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tion (a(t)ϕ(x′))′ + b(t)|x|γ sgn x = 0 involving ϕ-Laplacian. Necessary and sufficient 
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particular, weakly increasing solutions and extremal solutions. Examples for pre-
scribed mean curvature equation are given to illustrate our results.
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1. Introduction

Consider second-order nonlinear differential equations of the form

(a(t)ϕ(x′))′ + b(t)|x|γ sgn x = 0, t ≥ t0, (1.1)

where ϕ : R → (−σ, σ) with 0 < σ ≤ ∞ is odd, continuous, strictly increasing, and bijective, ϕ−1 : (−σ, σ) →
R is the inverse function of ϕ with ϕ−1(σ) = ∞, the real-valued functions a(t) and b(t) are positive and 
continuous on (t0, ∞), and γ �= 1 is a positive constant. Throughout this paper, we assume that

∞∫
t0

1
a(t) dt = ∞ (1.2)

and
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∞∫
t0

b(t) dt < ∞ (1.3)

hold, and there exists a positive constant c such that ϕ(u) satisfies

lim
u→0

ϕ(u)
u

= c. (1.4)

A function x(t) is said to be a solution of equation (1.1), if x(t) and its quasiderivative

x[1](t) = a(t)ϕ(x′(t))

are continuously differentiable, and x(t) satisfies equation (1.1) on (tx, ∞). In this paper, we assume that 
equation (1.1) possesses such a solution. A nontrivial solution x(t) of equation (1.1) is said to be oscillatory, 
if there exists a sequence {tn} tending to ∞ such that x(tn) = 0. Otherwise, that is, if x(t) is eventually 
positive or eventually negative, it is said to be nonoscillatory.

The differential operator in equation (1.1) is called ϕ-Laplacian, which is a generalization of Laplacian, 
p-Laplacian, and mean curvature operator. Asymptotic problems associated to equation (1.1) arise in the 
search for radial solutions to partial differential equations which model fluid mechanics problems. In recent 
years, there has been an increasing interest in the study of asymptotic behavior for solutions of equations 
with ϕ-Laplacian (see [2,3,6–12]). In particular, Cecchi et al. [3] gave the sufficient conditions for equation 
(1.1) to have unbounded solutions under the assumption that the range of ϕ is bounded, for instance, when 
ϕ-Laplacian is the one-dimensional mean curvature operator. Furthermore, in [6], the oscillation criteria for 
equation (1.1) are obtained in the case when (1.3) does not hold.

Let ϕ(u) = ϕp(u), where ϕp(u) = |u|p−2u (p > 1). Then, the range of ϕ is unbounded, and ϕ-Laplacian 
becomes p-Laplacian. In this case, oscillation problems and asymptotic problems for equation (1.1) have 
been studied in various papers (see [8,9,19] and references therein). Moreover, if p = 2, then equation (1.1)
becomes the so-called generalized Emden–Fowler equation

(a(t)x′)′ + b(t)|x|γ sgn x = 0, γ �= 1. (1.5)

The study of equation (1.5) originates from gas dynamics in astrophysics. Equation (1.5) is also related to 
the model of the concentration of a substance disappearing according to an isothermal reaction in an finite 
slab of catalyst (see [15]). We note that the asymptotic properties of the solutions correspond to the case 
when the ratio of the characteristic reaction rate to the characteristic diffusion rate is infinite. Hence, a great 
deal of articles has been devoted to the study of equation (1.5), for example, those results can be found in 
[1,15,16,20] and the references cited therein. Especially, the following necessary and sufficient conditions are 
known for all nontrivial solutions of equation (1.5) to be oscillatory.

Theorem A ([16, Corollaries 11.1 and 11.3]). Suppose that (1.2) and (1.3) are satisfied. Then all nontrivial 
solutions of equation (1.5) are oscillatory if and only if either

(I) γ > 1 and

∞∫
t0

1
a(t)

⎛
⎝ ∞∫

t

b(s) ds

⎞
⎠ dt = ∞ (1.6)

hold, or
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(II) 0 < γ < 1 and

∞∫
t0

b(t)

⎛
⎝ t∫

t0

1
a(s) ds

⎞
⎠

γ

dt = ∞ (1.7)

hold.

Remark 1.1. From [16, Corollary 6.1], if 
∫∞
t0

1/a(t) dt and 
∫∞
t0

b(t) dt diverge, then all nontrivial solutions of 
equation (1.5) are oscillatory. On the other hand, if both integrals converge, then all nonoscillatory solutions 
and their quasiderivatives are bounded (see [14]). Hence, the assumptions (1.2) and (1.3), which include the 
classical case that a(t) ≡ 1, are suitable in a certain sense.

