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1. Introduction

The classical theory of Besov spaces has been recently extended to the setting of metric spaces and
various results from the classical theory have their abstract variants, however abstract versions of the
Sobolev embedding theorem are only available for Q—regular metric spaces. The purpose of this paper is
to obtain a Sobolev type embedding result for the Besov spaces defined on doubling metric spaces.

There are several equivalent ways to define Besov spaces in the setting of a doubling metric space (see
for example [9], [10], [13], [14], [30], [31], [39] and the references therein), in this paper, we use the approach
based on a generalization of the classical the LP-modulus of smoothness introduced in [9].

Assume that = (£2,d) is a metric measure space equipped with a metric d and a Borel regular outer
measure /i, for which the measure of every ball is positive and finite. Givent > 0,0 < p < coand f € LY (),

loc
LP-modulus of smoothness is defined by
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1/p

E,(f.1) = / ][If(fc)—f(y)lpdu(y) du(z) |

Q  \B(z,t)

where {5 f(z)du(z) := ﬁ [ flx)dp(x).
For 0 < s < 0o, the homogeneous Besov space B; ,(€2) consists of functions f € L7, () for which the

loc
seminorm

q 1/q
(f0°° (—Epff’t)) %) . 0<q< oo,

I supt™*E,(f, 1), q = 00,
t>0

B T

is finite.

Remark 1. (See [9]) E,(f,t) is equivalent to the classical LP(R™)—modulus of smoothness of a function
ferL? (R"),indeed

loc

1/p
B, (f.1) = / f (@)~ f)dy | d
&R" B(z,t)
1/p
| [| } 1reem-s@ran )

\Rn B(0,t)

~ sup [|f(z +h) = f(@)l| Lo mn) = wp(f: 1),
|h|<t

therefore, B.'Z’q(R") coincides with the classical Besov space B;q(R”).

In the Euclidean setting, the Sobolev embedding theorem states that (see for example [33]) if 0 < s < %,
then

1 ooy < C 115 gy,

where p* = np/(n — sp), and the Lorentz space LP*?(R™), consists of measurable functions f of finite norm

1

50 (1)

)

TP L0

(f* denotes the decreasing rearrangement of f, see section 2.1 below).
The abstract variant for metric spaces is just known in the following particular case (see [9] and [14]):

Theorem 2. Let Q be a Q—regular metric space, i.e. there exists () > 1 and constant cg > 1 such that
célrQ < w(B(z,7)) < chQ
for each x € X, and for all0 < r < diam Q (here diam ) is the diameter of ). Suppose that 0 < s < 1 and

1<q¢<o0. If1 <p< Qs and  supports a (1,p)— Poincaré inequality ([9, Thm. 5.1]) or, 0 < p < Q/s,
0 < ¢ < o0 and Q) is geodesic ([14, Thm. 4.4]), then
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35 p(Q),q
B, ,(Q)CL (Q)

where p(Q) = Qp/(Q — sp).

The purpose of this paper is to obtain a Sobolev type embedding result for the Besov spaces defined on
a doubling metric space. This will be done by obtaining pointwise estimates between the special difference?

fur() — £ (t) (called the oscillation of f;;) and the X —modulus of smoothness defined by

Ex(f,r) = ][ 1F(@) — £(9)] du(y)

(@,r) X

(here f;; is the decreasing rearrangement of f, f;*(t) = : fg fii(s)ds, for all t > 0 and X is a rearrangement
invariant space on €2, see sections 2 and 3).

The paper is organized as follows. In Section 2, we introduce the notation and the standard assumptions
used in the paper. In Section 3, we will see that a Sobolev type embedding of B;, q(Q) into a rearrangement
invariant space X implies a lower bound for the measure of the balls. We introduce the notion of X —modulus
of smoothness and prove some estimates of the oscillation of f in terms of the X —modulus. In Section 4, we
define general Besov type spaces on doubling measure metric spaces and use oscillation inequalities obtained
in the previous sections to derive embedding Sobolev theorems for our generalized Besov spaces. In Section 5
we obtain generalized uncertainty Sobolev inequalities in the context of Besov spaces. In Section 6 we obtain
criteria for essential continuity and the embedding into BMO. Finally in Section 7, we consider in detail the
case B;’q(Q).

Throughout the paper, the symbol f =~ g will indicate the existence of a universal constant ¢ > 0
(independent of all parameters involved) so that (1/¢)f < g < ¢ f, while the symbol f < g means that

f<cy.
2. Notation and preliminaries

A measure metric space (€,d, u) will be a separable metric space (€2, d) equipped with a Borel measure
. We start with some definitions.

2.1. Background on rearrangement invariant spaces
For measurable functions f : Q@ — R, the distribution function of f is given by

pp(t) = pfz e Q:[f(z)[ >t} (£>0).

The decreasing rearrangement f; of f is the right-continuous non-increasing function from [0, 00) into [0, o]
which is equimeasurable with f. Namely,

fu(s) =inf{t > 0: pg(t) < s}.

3 Estimates of this type are very powerful and arise in connection with embeddings of Sobolev type (see [2], [19], [22], [23],[24],
[25], [27])-
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It is easy to see that for any measurable set £ C )

w(E)

|f@)ldu< [ fi(s)ds. (1)
o= |

In fact, the following stronger property holds (cf. [3]),

sup [ |f(z)|dp = t fu(s)ds. (2)
t/ /
E 0

w(E)=

Since f; is decreasing, the function f;*, defined by

is also decreasing and, moreover,

The oscillation of f is defined by

Ou(f,t) == 17 () = fu(®), 0 <t<p().
Remark 3. An elementary computation shows that

O sy Oulfit)
&f“ (t)**—#t

and that the function t — tO,(f,t) in increasing.

Conditions like f};(o0) = 0 will appear often. The following result (see [21, Proposition 2.1]) clarifies the
meaning of such equality.

Proposition 4. If 11 (2) = oo, then f;(c0) = 0 if, and only if, pys(t) is finite for any t > 0.

We recall briefly the basic definitions and conventions we use from the theory of rearrangement-invariant
(r.i.) spaces and refer the reader to [3], [20], for a complete treatment. We say that a Banach function
space X = X () on (€, d, ) is rearrangement-invariant (r.i.) space, if g € X implies that all y—measurable
functions f with the same rearrangement function with respect to the measure p, i.e. such that f; = g;,
also belong to X, and, moreover, || f|x = ||g]/x-

For any r.i. space X(Q2) we have

L=®(Q)NLY Q) c X(Q) c LYQ) + L>=(Q), (3)

with continuous embedding.
Typical examples of r.i. spaces are the LP(Q2)-spaces, Lorentz spaces, Lorentz-Zygmund spaces and Orlicz
spaces.
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A useful property of r.i. spaces states that if

/Tfff(s)ds < /TQZ(S)d&
0 0

holds for all » > 0, then, for any r.i. space X = X(Q),

1Flx < llgllx -

The associated space X’(€Q) of X () is the r.i. space of all measurable functions h for which the r.i. norm
given by

fgz |9 |d,u
q#o ||9||X(Q)

1Pl x0 ) = (4)

is finite. Note that by the definition (4), the generalized Hélder inequality
/ (o) di < gl Vel o)

holds.
The fundamental function of X is defined by

¢x(s) = Ixelx

where E is any measurable subset of  with u(E) = s. We can assume without loss of generality that ¢x
is concave. Moreover,

Px(s)px(s) = s. (6)

Associated with an r.i. space X there are some useful Lorentz and Marcinkiewicz spaces, defined by the

quasi-norms

w(2)

i = s0p £ @0x O, Flac = [ Fildox(e @
0

Notice that
Or(x)(t) = dacx)(t) = dx (1),
and that
A(X) C X C M(X) (8)

and the embedding has norm 1.
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2.1.1. Indices
Let D1 f(t) = f* (), s > 0, be the dilation operator on X, and let hx(s) its norm. The upper and lower

S

Boyd indices associated with a r.i. space X are defined by (see [4])

_ . . Inhx(s) Inhx(s)
ex ;I>11 Ins and - ax iilf Ins )
It is also useful sometimes to consider a slightly different set of indices obtained by means of replacing hx (s)
in (9) by

¢X(t8)

Mx(s) =sup -2 0

s> 0.

