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We consider stochastic UL and LU block factorizations of the one-step transition 
probability matrix for a discrete-time quasi-birth-and-death process, namely a 
stochastic block tridiagonal matrix. The simpler case of random walks with only 
nearest neighbors transitions gives a unique LU factorization and a one-parameter 
family of factorizations in the UL case. The block structure considered here yields 
many more possible factorizations resulting in a much enlarged class of potential 
applications. By reversing the order of the factors (also known as a Darboux 
transformation) we get new families of quasi-birth-and-death processes where it 
is possible to identify the matrix-valued spectral measures in terms of a Geronimus 
(UL) or a Christoffel (LU) transformation of the original one. We apply our results 
to one example going with matrix-valued Jacobi polynomials arising in group 
representation theory. We also give urn models for some particular cases.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Among the class of Markov chains there is one set that can be analyzed by so-called “spectral methods”, 
namely random walks (discrete-time) and birth-and-death processes (continuous time). They go with a 
one-step tridiagonal matrix and this naturally leads to a self-adjoint operator in certain Hilbert space. 
Starting with [16–18], and using earlier ideas of W. Feller and H. P. McKean in the case of diffusion 
processes, there is a vast literature on this subject, which relies on the rich theory of orthogonal polynomials. 
A historical overview of this material can be seen, for instance, in [15]. Eventually this approach was 
extended to cover so-called quasi-birth-and-death (QBD) processes by exploiting matrix-valued orthogonal 
polynomials, a notion due to M.G. Krĕın, see [19,20] for this, and [2,6] for its use in the study of QBD 
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processes. Here the tridiagonal matrix is replaced by a block tridiagonal one. For a general reference about 
QBD processes see [21,23]. The spectral methods work well when one has knowledge of the orthogonal 
polynomials and the spectral measure associated with the one-step transition probability matrix. Needless 
to say, this is a limitation on the wide practical use of the method, although many interesting general results 
are available.

On the other hand, given either a tridiagonal or a block tridiagonal matrix, assumed here to be stochastic, 
a natural problem is to explicitly construct some simple probabilistic model (such as an urn model) whose 
one-step transition probability matrix coincides with the given one. This is not as simple as it may sound: 
to give an instance of this consider the case of the matrices corresponding to the Krawtchouk and the 
Hahn orthogonal polynomials. In these two cases the urn model predates the consideration of the spectral 
problem for the tridiagonal matrices by a long stretch, see for instance [6] or [5], p. 378, where one sees the 
connection with work of P. and T. Ehrenfest in 1907 (see [4]), as well as D. Bernoulli (1769) and S. Laplace 
(1812). Both of these cases are very special cases of the so-called Askey-Wilson tridiagonal matrices, see [1], 
for which nobody has been able to find a nice urn model. For another well known example of a tridiagonal 
matrix, namely the one associated to the Jacobi polynomials, a first and rather contrived urn model was 
only given, as far as we know, in [7] (see also [10] for a different urn model). For a matrix-valued version of 
the Jacobi polynomials a pair of explicit models was given in [13].

Keeping in mind the two points raised above, we are in a position to describe the purpose of this 
paper. Extending our previous work for random walks in [10], we consider the block tridiagonal transition 
probability matrix of a discrete-time QBD process and perform UL and LU stochastic block factorizations. 
Unlike the case of random walks, where the UL factorization comes with exactly one free parameter, now, 
for the stochastic block factorization, there may be many degrees of freedom, as we will see in Section 2. 
The same applies for the LU factorization. The main motivation of this factorization is to analyze the urn 
model associated with the QBD process in terms of two unrelated and simpler urn models and to combine 
them to obtain a simpler description of the original QBD process.

Once we are able to perform UL and LU stochastic block factorizations of the block tridiagonal transition 
probability matrix of a discrete-time QBD process, we will give a general way to produce a family of new 
ones, performing what is called a discrete Darboux transformation by reversing the order of multiplication 
(see Section 3). We will also give a way to relate the original and the new spectral ingredients, i.e. the 
matrix-valued orthogonal polynomials and the matrix-valued spectral measure.

We apply our results in Section 4 to study one example of Jacobi type coming from group representation 
theory, introduced for the first time in [12] (see also [13]). We focus on the 2 ×2 case and study two particular 
situations, where we can illustrate the features that arise in the case of a general QBD process. Finally, in 
Section 5, we start from a special case of the urn model described in [13] and find a different urn model as 
an application of the method of the stochastic block factorization.

2. Stochastic LU and UL block factorization

Let P be the one-step transition probability matrix of a discrete-time quasi-birth-and-death (QBD) 
process with state space Z≥0 × {1, 2, . . . , d}, d ≥ 1, given by

P =

⎛⎜⎜⎝
B0 A0 0
C1 B1 A1
0 C2 B2 A2

. . . . . . . . .

⎞⎟⎟⎠ . (2.1)

Here An, Bn and Cn are d × d matrices. We will assume for simplicity that the matrices An and Cn are 
nonsingular. The symbol 0 as well as all the unfilled entries in (2.1) stand for the d × d block zero matrix. 
When d = 1 we recover the classical random walk with state space Z≥0.
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Let us denote by ej the j-th canonical d-dimensional vector and ed the d-dimensional vector with all 
components equal to 1, i.e.

ed = (1, 1, . . . , 1)T .

Since P is a stochastic matrix, we have nonnegative (scalar) entries, i.e.

eTi Anej ≥ 0, eTi Bnej ≥ 0, eTi Cn+1ej ≥ 0, i, j = 1, . . . , d, n ≥ 0,

and all (scalar) rows add up to one, i.e.

(B0 + A0)ed = ed, (Cn + Bn + An)ed = ed, n ≥ 1.

Observe that all block entries of P are semi-stochastic d × d matrices, i.e. all entries are nonnegative and 
Aned ≤ ed, Bned ≤ ed and Cn+1ed ≤ ed for n ≥ 0 (component wise).

A diagram of the transitions between states looks as follows (for d = 2):

0 2 4 6

1 3 5 7

It will turn out to be useful to perform a UL block factorization of the matrix P in the following way

P =

⎛⎝B0 A0
C1 B1 A1

. . . . . . . . .

⎞⎠ =

⎛⎝Y0 X0
0 Y1 X1

. . . . . . . . .

⎞⎠⎛⎝S0 0
R1 S1 0

. . . . . . . . .

⎞⎠ = PUPL, (2.2)

with the condition that PU and PL are also stochastic matrices, i.e. all (scalar) entries are nonnegative and

(Xn + Yn)ed = ed, n ≥ 0, S0ed = ed, (Rn + Sn)ed = ed, n ≥ 1. (2.3)

Observe that S0 must be stochastic, while the rest of the block entries of PU and PL must be semi-stochastic. 
A direct computation shows that

An = XnSn+1, n ≥ 0,

Bn = XnRn+1 + YnSn, n ≥ 0, (2.4)

Cn = YnRn n ≥ 1.

Since An and Cn are nonsingular then Xn, Yn, Rn+1 and Sn+1, n ≥ 0, are nonsingular matrices. S0 may 
or may not be nonsingular. This factorization, just as in the scalar situation (see [10]), simplifies the 
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interpretation of the original QBD process P , expressing it as the composition of two simpler QBD processes, 
PU and PL.