If x(t) is an eventually negative solution of equation (1.1), then −x(t) is an eventually positive solution 
of equation (1.1). Therefore, we will restrict our attention only to eventually positive solutions of equation 
(1.1) when we discuss the nonoscillatory solutions. According to Lemma 2.1 below, we see that all eventu-
ally positive solutions of equation (1.1) are increasing. In this paper, we focus on the unbounded positive 
increasing solution x such that limt→∞ x′(t) exists. We have the following three types of such solutions. It 
is said to be a weakly increasing solution, if x′(t) → 0 as t → ∞. It is said to be an asymptotically linear 
solution, if there exists 0 < cx < ∞ such that x′(t) → cx as t → ∞. It is said to be an extremal solution, if 
x′(t) → ∞ as t → ∞.

Naito [17] gave sufficient conditions for the existence of weakly increasing solutions of equation (1.5) with 
γ > 1 and a(t) ≡ 1. Moreover, in [8,9], sufficient conditions for the existence of weakly increasing solutions 
of equation (1.1) with ϕ(u) = ϕp(u) were presented. On the other hand, from Lemma 2.2 below, there are 
no extremal solutions of equation (1.1), if the range of ϕ is unbounded and

lim inf
t→∞

a(t) > 0 (1.8)

is satisfied. Here, a natural question now arises. There exist extremal solutions for equation (1.1) if the 
range of ϕ is bounded? The purpose of this paper is to answer the question. Moreover, we discuss the 
oscillation problem and the existence of weakly increasing solutions of equation (1.1). To be precise, we give 
an analogue of Theorem A, and sufficient conditions for the existence of weakly increasing solutions and 
extremal solutions of equation (1.1). Furthermore, we consider the coexistence of other types of unbounded 
solutions of equation (1.1). Our results are also motivated by [4,5], in which the oscillation criteria and the 
asymptotic behavior of solutions of corresponding difference equations are considered.

This paper is organized as follows. In Section 2, we give equivalence theorems, which are analogues of 
Theorem A. In Section 3, we show the existence of weakly increasing solutions of equation (1.1). In Section 4, 
we give sufficient conditions for the existence of extremal solutions of equation (1.1). Our proofs are based on 
the Tychonov fixed point theorem. Finally, in Section 5, we consider a special case and give some examples. 
Moreover, we propose some open problems which include the coexistence of weakly increasing solutions and 
extremal solutions.

2. Oscillation

In this section, we establish oscillation criteria for solutions of equation (1.1) by comparing with solutions 
of equation (1.5).

Theorem 2.1. Assume (1.2), (1.3), (1.4), and (1.8). Suppose that γ > 1 is satisfied. Then the following 
statements are equivalent.
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(i) All nontrivial solutions of equation (1.1) are oscillatory.
(ii) All nontrivial solutions of equation (1.5) are oscillatory.
(iii) (1.6) holds.

Theorem 2.2. Assume (1.2), (1.3), (1.4), and (1.8). Suppose that 0 < γ < 1 is satisfied. Then the following 
statements are equivalent.

(i) All nontrivial solutions of equation (1.1) are oscillatory.
(ii) All nontrivial solutions of equation (1.5) are oscillatory.
(iii) (1.7) holds.

In order to give the proofs of these results, the following lemmas are required.

Lemma 2.1. Assume (1.2), (1.3), and (1.4). Then, for any positive solution x(t) of equation (1.1), x[1](t) is 
bounded and x is increasing.

Proof. From (1.4), we can choose h > 0 and 0 < δ < σ such that

ϕ−1(u) ≥ hu (2.1)

for u ∈ [0, δ], where ϕ−1 : (−σ, σ) → R with ϕ−1(σ) = ∞ is the inverse function of ϕ. Let x(t) be a 
positive solution of equation (1.1). From equation (1.1), x[1](t) is decreasing for t sufficiently large. If x[1](t)
is eventually negative, then there exists t1 ≥ t0 such that x(t) > 0 and x′(t) < 0 for t ≥ t1. Integrating both 
sides of equation (1.1), we have

x[1](t) ≥ x[1](t1) − x(t1)
t∫

t1

b(s) ds.