The corresponding indices are denoted Sy, 3., and will be referred to as the upper and lower fundamental

Zx
indices of X. Actually, the relationship between My (s) and hx(s) is that the computation of the former

is exactly the computation of the latter but done only over functions of the form f = x(o,q). Therefore we
have (cf. [3])

0<ay<pf,<Bx<ax<L

We shall usually formulate conditions on r.i spaces in terms of the Hardy operators defined by

P =5 [f@in @i = [ 10
0 t

In particular, it is well known (cf. [3]) that if X is a r.i. space, P : X(0,00) — X (0,00) (resp. Q) is bounded
if and only if ax <1 (resp. 0 < ay).

2.2. Doubling measures

Given a ball B(z,r) in Q we set V,(x,7) = u(B(z,7)).
A metric measure space is called doubling if there exists a constant Cp > 1, such that

0 < Vyu(z,2r) < CpVyu(z,r) < 00 (10)

for all x € Q and r > 0.
Obviously @Q—regular spaces are doubling.

Remark 5. Given z € Q, the function r — pu(B(z,r)) is (usually) not continuous, thus given ¢ > 0 does not
necessarily exists a ball B(x) centered at x such that u(B(x)) = t, however there is a ball B(x) centered at
x such that ¢t/Cp < p(B(x)) < t. Indeed, consider 7o = sup {r : V,,(z,r) < t/Cp}, then

Viu(z,r0) <t/Cp < Vyu(z,2r9) < CpVy(z,mo) <t

Where Cp denotes the u—doubling constant.

Following the proofs of [37, Theorem 1] and [35, Theorem 1.4] we easily obtain the following result:
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Lemma 6. If (Q,d, p) is doubling, then for all bounded A C Q with u(A) >0, x € A and 0 < r < diam(A),
we have

Vi(z,r) _ r m

> 27— 11
27 () (D
where m = logy, Cp and diam(A) = sup,, ,c 4 d(z,y)".

A metric space (€2,d) is called uniformly perfect (with constant a), if it is not a singleton, and if there
exists a constant a > 1 such that

O\B(z;r) # @ = B(x;r)\B(z;r/a) # @

for all x € X and r > 0. Connected spaces are uniformly perfect, and so are many classical totally discon-
nected fractals; for instance, the Cantor ternary set is uniformly perfect. It is also easy to see that Q—regular
spaces are uniformly perfect (see [15, Chapter 11]).

Now we can state the opposite inequality in Lemma 6.

Lemma 7. Let (,d, ) be doubling and uniformly perfect. Then there exist constants D > 1 and k > 0,
depending only on the doubling constant C'p and the uniform perfectness constant a, so that

forallz € A and 0 <r < R < diam(Q).”

Combining the previous two lemmas, the following is true in doubling uniformly perfect measure metric
spaces: There exist positive constants cg, Co, k, m (k < m) depending only on the doubling constant of the
measure and the uniform perfectness constant of the space (£2,d, 1) such that

co min(rk, r"™Vu(z,1) < Vy(z,r) < Cy max(rk, ") Vu(x, 1), (13)

forall z € Q and 0 < r < 0.
Notice that if diam(Q) < oo, from (11) and (12) it follows that there exist constants ¢, Cq such that

er™ < Vy(z,r) < Crr, (14)
for all x € X and 0 < r < diam(9Q).
Definition 8. Let 0 < k < m. Let (£2,d, 1) be a measure metric space (2, d, u).

(1) (9, d, p) will be called a (k,m) —space, if inequality (13) holds.®
(2) A (k,m) —space will be called uniform, if there are constants ¢, C > 0, such that

cmin(r®, ™) <V, (z,7) < Cmax(r®,r™). (15)

4 This inequality is actually equivalent to the doubling property of the measure taking B(z,2r) as the set A.

5 Notice that if some measure satisfies the above inequality, with some constants D > 1 and k > 0, then by choosing r < DY*R
in the above inequality we have that the space is uniformly perfect with any constant bigger than D/k.

6 In fact (see [39]) (©,d, ) is a (k,n) —space if, and only if, it is doubling and uniformly perfect.
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(3) A (k,m) —space will be called bounded from below, if there are constants
d, D > 0 such that

dmin(r®, r™) < V,(x,7) < Dmax(r®, r™)V,(z,1). (16)

Remark 9. It follows from (13) that a (k, m) —space is a uniform (resp. bounded from below) if, and only
if, 0 < infreq Vi(z,1) < sup,cq Vu(z,1) < oo, (resp. 0 < inf,ecq V. (z, 1)).

Remark 10. From (14), we have that doubling uniformly perfect measure metric spaces with diam(2) < oo,
are uniform (k, m) —spaces.

Notation 11. Let (£2,d, i) be a (k, m) —space. In the rest of the paper we shall use the following notation:
(1) For ¢t > 0,
R(t) = max (t7”/k7tk/m) , 7(t) = max (tl/k,tl/m) .
(2) If (Q,d, ) is a uniform, we denote
ko =2Cp/c

where ¢ is the same constant as in (15).
(3) If (2, d, u) is bounded from below, we denote

K1 = QCD/d
where d is the same constant as in (16).

Given (Q,d, ) a (k,m) —space, we associate to the measure p a new measure fi defined in the following
way,

i) = [
E )

for all Borelian sets E C 2.
In the following lemma we collect some properties for the measure f.

Lemma 12. Let (2, d, 1) be a (k,m) —space. Let f be a p-measurable function. Then:

(1) For all v > 0, we have that
win(rt,r) [ 1wl dut) = [ 170)|dit) (")
B(xz,r) B(z,r)

< max(r¥, ™) ][ £ @) duy).

B(z,r)

Thus f is p—Ilocally integrable, if and only if, f is fi—locally integrable. Moreover, (2,d, i) is a uniform
(k, m)—space.
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(2) If (,d, p) is uniform, for all measurable E C Q, we have that

i(E) = p(E).

(3) If (,d, ) is bounded from below, then for all f € Ly(€) + L(2)

fa(®) < fu(d),  (t>0),
where d is the same constant that appears in (16).