One could have performed the factorization the other way around in the form

P =

⎛⎝B0 A0
C1 B1 A1

. . . . . . . . .

⎞⎠ =

⎛⎜⎝ S̃0 0
R̃1 S̃1 0

. . . . . . . . .

⎞⎟⎠
⎛⎜⎝ Ỹ0 X̃0

0 Ỹ1 X̃1
. . . . . . . . .

⎞⎟⎠ = P̃LP̃U , (2.5)

in which case we have a LU block factorization with relations

An = S̃nX̃n, n ≥ 0,

Bn = R̃nX̃n−1 + S̃nỸn, n ≥ 0,

Cn = R̃nỸn−1 n ≥ 1.

As we will see the LU block factorization will have fewer degrees of freedom than the UL block factorization.
Let us focus first on the UL block factorization (2.2). We remark here an important difference with 

respect to the scalar situation (see [10]). In the scalar situation the UL factorization has exactly one free 
parameter y0 (defined below), while in the LU factorization case the factorization is unique. This is not the 
case for the UL and LU block factorizations, where there may be many degrees of freedom. For instance, 
in the scalar situation, where we use lower case symbols, one could compute xn and rn+1 in terms of 
yn and sn+1, respectively, for n ≥ 0, since both factors PU and PL must be stochastic matrices. Then 
xn = 1 − yn, rn+1 = 1 − sn+1, n ≥ 0, and s0 = 1, i.e. all entries of PU and PL can be computed in terms of 
only one free parameter, y0 (see Lemma 2.2 of [10]).

The stochasticity conditions on PU and PL gives the relations (2.3), but we notice that it is not possible 
to compute, for instance, all entries of S0 by having only the information that S0ed = ed. The same is true 
for the rest of coefficients, i.e. we can not compute all entries of Xn in terms of Yn from the information 
that (Xn + Yn)ed = ed (same for Rn and Sn).

One way of computing the block entries Xn, Yn, Rn, Sn comes directly from (2.4). From the first and 
third relation we can compute Sn, Rn, n ≥ 1 in terms of Xn, n ≥ 0 and Yn, n ≥ 1, respectively. The second 
relation gives then

Yn+1 = Cn+1
(
Bn − YnX

−1
n−1An−1

)−1
Xn, n ≥ 1, and Y1 = C1 (B0 − Y0S0)−1

X0.

Therefore, all coefficients can be computed in terms of Y0, S0 and Xn, n ≥ 0. We will see below that all 
these inverses are well defined as long as certain invertibility conditions are satisfied. Apart from this we 
have to impose certain positivity conditions on all entries of Xn, Yn, Rn, Sn. This gives an infinite number 
of free parameters in general and it is very difficult to pick a “natural one” among the possible solutions.

We propose now one way of computing the block entries Xn, Yn, Sn, Rn using what corresponds to the 
“monic” version of P in connection with matrix-valued polynomials, see [19,20]. This method was used, for 
a different purpose, in [8]. Let us call

Ln = (A0 · · ·An−1)−1, n ≥ 1, L0 = I. (2.6)

Observe that all Ln are invertible, by assumption, and LnL
−1
n+1 = An. Then we have

P = LJL−1, (2.7)

where
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L =

⎛⎝L0
L1

. . .

⎞⎠ , J =

⎛⎜⎝B̂0 I

Ĉ1 B̂1 I
. . . . . . . . .

⎞⎟⎠ .

The “monic” block entries B̂n and Ĉn are related to the old ones by the relations

B̂n = L−1
n BnLn, n ≥ 0, Ĉn = L−1

n CnLn−1 = L−1
n CnAn−1Ln, n ≥ 1.

Consider now the UL block factorization of the “monic” operator J in the following way

J =

⎛⎜⎝B̂0 I

Ĉ1 B̂1 I
. . . . . . . . .

⎞⎟⎠ =

⎛⎝α0 I
0 α1 I

. . . . . . . . .

⎞⎠⎛⎝ I 0
β1 I 0

. . . . . . . . .

⎞⎠ = αβ. (2.8)

Then we have

B̂n = βn+1 + αn, n ≥ 0, (2.9)

Ĉn = αnβn, n ≥ 1.

These relations give a direct way to compute αn and βn in terms of B̂n, Ĉn and a free matrix-valued 
parameter α0. Indeed, the first terms are given recursively by

β1 = B̂0 − α0, α1 = Ĉ1(B̂0 − α0)−1

β2 = B̂1 − Ĉ1(B̂0 − α0)−1, α2 = Ĉ2

[
B̂1 − Ĉ1(B̂0 − α0)−1

]−1
, etc.

Observe from (2.9), and since Ĉn is a nonsingular matrix, that αn, βn must be nonsingular matrices as 
well. This means that the free parameter α0 is subject to certain invertibility conditions, i.e. B̂0 −α0, B̂1 −
Ĉ1(B̂0 − α0)−1, etc, must be nonsingular matrices.

Substituting (2.8) into (2.7) leads to

P = [Lα]
[
βL−1] ,

which is a UL factorization of P . In general, this factorization will not give stochastic factors as in (2.2). 
To guarantee this we will need to introduce below more degrees of freedom while keeping the UL structure. 
Let us denote by T the block diagonal invertible matrix

T =

⎛⎝τ0
τ1

. . .

⎞⎠ .

Then we can write P as

P = [LαT ]
[
T−1βL−1] = PUPL.

Identifying block entries with (2.2) we get

Xn = Lnτn+1, Yn = Lnαnτn, n ≥ 0, (2.10)

Sn = τ−1
n L−1

n , Rn+1 = τ−1
n+1βn+1L

−1
n , n ≥ 0.
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Relations (2.3) give

Ln(αnτn + τn+1)ed = ed, n ≥ 0 (2.11)

(βn+1L
−1
n + L−1

n+1)ed = τn+1ed, n ≥ 0, (2.12)

τ−1
0 ed = ed. (2.13)

If (2.12) and (2.13) hold, then (2.11) must hold as well. Indeed, for n = 0, we have

(α0τ0 + τ1)ed = (α0 + β1 + L−1
1 )ed = (B0 + A0)ed = ed,

while for n ≥ 1, we have

Ln(αnτn + τn+1)ed =
[
Lnαn(βnL

−1
n−1 + L−1

n ) + Ln(βn+1L
−1
n + L−1

n+1)
]
ed

=
[
LnαnβnL

−1
n−1 + LnαnL

−1
n + Lnβn+1L

−1
n + LnL

−1
n+1

]
ed

= [Cn + Bn + An]ed = ed.

Observe that (2.12) gives one way to compute τn which may allow for several degrees of freedom as well. 
Computing τn using (2.12) and (2.13) does not yet guarantee that PU and PL are going to be stochastic. 
We must still verify the positivity of the entries.