From (1.3), we see that x[1](t) is bounded.
Suppose that there exists t2 ≥ t0 such that x[1](t2) ≤ 0. Then there exists t3 ≥ t2 such that x[1](t) ≤

x[1](t3) < 0 for t ≥ t3 because x[1](t) is decreasing. Hence, we get

ϕ(x′(t)) < x[1](t3)
a(t) < 0 (2.2)

for t ≥ t3. In the case when lim inft→∞ a(t) = 0, we obtain a contradiction to σ < ∞. We consider the case 
of (1.8). In this case, there exist t4 ≥ t3 and 0 < λ0 < |x[1](t3)| such that λ0/a(t) < δ for t ≥ t4. Then, from 
(2.1) and (2.2), we have

x′(t) < −ϕ−1
(

λ0

a(t)

)
≤ −hλ0

a(t)

for t ≥ t4. Integrating both sides of this inequality from t4 to t, we get

x(t) < x(t4) − hλ0

t∫
t4

1
a(s) ds

for t ≥ t4. From (1.2), we obtain x(t) → −∞ as t → ∞, which is a contradiction to the positivity of x(t). 
Thus, we see that x[1](t) is positive, and therefore, x′(t) is also positive. �
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Lemma 2.2. Assume (1.2), (1.3), (1.4), and (1.8). Then, for any positive solution x(t) of equation (1.1), 
there exists a positive constant c0 such that

x′(t)
ϕ(x′(t)) ≥ c0 (2.3)

for t sufficiently large. Moreover, if σ = ∞, then equation (1.1) has no extremal solutions.

Proof. From Lemma 2.1, x′(t) is positive for t sufficiently large and x[1](t) is bounded from above. Hence, 
it follows from (1.8) that ϕ(x′(t)) is bounded from above.

We first consider the case when lim supt→∞ x′(t) < ∞. It is easy to check that (2.3) holds if 
lim inft→∞ x′(t) > 0. Moreover, from (1.4), it also holds if lim inft→∞ x′(t) = 0.

We next consider the case when lim supt→∞ x′(t) = ∞. In this case, since ϕ(x′(t)) is bounded from above, 
we have σ < ∞, which implies

lim
u→∞

u

ϕ(u) > lim
u→∞

u

σ
= ∞.

In the same manner as above, we obtain (2.3). Moreover, we see that if σ = ∞, then lim supt→∞ x′(t) < ∞, 
and therefore, equation (1.1) has no extremal solutions. �

To prove Theorem 2.1, we need the following lemma in addition to Lemmas 2.1 and 2.2.

Lemma 2.3. Assume (1.2), (1.3), (1.4), and (1.8). If

∞∫
t0

1
a(t)

⎛
⎝ ∞∫

t

b(s) ds

⎞
⎠ dt < ∞ (2.4)

holds, then equation (1.1) has a bounded nonoscillatory solution.

Proof. From (1.4), we can find H > 0 and 0 < δ < σ such that

ϕ−1(u) ≤ Hu (2.5)

for u ∈ [0, δ]. By using (1.3) and (1.8), we get

lim
t→∞

1
a(t)

⎛
⎝ ∞∫

t

b(s) ds

⎞
⎠ = 0.

Hence there exists t1 ≥ t0 such that

1
a(t)

⎛
⎝ ∞∫

t

b(s) ds

⎞
⎠ < δ

for t ≥ t1. Using (2.4) and (2.5), we obtain

∞∫
ϕ−1

⎛
⎝ 1
a(t)

⎛
⎝ ∞∫

b(s) ds

⎞
⎠
⎞
⎠ dt < H

∞∫ 1
a(t)

⎛
⎝ ∞∫

b(s) ds

⎞
⎠ dt < ∞.
t1 t t1 t
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According to Cecchi et al. [3, Theorem 4.1 (i2)], we see that equation (1.1) has a bounded nonoscillatory 
solution. �

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Theorem A shows that (ii) is equivalent to (iii). From the contrapositive of 
Lemma 2.3, it is easy to show that (i) implies (iii).

We prove that (iii) implies (i) by contradiction. Suppose that there exists a positive solution x(t) of 
equation (1.1). Then, from Lemma 2.1, there exists t1 ≥ t0 such that x′(t) > 0 for t ≥ t1. Consider the 
equation

(A(t)z′)′ + b(t)|z|γ sgn z = 0, (2.6)

where A(t) = a(t)ϕ(x′(t))/x′(t). From Lemma 2.2, (1.2), and (1.6), we have

∞∫
t1

1
A(t) dt =

∞∫
t1

1
a(t) · x′(t)

ϕ(x′(t)) dt ≥ c0

∞∫
t1

1
a(t) dt = ∞

and

∞∫
t1

1
A(t)

⎛
⎝ ∞∫

t

b(s) ds

⎞
⎠ dt ≥ c0

∞∫
t1

1
a(t)

⎛
⎝ ∞∫

t

b(s) ds

⎞
⎠ dt = ∞.