Proof. (1) Using the doubling property and the fact that B(z,r) C B(y,2r) whenever y € B(x,r), we get

f(y)] din(y) = / If(y)l‘fl/gyif / If(y)lg"g’g‘jgyi)
B(x.r) B(a.r) T BGen R

< Comax(r*, ™) / FW)

B(z,r)

< CpComax(rk, r™) / If(v)]

B(z,r)

< CpComax(r*, ™) ][ £ dp(y)-
B(z,r)

du(y)
V,U« (y7 T)

(by (13))

du(y)

Vio(y.2r) (by (10))

Similarly, if y € B(z,r) then B(y,r) C B(z,2r), and thus

sl = [ 15l = [ i e Al

Vi(y, 1) Vi(y,1) Vu(y,r)
B(z,r) B(z,r) B(z,r)
. du(y)
> comin(rF, r™
= €0 ( ) |f(y)|Vu(y,7“)
B(z,r)
. du(y)
> k _.m
> comin(r™) [ 1)l e
B(z,r)
>C_0 ; k ,m d
> 5o min(rt, ™) |f(y)] du(y).
D
B(z,r)

Taking f =1 in (17) we obtain that (€2, d, i) is a uniform (k,m)—space.
(2) It is obvious.
(3) From (16) we get,

_ du(y) 1 / ()

p— < - d = I ——

fif(y) / V(y,1) ~— d 1(y)
{we|f(2)|>y} {we:|f(2)|>y}

Therefore, we get

pr(y) < dt = jig(y) <t
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and thus

Jat) =inf{y: fp(y) <t} <inf{y:pp(y) <dt} = fi(dt). O

We end this section giving some examples of spaces introduced in Definition 8.
2.8. Examples

2.8.1. Closed subsets of R™ (see [17])
We denote by m,, the n—dimensional Lebesgue measure on R™ and by d,, the n—FEuclidean distance.

(1) Consider F C R? = {(z1,72)} defined by F = Fy U Fy, where F; = {(z; + 1)? + 23 < 1} and
Fy, ={0 <z <2, 29 = 0}. Let m,, denote the n—dimensional Lebesgue measure, for n = 1 distributed
over the x1—axes, and put d\ = x1dmy. Put u = mgp, + A\p,, then (F,dy, i) is (1,2) —uniform space.

(2) Let F C R? be the set F = {0 <z <1,0 <z <]} where vy > 1, and dv =z} "dmy and p = Vip,
then (F,da, ) is (1,2) —uniform space.

(3) (See [17, Proposition 1]) For every closed subset F' C R™, there is a measure y with support F' satisfying

w(B(z,r)) < curp(B(z,1)) and ¢1 < p(B(z,1)) < c2, z € F.

Thus if F' is uniform uniformly perfect, then there is £ > 0, depending only of ¢, and of the uniform
perfectness constant of F' such that (F,d,, u) is (k,n) —uniform space.

2.3.2. Muckenhoupt weights (see [29])

A Weight is a positive, locally integrable function on R™. For a given subset E of R", let w(FE) :=
fE x)dz and |E| := fE dx. A weight w on R™ is said to belong to the Muckenhoupt class A4,, 1 < p < oo,
(see [3 ]) if

A\ :
wl, = supp (% S5 w( ) ( B I (w(m ) dx) <oo, ifl<p<oo, a8)
o 1 J w@)de L
Sume < 00, lfp—l7

where the supremum is over all balls B C R™. For p = oo, we define Ao, = Ui<pcoo Ap. Given w € A, we
define

oo

1
[wla, = Sgme/M(wXB)(év)dx

where M denotes the usual uncentered Hardy-Littlewood maximal operator. It is known that there is a
positive dimensional constant ¢, such that [w], < ¢ [w],

Given w € A,, it follows easily from (18) that if there exists M > 0 such that essinf), > w(z) = 0,
then inf,ecrn Vi, (2, 1) = 0. Similarly, if esssupj, > w(z) = oo, then sup,cgn Vi (z,1) = oo.

Proposition 13. Given w € A,, p > 1, (R",d,,w) is a (W,pn) —space.

Proof. Since w € A,, by [16, Theorem 2.3], we have that

! r L w(x)dz
E/w(x)dgcgz |B‘/ (2)d
B B
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1

where r =1+ ] =

7, therefore (see [8]) there exist constants ¢, C' > 0 such that

for any measurable set E of the ball B. Considering in (19) E = B(z,r) C B(z,1) = Bif r < 1, or
E = B(z,1) C B(z,r) = B if r > 1, and elementary computation shows

n n

min (72" Mas P ) w(B(z,1)) R w(B(z,r)) X max (r*"" Max P ) w(B(z,1)). O
( ) b b b )

Example 14. Let 1 <p < oo, -n<a<fB<n(p—1)

( ) “r|a if |‘T‘ < ]-7
Wo p(x) = .
o lz|? if |z > 1.

Then wq g(x) € Ap, and

(1) If —n < B <0, then inf,ecrn V,(z,1) = 0.
(2) If 5 =0, then sup,ern Vu(z,1) < 0.
(3) If 0 < 8 < n(p — 1), then sup,cpn Vyu(z,1) = o0.

2.8.83. Carnot-Carathéodory spaces (see [13])

(1) (Compact case). If X is a compact n—dimensional Carnot-Carathéodory space with the distance asso-
ciated to the vector fields and endowed with any fixed smooth measure p with strictly positive density,
then (X, d, 1) is a uniform (n,nm) —space.

(2) (Noncompact case). Let G be a connected Lie group and fix a left invariant Haar measure p on G. We
assume that G has polynomial volume growth, that is, if U is a compact neighborhood of the identity
element e of G, then there is a constant C' > 0 such that u(U™) < n® for all n € N. Then, there is
a nonnegative integer no, such that pu(U™) ~ n">= as n — oo. Let X1, ..., X,; be left invariant vector
fields on G that satisfy Hérmander’s condition, that is, they together with their successive Lie brackets
[Xiy, [Xiy, [+, X5, ] .- .] span the tangent space of G at every point of G. Let d be the associated control
metric. Then this metric is left invariant and compatible with the topology on G; and there is ng € N,
independent of z, such that u(B(z,r)) ~ ™ when 0 < r <1, and p(B(z,7)) ~ r™ when r > 1. From
this, it follows that (G,d, p) is a uniform (min{ng, ne }, max{ng, ne }) —space.

3. Symmetrization inequalities for moduli of smoothness

Let us start proving that the boundedness from below is necessary in order to obtain Sobolev type
embedding result for Besov spaces (see [12] and [18] for some related results).

Theorem 15. Let (2, d, 1) be a doubling metric space. Let X be a rearrangement invariant space with 1/p >
Bx. Assume that the following embedding holds

B;’q(Q) c X.
Then

11;16152 Vi(z,1) > 0. (20)
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In particular, BZSW(Q) C LP"9(Q) for some p* > p, implies (20).

Proof. We claim that conditions on indices imply that for 1/p > ¢ + B, and t sufficiently small

t1/p
“Px—e, (21)

ox(t)

=

=t

Indeed, let s,t > 0. Then

t1/p tP oy (st) t1/p
ox(t)  ox(st) ox(t) ~ px(st)

Mx<8)

Thus, for s = 1/t, we get

ti/p ti/p 1

ox(t) @X(l)MX(Z).

