
]

=

= π− 3
2n! Γ(3

2 + n)x 1
2

n∑
k=0

(−1)k

(1
2 + k) k! (n− k)!

Ψ(1
2 , 1 − k;x)

where the last equality is obtained via Leibniz’s rule, using the identities dn−k

dxn−k x
1/2+n = Γ( 3

2+n)
Γ( 3

2+k)x
1
2+k and 

(10) (the possibility of differentiating under the integral sign being justified as in the proof of Lemma 4.15). 
If we now multiply both sides by x1+n and recall the notation (43), we obtain 

[
Ψ−1
n+ 1

2

(
2 cosh2(πτ2 )

)]
(x) =

−ηn(x). Consequently, (Ψn+ 1
2
ηn)(τ) = −2 cosh2(πτ2 ), as was to be proved. �
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