Using Theorem A again, we see that all nontrivial solutions of equation (2.6) are oscillatory. However, x(t)
is a positive solution of equation (2.6) because it is one of equation (1.1). This is a contradiction. �

To prove Theorem 2.2, we need the following lemma in addition to Lemmas 2.1 and 2.2.

Lemma 2.4. Assume (1.4) and (1.8). If

∞∫
t0

b(t)

⎛
⎝ t∫

t0

1
a(s) ds

⎞
⎠

γ

dt < ∞ (2.7)

holds, then equation (1.1) has a unbounded nonoscillatory solution x(t) such that x[1](t) → dx as t → ∞
with 0 < dx < ∞.

Proof. From (1.8), for any small ε > 0, there exists t1 ≥ t0 such that a(t) ≥ ε for t ≥ t1. Moreover, from 
(1.4), we can find H > 0 and 0 < δ < σ satisfying (2.5) for u ∈ [0, δ]. By using (2.7), we see that the 
left-hand side of (2.7) tends to 0 as t0 → ∞, and therefore, there exists t2 ≥ t1 such that

∞∫
t2

b(t)

⎛
⎝ t∫

t2

1
a(s) ds

⎞
⎠

γ

dt ≤ 1
(HW )γ

W

2 , (2.8)

where W = εδ.
Let X be a Fréchet space of all continuous functions defined for any t ≥ t2 endowed with the topology of 

uniform convergence on compact subintervals of [t2, ∞), and we put Ω ⊂ X be
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Ω =
{
u ∈ X | W2 ≤ u(t) ≤ W

}
.

Let T : Ω → X be an operator defined by

T (u)(t) = W

2 +
∞∫
t

b(s)

⎛
⎝ s∫

t2

ϕ−1
(
u(τ)
a(τ)

)
dτ

⎞
⎠

γ

ds.

Then T is well defined because

u(t)
a(t) ≤ W

a(t) ≤ W

ε
= δ < σ (2.9)

for t ≥ t2. From (2.5) and (2.8), we have

T (u)(t) ≤ W

2 +
∞∫
t

b(s)

⎛
⎝ s∫

t2

ϕ−1
(

W

a(τ)

)
dτ

⎞
⎠

γ

ds ≤ W

2 +
∞∫
t

b(s)

⎛
⎝ s∫

t2

HW

a(τ) dτ

⎞
⎠

γ

ds

= W

2 + (HW )γ
∞∫
t

b(s)

⎛
⎝ s∫

t2

1
a(τ) dτ

⎞
⎠

γ

ds ≤ W

2 + (HW )γ 1
(HW )γ

W

2 = W. (2.10)

Hence we see that T (Ω) ⊂ Ω and it is uniformly bounded.
We prove that T (Ω) is relatively compact. Let u ∈ Ω. Then, for any t ≥ t2 and t̃ ≥ t2, we have

|T (u)(t) − T (u)(t̃)| =

∣∣∣∣∣∣
t̃∫

t

b(s)

⎛
⎝ s∫

t2

ϕ−1
(
u(τ)
a(τ)

)
dτ

⎞
⎠

γ

ds

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣(HW )γ

t̃∫
t

b(s)

⎛
⎝ s∫

t2

1
a(τ) dτ

⎞
⎠

γ

ds

∣∣∣∣∣∣ .
From (2.7), for any ε̃ > 0, there exists δε̃ > 0 such that |T (u)(t) −T (u)(t̃)| < ε̃ if |t − t̃| < δε̃, that is, T (Ω)
is equicontinuous. From the Ascoli theorem, we see that T (Ω) is relatively compact.

We next give the proof of the continuity of T in Ω. Let {un} (n ∈ N) be a sequence in Ω which uniformly 
converges on every compact subinterval of [t2, ∞) to ū ∈ Ω. Since T (Ω) is relatively compact, the sequence 
{T (un)} admits a subsequence which converges to z̄u ∈ T (Ω) in the topology of X. For simplicity, let {un}
be such a sequence and let

zn(t) = b(t)

⎛
⎝ t∫

t2

ϕ−1
(
un(s)
a(s)

)
ds

⎞
⎠

γ

.