Using (2.10) and the explicit expression of αn, βn, we have that

Xn = (A0 · · ·An−1)−1τn+1, Sn = τ−1
n A0 · · ·An−1, n ≥ 0, Y0 = α0τ0,

and

R1 = τ−1
1 (B0 − α0), Y1 = C1(B0 − α0)−1τ1,

R2 = τ−1
2 A0(B1 − C1(B0 − α0)−1A0), Y2 = C2[B1 − C1(B0 − α0)−1A0]−1A−1

0 τ2, etc.

Therefore, if we are able to propose a good candidate for τn, then we can compute all block entries 
Xn, Yn, Rn, Sn in terms of only Y0 = α0τ0.

Remark 2.1. In general, there are few conclusions we can derive for the sequence τn in terms of the positivity 
of the block entries Xn, Yn, Rn, Sn. In particular, since S0 = τ−1

0 , then τ−1
0 , (but not necessarily τ0) must be 

a stochastic matrix. Also from X0 = τ1 and Y0 = α0τ0 we must have that τ1 and α0τ0 are semi-stochastic. 
In particular, since α0 = Y0τ

−1
0 and τ−1

0 is stochastic, then α0 must be at least semi-stochastic as well.

Similar considerations apply if we consider the LU block factorization (2.5). Indeed, we will have

P =
[
Lβ̃T̃

] [
T̃−1α̃L−1

]
= P̃LP̃U ,

where now the coefficients α̃n, β̃n can be computed by

B̂n = β̃n + α̃n, n ≥ 0,

Ĉn = β̃nα̃n−1, n ≥ 1.

Identifying block entries with (2.5) we get
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X̃n = τ̃−1
n L−1

n+1, Ỹn = τ̃−1
n α̃nL

−1
n , n ≥ 0, (2.14)

S̃n = Lnτ̃n, R̃n+1 = Ln+1β̃n+1τ̃n, n ≥ 0.

In this case we will get the relations

Ln(β̃nτ̃n−1 + τ̃n)ed = ed, n ≥ 0,

(α̃nL
−1
n + L−1

n+1)ed = τ̃ned, n ≥ 0.

Observe now that τ̃0 must be stochastic (β̃0=0). This factorization will only depend on the sequence τ̃n, 
since the sequences α̃n and β̃n are uniquely determined in this case.

3. Stochastic block Darboux transformations

Assume that using the strategy above we have found appropriately α0 and τn such that PU and PL are 
stochastic matrices. We can perform what is called a discrete Darboux transformation by reversing the order 
of multiplication. The Darboux transformation for second-order differential operators has a long history but 
probably the first reference of a discrete Darboux transformation like we study here appeared in [22] in 
connection with the Toda lattice.

If P = PUPL as in (2.2), then by reversing the order of multiplication we obtain another block tridiagonal 
matrix of the form

P̃ = PLPU =

⎛⎝S0 0
R1 S1 0

. . . . . . . . .

⎞⎠⎛⎝Y0 X0
0 Y1 X1

. . . . . . . . .

⎞⎠ =

⎛⎜⎝B̃0 Ã0
C̃1 B̃1 Ã1

. . . . . . . . .

⎞⎟⎠ . (3.1)

Now the new block entries are given by (see (2.9) and (2.10))

Ãn = SnXn = τ−1
n τn+1, n ≥ 0,

B̃n = RnXn−1 + SnYn = τ−1
n (βn + αn)τn = τ−1

n (B̂n − βn+1 + βn)τn, n ≥ 0, (3.2)

C̃n = RnYn−1 = τ−1
n (βnαn−1)τn−1 = τ−1

n (βnĈn−1β
−1
n−1)τn−1, n ≥ 1.

The matrix P̃ is actually stochastic, since the multiplication of two stochastic matrices is again a stochastic 
matrix. Therefore it is a new QBD process with block entries Ãn, B̃n and C̃n. In fact we will get several 
QBD processes depending on many free parameters. In terms of a model driven by urn experiments (as we 
will see in Section 5) the factorization P = PUPL may be thought as two urn experiments, Experiment 1 and 
Experiment 2, respectively. We first perform the Experiment 1 and with the result we immediately perform 
the Experiment 2. The urn model for P̃ = PLPU will proceed in the reversed order, first the Experiment 2 
and with the result the Experiment 1.

The same can be done for the LU factorization (2.5) of the form P = P̃LP̃U . The corresponding Darboux 
transformation is

P̂ = P̃U P̃L =

⎛⎜⎝ Ỹ0 X̃0
0 Ỹ1 X̃1

. . . . . . . . .

⎞⎟⎠
⎛⎜⎝ S̃0 0
R̃1 S̃1 0

. . . . . . . . .

⎞⎟⎠ =

⎛⎜⎝B̂0 Â0
Ĉ1 B̂1 Â1

. . . . . . . . .

⎞⎟⎠ . (3.3)

The new coefficients are given by (see (2.14))
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Ân = X̃nS̃n+1 = τ̃−1
n τ̃n+1, n ≥ 0,

B̂n = X̃nR̃n+1 + ỸnS̃n = τ̃−1
n (β̃n+1 + α̃n)τ̃n, n ≥ 0,

Ĉn = ỸnR̃n = τ̃−1
n α̃nβ̃nτ̃n−1, n ≥ 1.

If we assume that the block tridiagonal stochastic matrix P is self-adjoint (in some appropriate Hilbert 
space) then there exists a unique weight matrix W defined on the interval −1 ≤ x ≤ 1 (see [2,6]). Given such 
a weight matrix W we can consider the skew symmetric bilinear form defined for any pair of matrix-valued 
polynomials P (x) and Q(x) by the numerical matrix

(P,Q)W :=
1∫

−1

P (x)W (x)Q∗(x)dx, (3.4)

where Q∗(x) denotes the conjugate transpose of Q(x). This leads, using the Gram-Schmidt process, to the 
existence of a sequence of matrix-valued orthogonal polynomials Qn with nonsingular leading coefficients 
satisfying a three-term recursion relation

xQn(x) = AnQn+1(x) + BnQn(x) + CnQn−1(x), n ≥ 0, (3.5)

where Q−1(x) = 0, Q0(x) = I and An, Bn, Cn are the coefficients of the block tridiagonal matrix P . With 
all these ingredients we can get the corresponding Karlin-McGregor representation formula for the block 
entry (i, j) of Pn (see [2,6]). Indeed,

Pn
ij = (xnQi, Qj)W (Qj , Qj)−1

W =

⎛⎝ 1∫
−1

xnQi(x)W (x)Q∗
j (x)dx

⎞⎠⎛⎝ 1∫
−1

Qj(x)W (x)Q∗
j (x)dx

⎞⎠−1

. (3.6)

We can also compute the invariant measure π of the QBD process P in terms of the inverse of the norms 
Πn = (Qn, Qn)−1

W (see Theorem 3.1 of [14]). Indeed, this invariant vector is given by

π =
(
(Π0ed)T ; (Π1ed)T ; (Π2ed)T ; · · ·

)
, (3.7)

where we recall here that ed is the d-dimensional vector with all components equal to 1.
One important aspect of the Darboux transformation starting from the UL factorization is to study how 

to transform the matrix-valued spectral measure associated with a QBD process with one-step transition 
probability matrix P . The property of being self-adjoint may be lost for the Darboux transformation of P
given by P̃ .