Let 1/p > & > Bx. Then (see [20, p. 54]) for ¢ sufficiently small
ti/p t1/p
— <
ex(t) ~ ex(1)

as we wanted to see.
For a fixed x¢ € €2, we define the Lipschitz function

(2 —d(zo,y)) ify € B(xo,2)\B(zo,1)
Uy (y) = 1 if y € Blxo,1)
0 if y € Q\B(xo, 2).
It is easily seen that

920 (Y) = XB(w0,2)(¥)

is a generalized gradient, i.e.

kg () — tigg (8)] < () |90 () + g ()] (22)
By Fubini theorem
Bty )P < 29 / tg ()P dpa() + 27 ][ it (9) 7 dpa(y) () (23)
Q B(z,t)

< 2 gy |7+ 27 / i L) | dut)

u z,t))

= |l
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the last estimate follows from the doubling property of p and since B(y,t) C B(x,2t) whenever x € B(y,t).

By (22) and using a similar argument as in (23), we get

By(usyot) = [ | Juns(@) = way ) () | di(a)

< / ][ A2, 9) 1900 (@) + 900 W) duy) | du(z)

Q  \B(z,t)

< / g0 (2)]” () + / ][ 920 () du(y)dp(z)
Q

Q B(zx,t)

1P gao Il -

Thus, combining (23) and (24) with the doubling property, we get

Ep (g, ) = min([lugy|l,, ¢ |goll,,)

< min(V,,(zo, 2)1/P, tVy (o, 2)!/7)

< min(1, )V}, (xg, 1)*/P.

Therefore,

||uw0‘ B;)Q(Q) j Vy,(.’],'07 1)1/17.

Since
”U:co ”X > @X(Vu(l'oy 1))
from hypothesis, we have that

)< Vel@o, )P Dt
ox (Vu(zo,1))

(24)

(25)

If infyeq Vi (z,1) = 0, we can select a sequence V,,(z,,1) — 0, thus for n large enough, (25) and (21) imply

1=V, (2, 1)pPx—2,

which is impossible since % —Bx—e>0. O

Recall that our aim is to obtain embedding results for Besov spaces built on doubling measure spaces.

Therefore, in view of Theorem 2 it is reasonable to assume that Q is uniformly perfect (since Q—reg-

ular spaces are uniformly perfect). Moreover, if we assume the additional hypothesis (i.e.  supports a

(1, p)—Poincaré inequality or Q geodesic), then 2 is connected and therefore uniformly perfect. Taking into

account these considerations and the previous theorem, our framework in what follows will be a (k, m) —space

bounded from below.
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3.1. Pointwise estimates for the rearrangement

Let (©Q,d,n) be a (k,m) —space with” u(Q) = co. For f € L(Q) + L>*(Q), and X a r.i. space on Q, we
define:

(1) The gradient at scale r

W@ = | 15~ FWlduty). (>0

B(z,r)

(2) The X —modulus of continuity Ex : (0,00) x X — [0, c0),
Ex(f,r) = [(viHlx -

Remark 16. If 1 < p < co and X = LP, then by Holder inequality, we get

D 1/p
Eutn=| [| f 15@ - 1wldut) | duo
Q  \B(z,r)
1/p
< |f(x) = F)|" du(y) | du(zx)
Q (z,r)
= Ep(fa ’I“)

The aim of this section is to obtain pointwise estimates for the oscillation O, (f,t) in terms of the
functional Ex(f,t), (see [23], [27]). The next lemma will be useful in what follows:

Lemma 17. Let f € LY(Q) + L>=(Q). Let x € Q and t > 0 be such that there is a ball By(x) centered at
with p(Bi(x)) =t. Then

Far(t/2) = £ (6) < (01 1), (t/2),

where

@) (@)= 1

/ 1F(@) — £()] du(y).

Bi(z)

Proof. Since

|f (@)X B, @) (Y) < 1f(@) = fF(W)IXB.()¥) + [f (W) |XB, () (),

integrating with respect to du(y), we have that

f@les [ 1@ - 1wl + [ 11@ldu)

Bi(z) By (x)

7 All the results given in this section also hold in the case that u(Q) < co. We leave the details to the reader.
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< / 1F(2) — f(y)ldu(y) +/f )ds (by (1))

By(x)

Now integrating with respect to du(x) over a subset E C 2 with u(E) = t/2, we get

/|f du(a //|f )lduty)dy /%(/f ) (@)

By (x)

:/(5;7) (z)dp(x) + %/f;‘;(S)ds
0

E

By (2), taking the supremum over all such sets E, we obtain

t/2

[ fits)as < 72<6#f>:; ()ds+ 5 |
0

0

or equivalently

Frrt/2) = fi7(6) < (61 ), (t/2). O
Theorem 18. Let f € L'(Q) + L>(Q). Let X be an r.i. space on §).
(1) If (2,d, p) is uniform, then for allt > 0, we get

i R (Iiot)
Hot (bx(lﬁ()t)

(2) If (Q,d, n) is bounded form below, then for allt > 0, we get

Ou(f;t) = Ex(f,r(kot)).

1 R(k1 )
Kllt¢X( t)

O/l (fat) - (f7 (Hlt))'

Proof. (1) Given z € Q, and t > 0, by Remark 5 there is a ball B(x) centered at x such that t/Cp <
w(B(z)) < t. We denote by z the measure of this ball, i.e. u(B,(x)) = 2z, with t/Cp < z < t. From (15) it

follows that

i.e.

Obviously, B,(z) C B (z,r (t/c)), and thus

(51 1) ( / (@) — F(y)]duty)

B (z)
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e 1)~ Fw)]duy)

B(z,r(t/c))

<

ccep™D [ 5@ - swlduty) v 27)
B(z,r(t/c))

_ CCDR(i/ 2 (V440 /) ().

r(t/c)

Taking rearrangements, we get

(8% );, (s) < CCp ey O REEH

which implies

(6 f) (5) < COp T (E/ J (%00 f)ﬂ (s), s > 0.

On the other hand

(vﬁ(t/c)f) Z* (s) < ¢X1(8) sup (¢X (s) (V’r‘(t/c)f) - (3))
H( t/c)f) HM(X (by (7))
e od G| MU0

= ¢X—() x(fir(t/c)).

Combining this inequality and Lemma 17, we obtain

(/) = £i7(6) £ G} 12) £ COp i Lo (1)

By Remark 3, we get

z

G @ = [ G - gt & 2 G
z/2
In summary,
R(t/c)
O (f.2/2) < 20Co 1 EE B (fr(t/0). (28)

Finally, using that t/Cp < z < t, we get

QCt' <f7 > < %Ou (f, %) (by Remark 3)

z/2 R(t/C)EX(f,r(t/c)) (by (28))

R
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increases)

R(t/c) . s
4CC’D ox(t]2) Ex(f,r(t/c)) (since —¢X(S)

bx(2/c)\ R (t/) Ex (f.r(t/c))
=4CCp (i‘;‘é ox(/2) ) ox (/)
R (t/c) Ex(f.r(t/c))
Px(t/c)

= 4CODM)((2/C)

which implies (26).

(2) By Lemma 12, we get L}, (Q) + L*(Q) C Li(Q) + L (Q).