Then, from (2.9), we get

t∫
t2

ϕ−1
(
un(s)
a(s)

)
ds < ϕ−1(δ)(t− t2)

for each fixed t ≥ t2. Hence, {zn} is an uniformly integrable sequence on [t2, t], and using the Vitali 
convergence theorem, we get

lim
n→∞

zn(t) = b(t)

⎛
⎝ t∫

ϕ−1
(
ū(s)
a(s)

)
ds

⎞
⎠

γ

t2
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(see [18]). Moreover, in view of |un| < W , proceeding as in (2.10), we have

b(t)

⎛
⎝ t∫

t2

ϕ−1
(
un(s)
a(s)

)
ds

⎞
⎠

γ

≤ (HW )γb(t)

⎛
⎝ t∫

t2

1
a(s)

ds

⎞
⎠

γ

.

From (2.7) and the Lebesgue dominated convergence theorem, we see that {T (un)} pointwise converges to 
T (ū)(t). Since T (ū) = z̄u is the only one cluster point of the compact sequence {T (un)}, T is continuous 
in the topology of X.

From the Tychonov fixed point theorem, there exist ũ ∈ Ω such that T (ũ) = ũ (see [13]). Let

x(t) =
t∫

t2

ϕ−1
(
ũ(s)
a(s)

)
ds.

Then we have

x′(t) = ϕ−1
(
ũ(t)
a(t)

)
,

which implies a(t)ϕ(x′(t)) = ũ(t) = T (ũ)(t). Thus we get

(a(t)ϕ(x′(t)))′ = (T (ũ)(t))′ = −b(t)

⎛
⎝ t∫

t2

ϕ−1
(
ũ(s)
a(s)

)
ds

⎞
⎠

γ

= −b(t)(x(t))γ ,

and therefore, x(t) is a positive solution of equation (1.1). Since x[1](t) is decreasing and satisfies

x[1](t) = a(t)ϕ(x′(t)) = ũ(t) ≥ W

2 ,

there exists dx > 0 such that x[1](t) → dx as t → ∞. �
We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Theorem A shows that (ii) is equivalent to (iii). From the contrapositive of 
Lemma 2.4, it is easy to show that (i) implies (iii).

We prove that (iii) implies (i) by contradiction. Suppose that there exists a positive solution x(t) of 
equation (1.1). Then, from Lemma 2.1, there exists t1 ≥ t0 such that x′(t) > 0 for t ≥ t1. Consider the 
equation (2.6). From Lemma 2.2, (1.2), and (1.7), we have

∞∫
t1

1
A(t) dt =

∞∫
t1

1
a(t) · x′(t)

ϕ(x′(t)) dt ≥ c0

∞∫
t1

1
a(t) dt = ∞

and

∞∫
t1

b(t)

⎛
⎝ t∫

t1

1
A(s) ds

⎞
⎠

γ

dt ≥ c0

∞∫
t1

b(t)

⎛
⎝ t∫

t1

1
a(s) ds

⎞
⎠

γ

dt = ∞.

Using Theorem A again, we see that all nontrivial solutions of equation (2.6) are oscillatory. However, x(t)
is a nonoscillatory solution of equation (2.6) because it is one of equation (1.1). This is a contradiction. �
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Remark 2.1. We can relax the condition (1.4) in Theorems 2.1 and 2.2, and Lemmas 2.1, 2.3, and 2.4 as

0 < lim inf
u→0

ϕ(u)
u

and lim sup
u→0

ϕ(u)
u

< ∞. (2.11)

3. Weakly increasing solutions

In this section, we give sufficient conditions for the existence of weakly increasing solutions of equation 
(1.1), that is, solutions x(t) such that x(t) → ∞ and x′(t) → 0 as t → ∞.

Theorem 3.1. Assume that a(t) → α > 0 as t → ∞. Suppose that

∞∫
t0

b(t)tγ dt < ∞ (3.1)

and

∞∫
t0

ϕ−1

⎛
⎝ ∞∫

t

b(s) ds

⎞
⎠ dt = ∞ (3.2)

are satisfied, where ϕ−1 : (−σ, σ) → R with ϕ−1(σ) = ∞ is the inverse function of ϕ. Then there exists a 
weakly increasing solution of equation (1.1).

Remark 3.1. From (1.3), we can choose t0 so large that 
∫∞
t0

b(s) ds < σ holds.

For the proof of Theorem 3.1, we need the following result.