In the scalar case (tridiagonal matrix P ) it is very well known that if the moment μ−1 =
∫ 1
−1 dω(x)/x is 

well defined, where ω is the spectral measure associated with P , then a candidate for the family of spectral 
measures is then given by a Geronimus transformation of ω, i.e.

ω̃(x) = y0
ω(x)
x

+ Mδ0(x), M = 1 − y0μ−1,

where δ0(x) is the Dirac delta located at x = 0. Similarly, for the LU factorization, the corresponding 
Darboux transformation (3.3) P̂ gives rise a spectral measure ω̂ given by a Christoffel transformation of ω, 
i.e. ω̂(x) = xω(x) (see [10] and references therein).

In the matrix-valued case it is possible to see (in analogy with the scalar case), that if the moment 
μ−1 =

∫ 1
−1 dW (x)/x is well defined, then a candidate for the family of matrix-valued spectral measures 

associated with the Darboux transformation P̃ is again a Geronimus transformation of W , i.e.
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W̃ (x) = W (x)
x

+ Mδ0(x), M = α−1
0 μ0 − μ−1, (3.8)

as we will see in the example of the next section. Observe from the derivation of the coefficients Ãn, B̃n, C̃n

in (3.2), that the free parameters of W̃ will only depend on α0 and not on the sequence τn, which will 
only interfere in the normalization of the corresponding matrix-valued polynomials. In the case where α0
is a singular matrix, we will have a degenerate matrix-valued spectral measure. Also we observe that W̃ in 
general is neither symmetric nor positive semidefinite. In order for W̃ to be a proper weight matrix, the 
matrix M in (3.8) has to be positive semidefinite.

Similarly, for the LU factorization, the corresponding Darboux transformation (3.3) P̂ gives rise to a 
block Jacobi matrix and a matrix-valued spectral measure Ŵ . It is possible to see that Ŵ is given by a 
Christoffel transformation of W , i.e.

Ŵ (x) = xW (x).

In this case the weight matrix Ŵ is unique and positive semidefinite.

4. The (Jacobi type) one-step example

In this section we will study a specific example coming from group representation theory, introduced 
for the first time in [12]. In [9] we studied the probabilistic aspects of this example and gave an explicit 
expression of the block entries An, Bn, Cn in (2.1). The most general situation is considered in [13], where 
the authors also give two stochastic models in terms of urns and Young diagrams.

First we will rewrite the block entries An, Bn, Cn introduced in [9] in a more convenient way (following 
the ideas of [13], see also [11]). For α, β > −1 and 0 < k < β + 1 define the coefficients

a1(i, n) = (n + k)(n + β + d)
(2n + α + β + d + i)(n + k + d− i− 1) , b1(i, n) = n(n + k + d− 1)

(2n + α + β + d + i− 1)(n + k + d− i− 1) ,

a2(i, n) = (d− i− 1)(β − k + i + 1)
(n + α + β − k + 2i + 1)(n + k + d− i− 1) , b2(i, n) = i(k + d− i− 1)

(n + α + β − k + 2i)(n + k + d− i− 1) ,

a3(i, n) = (n + α + i)(n + α + β − k + d + i)
(2n + α + β + d + i)(n + α + β − k + 2i + 1) , b3(i, n) = (n + α + β + d + i− 1)(n + α + β − k + i)

(2n + α + β + d + i− 1)(n + α + β − k + 2i) .

Observe that all these coefficients are always positive for i = 0, 1, . . . , d − 1, n ≥ 0, and that we have

a1(i, n) + a2(i, n) + a3(i, n) = 1, b1(i, n) + b2(i, n) + b3(i, n) = 1. (4.1)

Observe also that when d ≥ 2 there is a new parameter k. The block entries An, Bn, Cn are given by

An =
d−1∑
i=0

a1(i, n)b3(i, n + 1)Eii +
d−2∑
i=0

a1(i + 1, n)b2(i + 1, n + 1)Ei+1,i,

Bn =
d−2∑
i=0

a3(i + 1, n)b2(i + 1, n)Ei+1,i +
d−2∑
i=0

a2(i, n)b3(i + 1, n)Ei,i+1

+
d−1∑
i=0

[a1(i, n)b1(i, n + 1) + a2(i, n)b2(i + 1, n) + a3(i, n)b3(i, n)]Eii,

Cn =
d−1∑
i=0

a3(i, n)b1(i, n)Eii +
d−2∑
i=0

a2(i, n)b1(i + 1, n)Ei,i+1,
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where Eij denotes as usual the matrix with entry (i, j), which is equal to 1 and 0 elsewhere.
The family of matrix-valued polynomials generated by the three-term recursion relation (3.5), where 

Q−1(x) = 0 and Q0(x) = I, is in fact orthogonal with respect to the weight matrix (see [24] and [9])

W (x) = xα(1 − x)βV ∗Z(x)V, x ∈ [0, 1], (4.2)

where

Z(x) =
d−1∑
i,j=0

( d−1∑
r=0

(
r
i

)(
r
j

)(
d + k − r − 2
d− r − 1

)(
β − k + r

r

)
(1 − x)i+jxd−r−1

)
Eij ,

and V is the nonsingular upper triangular matrix

V =
∑
i≤j

(−1)i (−j)i
(1 − d)i

(α + β − k + j + 1)i
(β − k + 1)i

Eij .

Here (a)n = a(a + 1) · · · (a + n − 1) denotes the Pochhammer symbol.
The way of writing the block entries An, Bn, Cn above is very useful when trying to find a particular 

factorization of the form P = PUPL as in (2.2). Indeed, good candidates for the block entries Xn, Yn, Rn, Sn

are given by

Xn =
d−1∑
i=0

a1(i, n)Eii, Yn =
d−1∑
i=0

a3(i, n)Eii +
d−2∑
i=0

a2(i, n)Ei,i+1, (4.3)

Rn =
d−1∑
i=0

b1(i, n)Eii, Sn =
d−1∑
i=0

b3(i, n)Eii +
d−2∑
i=0

b2(i + 1, n)Ei+1,i. (4.4)

The relations (4.1) actually say that PU and PL are stochastic matrices. This factorization appeared for 
the first time in [13], but this is not the only UL stochastic factorization possible for the matrix P . As we 
saw in the previous section, the UL factorization comes with at least a free extra parameter α0 which in 
this case is a d × d matrix with some restrictions.

We will see now how the choice of factors in [13] fits with the more general framework above, i.e. we give 
now a choice for α0 and τn such that we get Xn, Yn, Rn, Sn as in (4.3) and (4.4), i.e. as in [13].

Consider

α0 = B0 −D0, (4.5)

where D0 is the diagonal matrix

D0 =
d−1∑
i=0

a1(i, 0)b1(i, 1)Eii =
d−1∑
i=0

k(β + d)(k + d)
(α + β + d + i)2(k + d− i− 1)2

Eii.

Observe that D0 is the first summand in the diagonal entries of B0. Let Ln be as in (2.6)1 and choose

τn = τ0

(
L−1
n

∣∣
α=α−1

)
,

where τ0 is a lower triangular matrix which inverse is given by the stochastic matrix

1 A different way of writing the lower triangular matrix Ln can be found in page 751 of [9] (written there as An
n).
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τ−1
0 =

d−1∑
i=0

α + β − k + i

α + β − k + 2iEii +
d−2∑
i=0

i + 1
α + β − k + 2i + 2Ei+1,i = S0.