Since [ is doubling, by Remark 5, given x € £ and ¢ > 0 there is a ball B,(z) a ball centered at x such
that t/Cp < fi(B,(z)) = z < t. Then

” C
@=L [ i@ -swipeh
B(x,r(t/d))
<opp™UD [ 1)~ slant) Gy 17)
B(w,r(t/d))

(Vf(t/d)f) (z).

Taking rearrangement with respect to i, we have that for all s > 0

R(t/d)

=CpD

OE 0 < CDDR(t/d) (Vf(t/@f); (s)
< CpD—1—" (t/d) (Vﬁ(t/d)f)* (sd) (by Lemma 12).

Hence,

SCDDWE/(VZ%)QZ(W)CKU

0

=CpD (i/d) sld/(vff(ﬁ)f);(y)dy
0

Now we finish the proof as in part 1. O

Remark 19. These estimates are abstract variants of known estimates via the classical modulus of smooth-
ness. For example if X = LP(R"™), we obtain

1/n
Fea) g < 2L,

See [19], [23] and the references quoted therein.
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4. A Sobolev type embedding theorem for Besov spaces

Let (Q,d, u) be a (k, m) —space. Let X be a r.i space on £, let Y be a r.i. space over [0, 00) with respect
to the Lebesgue measure and let 0 < s < 1. We define the Besov space Bfk m), X v(€) as the set of those
functions in L'(2) + L°°(Q) for which the semi-norm Hf”Bfk oy (@) is finite. Here

r(t) " Ex(f,r(t))
Py (t)

In the Euclidean case, there are several examples of generalized Besov spaces, for instance if Y is a Lorentz-

||f||f3fkym)yx_yy(sz) = .

Zygmund space and X = LP, we obtain the Besov spaces of generalized smoothness (see [7], [28] and the
references quoted therein). If X is Orlicz spaces and Y = L%, we obtain the Besov-Orlicz spaces (see [1],

[6], [38], [36] and the references quoted therein). Examples of Besov involving two r.i. norms can be found
n [11] and [32].

Remark 20. If X = LP(Q) and Y = L9 ([0,00)), (1 < p < 00, 1 < ¢ < 00), we write Bf, ., (Q) instead of

sM),Psq
By m).10(),24(2)- In this case, ¢y (t) = t1/4, and thus

”f”]éfk’m)?p,q(g) < (by Remark 16)

’ Ey(f,r(t)
(o) e/l

2

1/q

E,(f, maX tl/k tl/m)) Tt
max (/¥ tl/m) t

E(f,2/™N\ " dt [ (E,(f,t1%)\? dt
( pts/m ) t+/( pts/h ) t

1/q

I
o—

1
1/q

E,( dt [ (E,(f.0)\ dt
)7+/( =)

1

1/q

ELq “ dt
t

12
o—

I
0\8

Therefore,

B;,q( ) - Bkk7m),p,q(Q)'

Similarly,

BS oo(Q) - 103((}’an%),p,oo(Q)'

p,

4.1. Some new function spaces

Following [23], we shall now construct the range spaces for our generalized Besov-Sobolev embedding
theorem.
Let (Q,d, u) be a (k,m) —space. Given s € R, we define

= —_— = 1 17%“ 17%
vg(t) := RO ()" min (t ,t )
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and

Px(t)

vs(t) P

S5 (00 = {75 1fllgzv 0, = |

O#(fv t)

<oo},
Y

where ¢x is the fundamental function of X, a r.i space on 2, and Y is a r.i. space on [0, 00) with respect
to the Lebesgue measure.
Note that these spaces are not necessarily linear and, in particular, ||.|| SXY (0,) is not usually a norm.
Given a r.i. space X we shall say that Y satisfies the Q(s, (k, m), X )—condition if there exists a constant
C > 0 such that

ox(t)
oy (t)

ox(t)
oy (t)

vs(t) QI (1) vs(t) ft)

<c|

Y Y

The following lemmas will be useful in what follows. A consequence of our first lemma is that if Y satisfies
the Q(s, (k,m), X)—condition then Sff’y(v) is a Banach space.

Lemma 21. Let X,Y be two r.i. spaces. If Y satisfies the Q(s, (k,m), X)—condition, then for all f}(cc) =0,

Px (1) pus
Il = o024 12700 . (29)
with constants of equivalence independent of f.
Proof. Obviously,
ox (1) ‘ ¢x (1)
vg(t O,(f,t < |ws(t) === 13" (¢
()¢y(t) u( )Y ()c/)y(t)“()y
Conversely, from % () = —w and the Fundamental Theorem of Calculus, we have
(o)
%ok *ok * dS Kok *
f;,e (t): (fu (S)_fu(s));:Q(fy, _fp,)(t)a
t
and the result follows by the Q(s, (k,m), X)—condition. O
The next result gives a useful criterion to check the validity of a Q(s, (k,m), X)—condition.
Lemma 22. Let X,Y be two r.i. spaces. Suppose that
Vi m4s _q dt
t* hy(l/t)Mx(l/t)My(t)? < 00. (30)

1

Then'Y satisfies the Q(s, (k,m), X)— condition.

Proof. Let us write v, := v. We have

028050 = [v0 2D 5% = vy jun™

oy (t) oy (t) T oy (t)
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oo

ox (wt) v(t) ox(t) ¢y (xt) dx
< [ vtem) s X s s s P e S

1

o0

:/v(ta:)f(t:v)((zX(xt) sup olt)

/ y(xt) >0 v(tx)

Applying Minkowski’s inequality, we obtain

ox(t) i ox(at)| () do
"v(t)me(t) < / o) 1) P s N1/ ()%
< [ (sup %) v /marca /iy )5 o022

Finally an elementary computation shows that, if > 1, then

up olt) :a:mTﬂfl.
t>0 v(tx)

O

Remark 23. In terms of indices, it is easy to see that (30) is equivalent to the inequality

m+s

k

_1<QY_BY+QX~

From Theorem 18 we immediately get the following generalization of the Sobolev embedding theorem for
Besov spaces.

Theorem 24. Let (Q,d, p) be a (k,m) —space, X, Y r.i. spaces and 0 < s < 1. Then

(1) If (Q,d, ) is uniform,

°S

B(k,m),X,Y(Q) - Sf’y(vs)-
Moreover if Y satisfies the Q(s, (k,m), X), then for all f;(c0) =0

ox (1)

Vs (t) by (t)

f;;*(t)H <11
Y

éfk,7YL),x,Y(Q) '
(2) If (Q,d, u) is bounded from below,

é(mm),x,y(m C S;(’Y(Us)

Moreover if Y satisfies the Q(s, (k,m), X), then for all f%(cc) =0

ox(t)
Py (t)

vs(t)

my,x,y ()"

0] NETH P
. |

Proof. (1) Let f € L*(2) + L°(£2). Then from (26) we know that there is a constant x > 0 such that

1 R (I’iot)

Ou(£:) = Kot dx (Kot)

E)((f,’l“(liot)), t > 0.
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Thus,
t ox(t) 1 Risot) ,
1 0= | B s o g P00
_ || B (kot) r(kot) ox (t)dy (Kot) 1 r(kot)”* .
‘H RO oxtrooy (6) ro oy (rot) - X DT
R (kot) 7(kot) ¢x (1) ¢y (ko) 1 ||7(kot) " o
j?ﬂ%( ROrt)°  dx (rol)dy (£) 7o ) oty DX rat))|
< hy (1/ko) :b(i)(t)sEX(f,r(t)) )

j ||f||é?k,'rn),X,Y(Q) :

Part (2) is analogous. O
5. Uncertainty type inequalities

The purpose of this section is to extend the generalized uncertainty Sobolev inequalities obtained in [26]
to the context of Besov spaces.