Then the block entries Xn, Yn, Rn, Sn in (2.10) coincide with the block entries Xn, Yn, Rn, Sn given in 
[13] (see (4.3) and (4.4)). Moreover, the matrix-valued spectral measure W̃ associated with the Darboux 
transformation P̃ = PLPU (see (3.1)) is given by

W̃ (x) = W (x)
x

, x ∈ [0, 1], α > 0, β > −1, 0 < k < β + 1,

where W is the matrix-valued spectral measure associated with P (see (4.2)). Observe that α0 in this case is 
chosen in such a way that M = α−1

0 μ0 −μ−1 = 0 in (3.8), i.e. α0 = μ0μ
−1
−1, an alternative to the expression 

for α0 above.
If we consider the LU factorization of the same block tridiagonal P , let us choose

τ̃n = τ̃0

(
L−1
n

∣∣
α=α+1

)
,

where τ̃0 = τ−1
0

∣∣
α=α+1. Then the block entries X̃n, Ỹn, R̃n, S̃n in (2.14) are given by

X̃n = Xn|α=α+1 , Ỹn = Yn|α=α+1 , R̃n = Rn|α=α+1 , S̃n = Sn|α=α+1 .

The matrix-valued spectral measure Ŵ associated with the Darboux transformation P̂ = P̃U P̃L of P (see 
(3.3)) is given by the Christoffel transformation of W , i.e.

Ŵ (x) = xW (x), x ∈ [0, 1], α, β > −1, 0 < k < β + 1.

As we said earlier, the choice of α0 above is the one that among the possible factorizations of P reproduces 
the results in [13].

Let us focus now in the case where α0 is not necessarily chosen as in (4.5). For simplicity, we will explore 
only the case where d = 2. The case d = 1 was already studied in [10], along with an urn model for the Jacobi 
polynomials (for a different urn model for the Jacobi polynomials which does not exploit the factorization 
of the tridiagonal matrix see [7]).

4.1. Case d = 2

The coefficients of P given earlier become now

An =
( (β+n+2)(k+n)(α+β+n+2)

(k+n+1)(α+β+2n+2)(α+β+2n+3) 0
k(β+n+2)

(α+β−k+n+3)(α+β+2n+3)(k+n+1)
(β+n+2)(α+β+n+3)(α+β−k+n+2)

(α+β+2n+3)(α+β+2n+4)(α+β−k+n+3)

)
, (4.6)

Bn =
(

B11
n

(β−k+1)(α+β+n+2)
(k+n+1)(α+β+2n+2)(α+β−k+n+2)

(α+n+1)k
(k+n)(α+β−k+n+2)(α+β+2n+3) B22

n

)
, (4.7)

Cn =
(

n(α+n)(α+β−k+n+2)
(α+β−k+n+1)(α+β+2n+1)(α+β+2n+2)

n(β−k+1)
(α+β−k+n+1)(α+β+2n+2)(k+n)

0 n(α+n+1)(k+n+1)
(k+n)(α+β+2n+2)(α+β+2n+3)

)
, (4.8)

where
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B11
n = (n + k)(n + β + 2)(n + 1)

(α + β + 2n + 2)(n + k + 1)(α + β + 2n + 3)

+ (n + α)(α + β − k + n + 2)(n + α + β + 1)
(α + β + 2n + 2)(α + 1 + n− k + β)(α + β + 2n + 1)

+ k(β − k + 1)
(α + 1 + n− k + β)(n + k + 1)(α + β − k + n + 2)(n + k) ,

and

B22
n = (n + β + 2)(n + 1)(n + k + 2)

(α + β + 2n + 3)(α + β + 2n + 4)(n + k + 1)

+ (α + n + 1)(α + β + n + 2)(α + 1 + n− k + β)
(α + β + 2n + 3)(α + β + 2n + 2)(α + β − k + n + 2) .

The main difference with the scalar case (d = 1) is that we have a new parameter 0 < k < β + 1. 
A straightforward computation, using the definition of aj(i, n), bj(i, n), j = 1, 2, 3, gives

Ln =
( (n+k)(α+β+n+2)n

k(β+2)n 0
− n(α+β+n+3)n

(α+β−k+2)(β+2)n
(α+β+n−k+2)(α+β+n+3)n

(α+β−k+2)(β+2)n

)
.

The coefficients αn, βn of the UL factorization (2.8) are going to be computed by using the expressions 
(2.9). Since the matrix α0 is in principle any 2 × 2 matrix, the coefficients αn, βn are not easy to find. Once 
we have these coefficients we can compute τn by solving (2.12) and (2.13), which now also may yield more 
degrees of freedom.

We first review in this d = 2 case what we did earlier for general d.
If we choose α0 as in (4.5), i.e.

α0 =
(

β−k+1
(1+α+β−k)(1+k)(2+α+β−k) + α(2+α+β−k)

(2+α+β)(1+α+β−k)
β−k+1

(1+k)(2+α+β−k)
1+α

(3+α+β)(2+α+β−k)
(1+α)(1+α+β−k)

(3+α+β)(2+α+β−k)

)
, (4.9)

then the explicit expression for τn is given by

τ−1
0 τn =

(
k(β+2)n

(n+k)(α+β+n+1)n 0
n(β+2)n

(n+k)(α+β+n−k+1)(α+β+n+1)n
(α+β−k+1)(β+2)n

(α+β+n−k+1)(α+β+n+2)n

)
=

(
L−1
n

∣∣
α=α−1

)
,

where

τ−1
0 =

( 1 0
1

α+β−k+2
α+β−k+1
α+β−k+2

)
. (4.10)

The block entries of the stochastic matrices PU and PL are given by

Xn =
(

(n+k)(n+β+2)
(2n+α+β+2)(n+k+1) 0

0 n+β+2
2n+α+β+3

)
, Yn =

(
(n+α)(n+α+β−k+2)

(2n+α+β+2)(n+α+1−k+β)
β−k+1

(n+α+1−k+β)(n+k+1)
0 n+α+1

2n+α+β+3

)
,

(4.11)

Sn =
(

n+α+β+1
2n+α+β+1 0

k
(n+α+β−k+2)(n+k)

(n+α+β+2)(n+α+1−k+β)
(2n+α+β+2)(n+α+β−k+2)

)
, Rn =

(
n

2n+α+β+1 0
0 n(n+k+1)

(2n+α+β+2)(n+k)

)
. (4.12)

We will give in the next section an interpretation of these matrices in terms of an urn model.



646 F.A. Grünbaum, M.D. de la Iglesia / J. Math. Anal. Appl. 478 (2019) 634–654
We are done with trying to reproduce the results in [13] and we move on to a generic α0 where things are 
more complicated. The only thing that we know is that α0 must be at least semi-stochastic (see Remark 2.1).

Getting away from (4.9), let us put

α0 =
(
s11 s12
s21 s22

)
.

According to (3.8), the family of matrix-valued spectral measures associated with the Darboux transforma-
tion P̃ is given by

W̃ (x) = W (x)
x

+ Mδ0(x), M = α−1
0 μ0 − μ−1. (4.13)

In the case of this example we have that

μ0 = Γ(α + 1)Γ(β + 2)(α + β − k + 2)
Γ(α + β + 3)

(1 0
0 (α+1)(k+1)

(α+β+3)(β−k+1)

)
,

and (assuming α > 0, β > −1)

μ−1 = Γ(α)Γ(β + 2)
Γ(α + β + 2)

(
α + β − k + 1 −1

−1 (α+1)(k+1)(α+β−k+2)−k(β−k+1)
(α+β+2)(β−k+1)

)
.

Observe that we have the following relation between the moments μ0 and μ−1:

μ0|α=α−1 = τ−1
0 μ−1τ

−∗
0 ,

where τ−1
0 is the lower triangular matrix (4.10). As we mentioned in Section 3, W̃ is in general neither 

symmetric nor positive semidefinite. It is easy to see that M in (4.13) is symmetric if and only if one of the 
entries of α0 is chosen according to the following relation

s12 = (β − k + 1)(α + β + 3)
(α + 1)(k + 1) s21. (4.14)

In what follows we will study two special cases where we can explicitly analyze the different values of the 
parameters sij for which the Darboux transformation gives rise to a QBD process. In the first case we will 
focus on the positivity of the matrix-valued spectral measure W̃ in (4.13), while in the second case we will 
analyze the stochastic block factorization without looking at the positivity or the symmetry of W̃ .

(1) Let us choose for convenience

α0 =
( (α+β+3)(β−k+1)

(k+1)(α+1)(α+β−k+1)s11
(α+β+3)(β−k+1)

(k+1)(α+1) s21
s21 (α + β − k + 1)s21

)
, (4.15)

where s11 and s21 are in principle free parameters. Since condition (4.14) is satisfied, W̃ in (4.13) is a 
symmetric matrix. The determinant of α0 is given by

|α0| = (α + β + 3)(β − k + 1)
(k + 1)(α + 1) s21(s11 − s21).

A straightforward computation shows that M can be written in this case as
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M = τ0

(
(α)2(k+1)(α+β−k+2)

(β−k+1)(α+β+2)2(s11−s21) − 1 0
0 α+1

(α+β+2)(α+β−k+2)s21 − 1

)
μ0|α=α−1 τ

∗
0 ,

where τ0 is the inverse of the lower triangular matrix (4.10). Since μ0 is diagonal, then M is positive 
semidefinite if the parameters s11 and s21 are chosen in the following range

0 <s21 ≤ α + 1
(α + β + 3)(α + β − k + 2) , (4.16)

s21 <s11 ≤ s21 + (α)2(k + 1)(α + β − k + 2)
(β − k + 1)(α + β + 2)2

.

Based on what happens in the scalar case, one could expect that if we choose s11 and s21 in the range 
above, then we should get a stochastic block factorization of P of the form (2.2), where PU and PL are 
also stochastic matrices. However, this is not true. In fact the condition on the positivity of the entries 
of Xn, Yn, Sn, Rn will force us to modify the upper bound of the second inequality in (4.16).
Another important point is the choice of the sequence of matrices τn such that (2.12) and (2.13) hold 
and the entries of the matrices Xn, Yn, Sn, Rn in (2.10) are all nonnegative. Since τn is a 2 × 2 matrix, 
it has 4 degrees of freedom for every n. For simplicity, we look for lower triangular matrices τn with 3 
degrees of freedom for every n. The diagonal entries of τn can be given by solving the equations (2.12)
and (2.13). Then, the matrices Xn and Sn are always lower triangular, while the matrices Yn and Rn

are both full matrices. In order to surmise the remaining free parameter of τn, we force Yn to be upper 
triangular and as a consequence Rn will be also upper triangular. These conditions will give us explicitly 
τn for every n and one sees that the sum of every row of PU and PL is always 1.
Finally, we need all entries of Xn, Yn, Sn, Rn to be nonnegative. The entries of these matrices are rational 
functions depending on s11 and s21. After extensive symbolic computations we find that all entries of 
Xn, Yn, Sn, Rn are nonnegative (and therefore PU and PL are stochastic matrices) if the parameters s11

and s21 are chosen in the following range

0 <s21 ≤ α + 1
(α + β + 3)(α + β − k + 2) ,

s21 <s11 ≤
s21

(
s21 − (α+1)2(k+1)

k(β−k+1)(α+β+3)

)
s21 − (α+1)(k+1)

k(α+β−k+1)(α+β+3)

.

Observe that the singular point of the rational function of s21 above is to the right of the upper bound 
of s21 in (4.16). In Fig. 1 we can see this region for the special values of α = 3, β = 2, k = 1. The green 
line (above the shaded area of the figure) is the upper bound for which M is positive semidefinite, but 
we observe here that there may be values of s11, s21 for which M is positive semidefinite, and yet the 
block entries Xn, Yn, Sn, Rn do not have all their entries nonnegative.
This concludes our look at the case when α0 was chosen as in (4.15).

(2) Let us focus now exclusively on the block entries Xn, Yn, Sn, Rn and the sequence of matrices τn chosen 
to guarantee that PU and PL are stochastic without looking into the matrix-valued spectral measure W̃
resulting after the Darboux transformation. It was mentioned in the previous case that we can always 
choose a unique sequence of lower triangular matrices τn such that (2.12) and (2.13) hold and Xn and 
Sn are lower triangular matrices while Yn and Rn are upper triangular matrices. Imagine now that we 
would like to have one (or several) of the matrices Xn, Yn, Sn, Rn as a diagonal one. To insure this we 
need to impose some restrictions on the parameters sij of α0. There are four possible situations:
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Fig. 1. The region with red stripes (shaded area) gives all possible values of s21 and s11 for which all entries of Xn, Yn, Sn, Rn are 
nonnegative for the values of α = 3, β = 2, k = 1. The green line (above the shaded area) is the upper bound for which M is 
positive semidefinite. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

(a) Xn diagonal: the matrix α0 should be chosen as the two-parameter family of matrices

α0 =
(

s11 s12
1+α

(3+α+β)(2+α+β−k)
(1+α)(1+α+β−k)

(3+α+β)(2+α+β−k)

)
.

Observe that the second row is the same as the second row of α0 in (4.9).
(b) Rn diagonal: the matrix α0 should be chosen as the two-parameter family of matrices

α0 =

⎛⎝s11
β−k+1

(1+k)(2+α+β−k)

s21
(1+α)(1+α+β−k)

(3+α+β)(2+α+β−k)

⎞⎠ .

Observe that the second column is the same as the second column of α0 in (4.9).
(c) Yn diagonal: the matrix α0 should be chosen as the two-parameter family of singular matrices

α0 =
(

0 0
s21 s22

)
.

(d) Sn diagonal: the matrix α0 should be chosen as the two-parameter family of singular matrices

α0 =
(

0 s21
0 s22

)
.