Definition 25. Let (£2,d, i) be a (k,m) —space, X,Y r.i. spaces and 0 < s < 1. We will say that a y—mea-
surable function w :  — (0,00) is a (s, (k, m), X,Y)—admissible weight if

= ((i):“))SW =

oy (t)

Theorem 26. Let (2,d,u) be a uniform (k,m)—space, let X, Y be r.i. spaces, 0 < s < 1 and w a
(s, (k,m),X,Y)—admissible weight. Assume that Y satisfies the Q(s,(k,m), X)—-condition. Let o > 0.
Then for all f € L},(Q) + L° () such that f};(co) = 0 we have that

[flly = [w]=F IIfIIEM) IIw‘”fII““ - (31)

Proof. Since f;;(c0) = 0, by the Fundamental theorem of Calculus and (26), we get

T R (kos) ds
j/@mEx(f,T(Hos)):

Then

) s

1y = (], < (2 v

()] @
/ %)

<r

Y

< +r lw™ flly -

Y
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Now we estimate the first term,

)

AN
=%
—~
-
S~—
7N
S
glr
~__
= *
—
-
N~—
v
w
S | <
» »
— |~
~ | ‘T~
N2 BN

Y

IN
£
=%
—
~~
~
<
w
—~
~+
~—

¢x(t)

oy () |ly

QSX(t) x 1 R(K)OS) ds )

¢Y(t) /@mEX(]ST(HOS)): ) (by (32))

T(t)_sEx(f7T(t))
oy (t)

= [l fllss, v -

< [w] || 27 (8/2)vs(2)

< [w] ||vs(t)

(by the Q(s, (k,m), X) — condition)
Y

In summary, we have proved that there is an absolute constant A > 0, such that

1y < ALl Il o+ 7 0™l (33)

lw** £l
“fHél(gk,nL),X,Y(Q)

the multiplicative inequality (31). O

14+«
Selecting the value r = (2 ATw] ) to compute (33) balances the two terms and we obtain

Remark 27. The connection with the isoperimetric weight introduced in [26] is the following: consider the
case (92,d, u) = R™. Obviously, (2, d, 1) is a uniform (k, m)—space with k =m = % Let X =Y = L4, then

= (), 0) ) = (), 0) )

Thus w is admissible if, and only, if % € L™ (i.e. w is an isoperimetric weight).
Let « > 0,1 <¢g<o00,0<s <1, with s <n/q. By Remark 23, LY satisfies the Q(s, (%, %),Lq)fcondi—
tion. Then by Theorem 26, if % € L™ we have that

1£1l, = [w] = [|f]

[e3 1
a+1 as at1
? w*® fl| o+t
B;,q(Rn) || ||q )
where B; 4(R™) is the classical Euclidean Besov space.

6. Embedding into BM O and essential continuity

Theorem 28. Let (Q,d, i) be a uniform (k,m) —space. Let X be a r.i. space on . Then

R(t)
I lBro@) = sup MEX(JEW (t))-

Proof. Let B = B(z) be a ball centered at x. Since (2, d, p) is uniform, we have that

u(B) < u(B(a,r ((B)/e)) < CR (u(B)/c).
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Then

= [ 110~ 16)duto)|duty)

B B(x)

g][ / F() — £(5)] da(s) | duy)
B

|f(s) = f(y)ldu(s) | du(y)

B \B(z,r(u(B)/c))

BB (. (u(B) /) Ixsllye (by ()
BB g (5. (u(B)/e)).

Using this estimate and Remark 5, we get

o = s f ‘f(w ~ f 1du(s)| duto)

R(u(B)/c)
= 0 C L B)ox (u(B))

R(u(B)/c)
Siglo)t/CDSSLLI?B)St 1(B)ox (u(B))

Ex(f,r(u(B)/c))

Ex(f,r(u(B)/c))

R(t/c)
= igg mEx(f» r(t/c))
R (t)
BT OR 0

6.1. Essential continuity

We are going to obtain conditions for the essential continuity of functions in Besov spaces (see [25] for
some related results).

Let f be a p—measurable function on 2. The signed decreasing rearrangement® fo: [0,00] = R of f
defined by

fa(s) =inf{t € R: p3(t) < s},

where p%(s) = pu{x € Q: f(z) > s}. It follows readily from the definition that
f

8 We refer the reader to [34] and the references quoted therein for a complete treatment.
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[i(0%) =esssup f and  f}(c0) = essinf f. (34)

If f is p—integrable on €2, the signed maximal function is defined by

t

/

0

1
t

£ =4 [ fids = g [ fs)duu(B) =t 5

moreover it is subadditive (i.e. (f +g)}" (t) < f3*(t) + g;* (1))
Note that for positive functions

fi) = 1),
and, moreover, that for ¢ € R,
(f+e), () =fit) +e (35)
The functions f and f; are equimeasurable (that is, they have the same distribution function).

Theorem 29. Let (2, d, i) be a uniform (k,m) —space. Let X be a r.i. space on ). Then. Let f € L*(Q) +
L>(Q), such that

R(1) dt
/t¢X(t)EX(f7r(t))7 <00

0
then f is p—locally essentially continuous.
Proof. If f > 0, by Theorem 18, we get

i R (Iiot)
Iiot ¢X<I€()t)

Far @) = @) = () = fu(t) = Ex(f,r(kot)).

If f is bounded from below and ¢ = inf(f), then f — ¢ > 0, and therefore

1 R (kot)
Kot dx (rot)
1 R(kot)
= kot ¢x (kot)

Ou(f =) (t) = Ex(f — ¢, r(rot))

Ex(f,r(kot)).
By (35),
L) = fu®) = (f =), () = (f =), (1),

and thus

L R (Hot)
Hot (bx(liot)

far @) = fu(t) = Ex(f,r(rot))-

Let f € LY(Q) + L*>=(Q), and let B be a ball. Given n € N, we consider f,, = max(fxp,—n). Since f, is
bounded from below, we get
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1 R(kot)
kot ¢x (Kot)
1 R (kot)
Kot ¢ (rot)

()i (8) = (fu)y (1) = Ex (fn,(r0ot))

S EX(f7T(HOt))'

Let 0 < a < pu(B). By the fundamental Theorem of Calculus

w(B) a u(B)
*k * dt_l * _ ]‘ *
| (- iw) G =4 / ()} (0t = == / ()} (00t

Since fn(2) — fxB(2) p—a.e, and |f,| < |fxg| we have
a w(B) a w(B)

L[ wa—— [ i 5 2 [ o od-—z [ ) o

n—o0o @
0 0 0

Letting a — 0, we get

w(B)

(fXB):*(O)—(fXB);*(M(B))j/ 1 R (sot) gt
0

Kot ¢x (Kot) Ex(f, T(HOt))T

ku(B)

R(t) dt
< / et EX O T

By (34)

w(B)

esssupfxB—ﬁ / (fxm);, (t)dt
0

rop(B)

R(t) dt
< [ SSEEsr o

0
Similarly, considering — fx g, instead of fxp, we obtain

w(B)
1

w(B)

Kop(B)
) R(t)
- tox (1)

(—fxB)} (s)ds — essinf(fx)

o

Bx(f, () %

0

Since fxp and —fxp are both supported on B, we have that

w(B) w(B)

[ e @as= [ au ana [ rxor; s = - [ s

0 B 0 B

Adding these results, we have that for p—almost every x,y € B



J. Martin, W.A. Ortiz / J. Math. Anal. Appl. 479 (2019) 2302-2357 2327

[f(x) = f(y)] < esssup(fxp) — essinf(fxp)

rop(B)
R(t) dt

o BT

IN
)

and p—locally essentially continuity follows. O
7. Sobolev type embeddings for homogeneous Besov spaces B.’;’ q(Q)

In this Section we are going to consider in detail Sobolev type embeddings for homogeneous Besov spaces
B’;q(Q) where 0 < p < 00, 0 < g < 0.
First of all, notice that an elementary computation (see Remark 20) shows that

(fo (Ev(n{ir(t ) )/q, 0<g< oo,
supr(t) " Ep(f,r(t)), q =00

t>0

118 ) =

In case that 1 < p < oo and 1 < ¢ < oo, our results will be a direct consequence of Theorem 24, however
if 0 < p,qg <1 then L?(Q2) and L%([0,00)) are not Banach spaces, thus the duality arguments used in the
previous theory cannot be applied.

Lemma 30. Let 0 < p < 1. Let f € LP(Q2) + L>°(), then:
(1) If (2,d, p) is uniform, then for allt > 0, we have that

R (Hot)
(rot)?

(2) If (2,d, p) is bounded from below, then for allt > 0, we have that

OM(|f|p 7t) j

Ep(f, HOt)p'

R (Iﬁ:lt)
(k1t)°

Proof. Let B = B(x) be a ball centered at x, since 0 < p < 1, we have that

Ou(I£17 1) = Ep(fr(r1t))P.

Lf(@)PxB@)(y) < [f(@) = FW)PXB@ @) + 1 f W) XB@) (Y)-

Integrating with respect to du(y), we have that

F@PuB) < [ 1f@ - P+ [ 1f@Pdut)
B(x) B(zx)
w(B)
< [ 1@~ fPdut) + [ (50; (s vy (1)
B(z) 0

Now integrating with respect to du(x) over a subset E C Q with u(E) = u(B)/2, we get
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[1s@rau < [ 1@ - rPauau + [ ﬁ 7B)f2(s)ds e

E E B(z)
) w(B)
< [ { i@ - rwPandn + 5 [ fics)as
Q B(x) 0
By (2), taking the supremum over all such sets E, we obtain
w(B)/2 1 w(B)
[y eas< [ 15w - fopdutdut) + 5 [ 077 s
0 Q B(z) 0
Equivalently,
U BY/2) = (1) ) < s | ][ )P dp(y)du(z).
QB

Now (1) and (2) follow in the same way as Theorem 18. O

Definition 31. Let 0 < p < 00, 0 < ¢ < co and let v be a weight on (0, 00), the space S%?(v) is the collection
of all p—measurable functions such that [| f||gz.a(,) < oo, where

o 1/q

Ilspec = | [ 0ulf1 0 v(0r

0

Remark 32. For p = 1 the spaces S};q(v) were introduced in [5]. Notice that, if 1 < p < 00, 1 < g < 00, then
LP,L9 _ ol
S, (vs) —Sﬂq(vs).
Corollary 33. Let (Q,d, 1) be a (k,m) —space. Let 0 < s <1 and 0 <p < o0, 0 < g < oo. Let

m+s min(1,p)
k

q
1 k4s min(1,p) \ min(1,p)
’t1+max(1,p)_ m = ) e 1

— min (e
v(t) = min (t Tp .
(1) If (,d, p) is uniform, then

B, (Q) C Spinpha(y).
(2) If (Q,d, n) is bounded from below, then

38 min(lv )w

By (1) C S PRA ().

Proof. Part (1) In the case 1 < p < co the proof given in Theorem 24 works. In case that 0 < p < 1, then
by Lemma 30 it follows that

)

2 1/p r(kot)—* -
( t (Iflp,t)> _ o) Ey(f.r (ko))

IR 7 " (ot) 77
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and the result is obtained by taking L4(]0, 00))-(quasi) norm in both sides.
Part (2) can be proved in the same way. O

The following lemmas will be useful in what follows:

Lemma 34. (see [2, Lemma 5.4]) Let 1 < p < 0o, and suppose that (w,v) is a pair of weights satisfying the
following condition: there exists C' > 0 such that for all 0 <t < 1,

t 1/q 1 = (¢—1)/q
/w(s)ds /v(s)ik1 ds <C.
0 A
Then
1 1/q 1 1/q
[r@meeas| < { [ - £i6) v
0 0
1 /g 4
+ /w(s)ds /f:(t)ds
0 0
Lemma 35. Let 0 < ¢ <1 and b > 0, then
1 1/q 1 1/q
[eror) = [turo-ne ) o
0 0

Proof. We integrate by parts and obtain,

1 1
d d
J R A G A U R O G OO
0 0
1
1 Jdt
< i [ b /’:*(t)q]é + %/tb( ;*(t) - f;(t)) n (since ¢ < 1).
0

Since

[ (0] = f2r (1) — Lim £ £2 ()7,

t—0

To finish the proof we need to see that the previous limit is finite. If f;*(O) < oo there is nothing to prove.
If f;*(0) = oo, taking into account that tO,(f,t) is increasing, we get

1 1/q 1 1/q

~
h
= %
*
—~
~
~—
hy
T %
—
—
S~—
S—
V)
T
—
|
=]
IN
»
Q
~
T %
*
—
»
=
I
hy
= x
—
=
SN—
S
»
T
—
|
<

- / S () — f1(s)" 2
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If t < 1/2, then

1/q 2 1/q

1
/sb_l_q > /sb_l_q ~ P91 if b #£ g,
t

and
1 1/q 2t \ /4
/sb_l_q > /l ~1, ifb=gq.
s
t t
Thus
1 1/q
sk * sk * ds
(0 - F0) 2 | [ 606 - 56) T
t
Finally, by L’Hopital’s rule,
g ey e () = () — fi(®)/
A T
— lim tb/q(f:*(t) - f;(t) = / Sb (f**(s) _ f*(S))
150 b/q - H H
0
Lemma 36. Given a < b < oo, we define
: a +b
o(t) = mln(i ,t%)

Let 0 < g < oo and f € LY(Q) + L™(Q), with f}(c0) = 0.
(1) If0 < a <b< oo, then

1/q

1]

110y / F25 ()0 (t)dt
0

(2) If a <0, then

1/q

far @) (t)dt 2 sy + a7 (1)

o—

(3) If b=0 and q > 1, then
1/q

— < 1,q **(1).
O/<1+ln%> L) =Wl + A7)
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(4) Ifb=0and ¢ <1 orb<0 and 0 < g < oo, then

1o = Il sty + £ (1).