Let us analyze further the case (a) (the rest can be studied in a similar manner). For convenience we 
will work with the normalization

α0 =

⎛⎝[
β−k+1

(1+α+β−k)(1+k)(2+α+β−k) + α(2+α+β−k)
(2+α+β)(1+α+β−k)

]
s11

β−k+1
(1+k)(2+α+β−k)s12

1+α
(3+α+β)(2+α+β−k)

(1+α)(1+α+β−k)
(3+α+β)(2+α+β−k)

⎞⎠ .

Then, all entries of Xn, Yn, Sn, Rn are nonnegative (and therefore PU and PL are stochastic matrices) 
if s11 and s12 are chosen in the following range



F.A. Grünbaum, M.D. de la Iglesia / J. Math. Anal. Appl. 478 (2019) 634–654 649
Fig. 2. The region with red stripes (shaded area) gives all possible values of s11 and s12 for which all entries of Xn, Yn, Sn, Rn are 
nonnegative for the values of α = 1, β = 2, k = 2.

0 <s11 ≤ 1,

s11 ≤s12 ≤ min
{(

1 + α(k + 1)(α + β − k + 2)2

(α + β + 2)(β − k + 1)

)
s11, 1

}
.

In Fig. 2 we can visualize this region for the special values of α = 1, β = 2, k = 2. Since in general the 
condition (4.14) is not satisfied, then there is no symmetric and positive definite spectral measure W̃ of 
the form (4.13) for the Darboux transformation P̃ . Nevertheless, if we consider the monic matrix-valued 
polynomials P̃n generated by the Jacobi matrix J̃ = βα (see (2.8)), then they are left-orthogonal (i.e. 
(P̃n, P̃m)

W̃
= 0 for n > m, see (3.4)) with respect to the matrix-valued function (4.13), with

M = τ0

( (α)2
(α+β+2)2|α0| − 1 (β−k+1)(α+1)(1−s12)

|α0|(k+1)(α+β+3)(α+β−k+2)
0 0

)
μ0|α=α−1 τ

∗
0 ,

where τ0 is the inverse of the lower triangular matrix (4.10). Observe that M is a singular and non-
symmetric matrix. Observe also that the only case where M is symmetric is given by choosing s12 = 1. 
But this is just the first case obtained by taking

s21 = α + 1
(α + β + 2)(α + β − k + 2) .

Remark 4.1. We would like to remark on a special property of the matrix-valued orthogonal polynomials 
P̃n generated by the Darboux transformation of P for the case s12 = 1 above. It is well known that 
the original matrix-valued orthogonal polynomials Pn satisfy a second-order differential equation of the 
form

P ′′
n (x)F2(x) + P ′

n(x)F1(x) + Pn(x)F0 = ΛnPn(x), (4.17)

where F2(x) = x(1 − x)I and F1, F0 certain matrix polynomials of degree 1 and 0, respectively (see 
for instance [24] or [9]). In this situation (and only in this situation) the matrix-valued polynomials P̃n

obtained by performing the Darboux transformation also satisfy a second-order differential equation of 
the form (4.17) with coefficients F̃2, F̃1, F̃0 given by
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F̃2(x) = x

[(
0 0
1 −1

)
x +

(
β−k+1

α+β−k+2 − β−k+1
α+β−k+2

− α+1
α+β−k+2

α+1
α+β−k+2

)]
,

F̃1(x) = x

(
0 0

k + 1 −(α + β + 3)

)
+

(
− β−k+1

α+β−k+2 − (β−k+1)(α+β−k+1)
α+β−k+2

α+1
α+β−k+2

(α+1)(α+β−k+1)
α+β−k+2

)
,

F̃0 =
(

(k + 1)(α + β − k + 1) 0
−(k + 1) 0

)
.

Typically, in the scalar case, and for some special values of the parameters involved, the order of the 
differential equation satisfied by the new polynomials after a Darboux transformation is higher than 2. 
The remarkable fact in the matrix case is that we have a family of matrix-valued orthogonal polynomials 
P̃n (depending on one free parameter s11) satisfying the same second-order differential equation with 
coefficients independent of s11. This phenomenon is not new and appeared for the first time in [3] using 
a method different than the Darboux transformation. For other examples of the bispectral property 
following a Darboux transformation see [8].

Remark 4.2. Once we have the explicit expression of the matrix-valued spectral measure W associated with 
P (or W̃ associated with P̃ , or Ŵ associated with P̂ ) we can use the Karlin-McGregor representation formula 
(3.6) to get the n-step transition probability matrix Pn by computing the first matrix-valued orthogonal 
polynomials Qn. We can also compute the invariant measure π for the process P using formula (3.7). An 
invariant measure for the process P at hand was computed in [9]. Finally we can also study recurrence 
associated with the process P . According to Theorem 8.1 of [9], the QBD process that results from P is 
never positive recurrent. If −1 < β ≤ 0, then the process is null recurrent. If β > 0, then the process is 
transient. Therefore recurrence is independent of the value of α. The QBD processes P̃ and P̂ will inherit 
the same recurrence behavior as the original P , since the matrix-valued spectral measures W̃ and Ŵ will 
have the same behavior as W at x = 1 (see [9] for details).

We hope that the discussion above gives an indication of the many possibilities that open up in the 
matrix-valued case. A relatively simple instance is discussed in the next section.

5. An urn model for the 2 × 2 matrix-valued orthogonal polynomials

We now give an urn model associated with the 2 × 2 matrix-valued orthogonal polynomials of Jacobi 
type given in the previous section. For this purpose we will focus on the simplest case of the UL block 
factorization P = PUPL with block entries Xn, Yn, Sn, Rn given by (4.11) and (4.12). In [13] one finds 
another urn model associated with this example, but different from the one to be given here.

From now on, it will be assumed that the parameters α, β and k are nonnegative integers with 1 ≤ k ≤ β. 
Consider the discrete-time QBD process on Z≥0 × {1, 2} whose one-step transition probability matrix P is 
given by the coefficients An, Bn and Cn in (4.6), (4.7) and (4.8), respectively. Consider the UL factorization 
P = PUPL (2.2) with coefficients Xn, Yn, Sn, Rn given by (4.11) and (4.12). Each one of these matrices PU

and PL will give rise to an experiment in terms of an urn model, which we call Experiment 1 and Experiment 
2, respectively. For simplicity, we will consider these two experiments as discrete-time Markov chains on 
Z≥0 with transitions between not only adjacent states but second adjacent ones too. At times t = 0, 1, 2, . . .
an urn A contains n blue balls and this determines the state of our Markov chain on Z≥0 at that time. All 
the urns we use in both experiments sit in a bath consisting of an infinite number of blue and red balls.

Experiment 1 (for PU ) will give a discrete-time pure-birth QBD process on Z≥0 × {1, 2} with diagram 
given by



F.A. Grünbaum, M.D. de la Iglesia / J. Math. Anal. Appl. 478 (2019) 634–654 651
0 2 4 6

1 3 5 7

This latter diagram can also be viewed as a pure-birth discrete-time Markov chain on Z≥0 with transitions 
between not only adjacent states but second adjacent ones too. Let us call this chain {Z(1)

t : t = 0, 1, . . .}. 
A diagram of the same situation is now given by

· · ·0 1 2 3 4 5

We will construct an urn model for this last diagram. Assume the urn A contains n blue balls (n ≥ 0) at 
time 0 (i.e. Z(1)

0 = n). The transition mechanism will depend on the parity of n.
Consider first the case where n is odd and write n = 2m + 1, m ≥ 0. Remove m + 1 blue balls from the 

urn A until we have m blue balls. Take β+2 blue balls and m +α+1 red balls from the bath and add them 
to the urn. Draw one ball from the urn at random with the uniform distribution. We have two possibilities:

• If we get a blue ball then we remove/add balls until we have 2m + 3 blue balls in urn A and start over. 
Therefore

P
(
Z

(1)
1 = n + 2 |Z(1)

0 = n, n = 2m + 1
)

= m + β + 2
2m + α + β + 3 .

Observe that this probability is given by entry (2, 2) of Xm in (4.11).
• If we get a red ball then we remove/add balls until we have 2m + 1 blue balls in urn A and start over. 

Therefore

P
(
Z

(1)
1 = n |Z(1)

0 = n, n = 2m + 1
)

= m + α + 1
2m + α + β + 3 .

Observe that this probability is given by entry (2, 2) of Ym in (4.11).

Consider now the case where n is even and write n = 2m, m ≥ 0. Again, remove m blue balls from the 
urn A until we have m blue balls. Additionally we will have two other urns, one painted in blue, which we 
call B, and the other one painted in red, which we call R. These urns are initially empty and will be emptied 
after their use in going from one time step to the next.

In urn A we add α blue balls and β− k+ 1 red balls. In urn B we place m +α+ β− k+ 2 blue balls and 
m + k red balls. In urn R we place m + k blue balls and 1 red ball. These balls are taken from the bath. 
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Draw one ball from urn A at random with the uniform distribution. If we get a blue ball then we go to the 
urn B and draw a ball, while if we get a red ball then we go the urn R and draw a ball. We have three 
possibilities:

• If we get two blue balls in a row, i.e. one from urn A and then one from urn B, then we remove/add 
balls until we have 2m blue balls in urn A and start over. Therefore

P
(
Z

(1)
1 = n |Z(1)

0 = n, n = 2m
)

= (m + α)(m + α + β − k + 2)
(2m + α + β + 2)(m + α + 1 − k + β) .

Observe that this probability is given by entry (1, 1) of Ym in (4.11).
• If we get two red balls in a row, i.e. one from urn A and then one from urn R, then we remove/add 

balls until we have 2m + 1 blue balls in urn A and start over. Therefore

P
(
Z

(1)
1 = n + 1 |Z(1)

0 = n, n = 2m
)

= β − k + 1
(m + α + β − k + 1)(m + k + 1) .

Observe that this probability is given by entry (1, 2) of Ym in (4.11).
• If we get either a blue and a red ball or a red and a blue ball then we remove/add balls until we have 

2m + 2 blue balls in urn A and start over. Therefore

P
(
Z

(1)
1 = n + 2 |Z(1)

0 = n, n = 2m
)

= (m + k)(m + β + 2)
(2m + α + β + 2)(m + k + 1) .

Observe that this probability is given by entry (1, 1) of Xm in (4.11).

We are done describing Experiment 1 and we move on to describe an unrelated experiment.

Experiment 2 (for PL) will give a discrete-time pure-death QBD process on Z≥0 × {1, 2} with diagram 
given by

0 2 4 6

1 3 5 7

Again, this last diagram can also be viewed as a pure-death discrete-time Markov chain on Z≥0 with 
transitions between not only adjacent states but second adjacent ones too, and with an absorbing state at 0. 
Let us call this chain {Z(2)

t : t = 0, 1, . . .}. A diagram of the same situation is now given by
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· · ·0 1 2 3 4 5

We will construct an urn model for this last diagram. Assume that urn A contains n blue balls (n ≥ 1) 
at time 0 (i.e. Z(0)

0 = n). The state n = 0 is absorbing. Consider first the case where n is even and write 
n = 2m, m ≥ 1. Remove m blue balls from the urn A until we have m blue balls. Take m + α + β + 1 red 
balls from the bath and add them to the urn. Draw one ball from the urn at random with the uniform 
distribution. We have two possibilities:

• If we get a blue ball then we remove/add balls until we have 2m − 2 blue balls in urn A and start over. 
Therefore

P
(
Z

(2)
1 = n− 2 |Z(2)

0 = n, n = 2m
)

= m

2m + α + β + 1 .

Observe that this probability is given by entry (1, 1) of Rm in (4.12).
• If we get a red ball then we remove/add balls until we have 2m blue balls at the urn A and start over. 

Therefore

P
(
Z

(2)
1 = n |Z(2)

0 = n, n = 2m
)

= m + α + β + 1
2m + α + β + 1 .

Observe that this probability is given by entry (1, 1) of Sm in (4.12).

Consider now the case where n is odd and write n = 2m +1, m ≥ 0. Again, remove m +1 blue balls from 
the urn A until we have m blue balls. Additionally we will have two other urns, one painted in blue, which 
we call B, and the other one painted in red, which we call R. Again, these urns are initially empty and will 
be emptied after their use in going from one time step to the next.

In urn A we add m +α+ β − k + 1 blue balls and 1 red ball. In urn B we place m +α+ β + 2 blue balls 
and m red balls. In urn R we place m blue balls and k red balls. Draw one ball from urn A at random with 
the uniform distribution. If we get a blue ball then we go to the urn B and draw a ball, while if we get a 
red ball then we go the urn R and draw a ball. We have three possibilities:

• If we get two blue balls in a row, i.e. one from urn A and then one from urn B, then we remove/add 
balls until we have 2m + 1 blue balls in urn A and start over. Therefore

P
(
Z

(2)
1 = n |Z(2)

0 = n, n = 2m + 1
)

= (m + α + β + 2)(m + α + 1 − k + β)
(2m + α + β + 2)(m + α + β − k + 2) .

Observe that this probability is given by entry (2, 2) of Sm in (4.12).
• If we get two red balls in a row, i.e. one from urn A and then one from urn R, then we remove/add 

balls until we have 2m blue balls in urn A and start over. Therefore

P
(
Z

(2)
1 = n− 1 |Z(2)

0 = n, n = 2m + 1
)

= k

(m + α + β − k + 2)(m + k) .

Observe that this probability is given by entry (2, 1) of Sm in (4.12).
• If we get either a blue and a red ball or a red and a blue ball then we remove/add balls until we have 

2m − 1 blue balls in urn A and start over. Therefore
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P
(
Z

(2)
1 = n− 2 |Z(2)

0 = n, n = 2m + 1
)

= m(m + k + 1)
(2m + α + β + 2)(m + k)

.

Observe that this probability is given by entry (2, 2) of Rm in (4.12).

The urn model for P (on Z≥0) will be the composition of Experiment 1 and then Experiment 2, while the 
urn model for the Darboux transformation P̃ (3.1) proceeds in the reversed order. Observe from Remark 4.2
and since α, β and k are nonnegative integers with 1 ≤ k ≤ β that this urn model will always be transient. 
Similar urn models can be derived for the LU factorization with small modifications.
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