Proof. (1) By [5, Corollary 4.3.], (36) holds if, and only if,

/v(t)dt = rq/%dt, r > 0.
0 r

Pick 0 < € < a, then

T

r dt
/ o(t)dt = / min(t =5, ) S < min(rt =, 1)
0

o\~3
~+
Tl
~
™

0
rd
< min(r?,7%) < min(r®, ) — .
r
27 d 2r d
t t
: a ,.by,.q q —
= min(r?, r°)r /5‘1+1 <r /v(t)sq
< rq/@dt.
ta
(2) By Lemma 35
1 1/q 1 1/q
x dt dt x
[errer) = [tourr ] v
0 0

q
(3) By Lemma 34 with w(t) = (m) 1 and v(t) = 1, we get
t

1/q 1 1/q

1 q
(t) dt dt ok
[(0)9) "< (Journrs) "o

0

<N llspaqy + 27 (),
and,

1/q 1/q

[ frw ) a e ([t \a "
/<W>? = KW)? =

(4) Ifb=0and ¢ =1, then

1
1l = 5570 = [0u5.0F + 5570) < gy + 17 (1)
0

2331
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Ifb=0and 0 < g<1,let 0 <r <1, then

1 1

dt k% 1—q O (fat) ﬁ
/O#(f’t)if o (T’) r/ M#r 1—q ¢

() = f ()

T

< gty [ 2l

1
Sl o=

T

1

thus

which implies

1 1/q
dt (1)
1l = £37(0) < ( O,/ t)q—) L
2 0/ " .

Ifb<0and 1 <q < oo, then

1
F7(0) — fro(1) = / 0.(f.1) %
0

Ifb<0and 0 < g <1, then

1 1
** ** d b dt
50) — £ /Ou )% < / Oulr. )
0

and we finish the proof in the same way as in (37). O
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Now we are ready to establish our Sobolev embedding Theorem for homogeneous Besov spaces B;q(Q).
Motivated by the classical theory we will distinguish three cases: The subcritical case when an embedding
into a Lorentz type spaces holds, the critical case if B;7Q(Q) is embedded into a logarithmic Lorentz space
and the supercritical case if the Besov space is embedded into L*°.

Theorem 37. Let (Q,d, 1) be a uniform (k,m)—space. Let 0 < s < 1,0 <p < 00,0 < g < o0 and f €

Lmin(Lp)(Q) 4+ L%°(Q), with (|f|mi“(1”’))* (00) = 0.
1

(1) Subcritical case:
(a) If smin(1,p) < k(1 4+ m) —m, then

11l ooy L9y = I1f]

B ()
where
min(1,p) 1+ 1 k + smin(1, p)
a N max(1, p) m ’
min(1,p) 14 1 m + smin(1,p)
g max(Lp) k '
(2) If k(1 + m) —m < smin(l,p) < m(1+ Faxl(l,p)) —k, then
1 1/q
t f n =/l Bs () + Hf“Lminu,p)(Q).,.Loo(Q) ) (38)
0
min(1,p) _ 1 __ m+4s min(1,p)
where a =1+ max(1,p) k .
(2) Critical case:
If smin(1,p) =m(1 + m) —k, then
(a) If g > 1, we get
FOopw V)
7# .
/ (1 +1In (%)) n =7l Bs () + ||fHLmi“(17P)(Q).{.Loo(g).
0
(b) If0< g <1, we get
”f”oo = Hf' Bqu(ﬂ) + Hf| Lmin(1,p) (Q)4+L>(Q) *

(3) Supercritical case:
If smin(1,p) > m(1 + %p)) —k, then

max(

1l = 111

Bs () + /1 Lmin(1,p) (Q)4+L>°(Q) *
Proof. The proof follows from Lemma 36. Let us see (38), if 0 < p < 1. Then

q
m+s £y ) ].
v(t) = min (tQiﬂ,tszpr) g n

with 2 — ™52 < 0, by Lemma 36, applied to |f|” and ¢/p we have that
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a/p p/a

1 t
1 % Q_HJ ﬂdt *%
[ [asras)  CFRE] <P g, + 1)
0 0

Obviously
1 v r/q 1 ¢ a/p r/q
—ktep)l 1 _k+sp)a dt
/(fii(f)t@ m;) “oo= / %/f*(s)pds -5)i
0 0 0
Since
0 p/4q
Pl grarmey = | [ OullfI 070t | = [ fllga,
W) )
0

= ”f”gz,qm) (by Corollary 33),

we have that

1 . P/q
[ (st w) - <, o+ 01
0
thus
1 1/q
[ (5O ) <t o+ (10 )"
0
=1 lss ) + 1oy o) -

All other cases can be proved in the same way. 0O
With the same proof as Theorem 37 we obtain:

Theorem 38. Let (2, d, 1) be a (k, m) —space bounded from below. Let f € L*(Q)+L>®(2). Then Theorem 57
holds, considering f7* and f7 instead of f7* and f.

By Theorems 28, 29 and 26, we obtain:

Corollary 39. Let (2,d, 1) be a uniform (k,m)—space. Let 1 <p < oo and 0 < s < 1. Then

(1)

1l paro = sup 7P B (f.6) + supt™ FIHPD B, (f,1).
0<t<1 t>1

1 o0
—m dt m— dt
/tk (4D g (f, t>7 +/t AP B (f, t)? < o0,
0 1

then, f is p—locally essentially continuous.
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(3) Let s < k(1 + %) —m, and let w > 0 be such that

S
1\" 1
[w] := sup (—) (t) P — | < 0.
>0 w/, min (tl— i )ﬁ_E
Then, for all & > 0 and ¢ > 1, we have that

a+1

1l = [w] =5 ||f|

o Il S

We finish the paper by collecting all our results in the particular case that (2, d, p) is Q—regular.

Theorem 40. Let (Q,d, 1) be a Q—regular. Let 0 < p < 00,0 < ¢ < 00, and 0 < s < 1 and f € L™»1LP)(Q) 4
L™(9), with (\ f|mi“<1~f’)) (c0) = 0. Then:
m

(1) Subcritical case, s < %:

11l oc@ragay 2 IIS]

B54(2)

where p(Q) = Qp/(Q — sp).
Moreover, let w > 0 be such that

= (((5),10) og) <>

If 1 < p,q < o0, then for all a > 0, we have that

1f 1o < [w] =¥ £l °‘“ IIwO‘SfII““-

(2) Critical case, s = %:
(a) If ¢ > 1, then

1/q

00 q
dt
- = N fllgere(qy + Il Lminam o (Q) -
1 L P) (Q)4L> (2
0/<1+ln ? ) t Bpq" () () ()

(b) If0 < g <1, then

[flle =1 o+ IS
B4 (Q)

Lmin(1,p) (Q)+ Lo () *

(c) If p > 1, we get:
i

£l aroc) = 1f 15020 -

ii. If f e ||f||BQ/p(Q), then f is p—locally essentially continuous.
p,1
(3) Supercritical case, s > %:

1 lloe 2 M85 () + I lLmincm )4 Low (@) -
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