Lemma 3.1. Assume that a(t) → α > 0 as t → ∞. Suppose that (3.1) is satisfied. Then, for all L ≥ 0, there 
exists a solution x(t) of equation (1.1) satisfying x′(t) → L as t → ∞ and

x(t) = (α + 1)1/γ +
t∫

T

ϕ−1

⎛
⎝ 1
a(s)

⎛
⎝αϕ(L) +

∞∫
s

b(τ)(x(τ))γ dτ

⎞
⎠
⎞
⎠ ds

for T sufficiently large.

Proof. Let h > L. Then there exists 0 < η < 1 such that ϕ(L) < (1 − η)ϕ(h) because ϕ is increasing. Hence 
we have α(1 − η)ϕ(h) − αϕ(L) > 0. From (3.1) and a(t) → α as t → ∞, there exists t1 ≥ t0 such that

1 + (α + 1)1/γ

h
< t1, (3.3)

∞∫
t1

b(t)(ht)γ dt < α(1 − η)ϕ(h) − αϕ(L), (3.4)

and

α(1 − η) ≤ a(t) ≤ α(1 + η) (3.5)
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hold for t ≥ t1. Let X be a Fréchet space of all continuous functions defined for any t ≥ t1 endowed with 
the topology of uniform convergence on compact subintervals of [t1, ∞), and we put Ω ⊂ X be

Ω =
{
u ∈ X | (α + 1)1/γ ≤ u(t) ≤ (α + 1)1/γ + h(t− t1)

}
.

Let T : Ω → X be an operator defined by

T (u)(t) = (α + 1)1/γ +
t∫

t1

ϕ−1

⎛
⎝ 1
a(s)

⎛
⎝αϕ(L) +

∞∫
s

b(τ)(u(τ))γ dτ

⎞
⎠
⎞
⎠ ds.

In order to prove that T is well defined, we show that the positive function

z(t) = 1
a(t)

⎛
⎝αϕ(L) +

∞∫
t

b(s)(u(s))γ ds

⎞
⎠

satisfies z(t) < σ for t ≥ t1. By using (3.3) and (3.4), we have

∞∫
t

b(s)(u(s))γ ds ≤
∞∫

t1

b(s)(u(s))γ ds ≤
∞∫

t1

b(s)
(
(α + 1)1/γ + h(s− t1)

)γ

ds

<

∞∫
t1

b(s)
(

(α + 1)1/γ + h

(
s−

(
1 + (α + 1)1/γ

h

)))γ

ds

=
∞∫

t1

b(s)(hs− h)γ ds ≤
∞∫

t1

b(s)(hs)γ ds < α(1 − η)ϕ(h) − αϕ(L). (3.6)

From (3.5) and (3.6), we get

z(t) < 1
α(1 − η) (αϕ(L) + α(1 − η)ϕ(h) − αϕ(L)) = ϕ(h), (3.7)

and therefore, T is well defined. Moreover, from (3.7), we get

T (u)(t) = (α + 1)1/γ +
t∫

t1

ϕ−1(z(s)) ds < (α + 1)1/γ + h(t− t1),

which implies T (Ω) ⊂ Ω and it is uniformly bounded on every compact subinterval of [t1, ∞).
We prove that T (Ω) is relatively compact. Let u ∈ Ω. Then, for any t ≥ t1 and t̃ ≥ t1, we have

|T (u)(t) − T (u)(t̃)| =

∣∣∣∣∣∣
t∫

t̃

ϕ−1(z(s)) ds

∣∣∣∣∣∣ ≤
∣∣h(t− t̃)

∣∣

because of (3.7). Hence, for any ε > 0, there exists δε > 0 such that |T (u)(t) − T (u)(t̃)| < ε if |t − t̃| < δε, 
that is, T (Ω) is equicontinuous on every compact subinterval of [t1, ∞). Using the Ascoli theorem, we see 
that T (Ω) is relatively compact. Moreover, we can show that T is continuous in the topology of X as in 
the proof of Lemma 2.4.
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From the Tychonov fixed point theorem, there exists ũ ∈ Ω such that T (ũ) = ũ. Then we have

ũ′(t) = ϕ−1

⎛
⎝ 1
a(t)

⎛
⎝αϕ(L) +

∞∫
t

b(s)(ũ(s))γ ds

⎞
⎠
⎞
⎠ . (3.8)

Thus we get

a(t)ϕ(ũ′(t)) = αϕ(L) +
∞∫
t

b(s)(ũ(s))γ ds,

and therefore, we obtain (a(t)ϕ(ũ′(t)))′ = −b(t)(ũ(t))γ . Hence ũ(t) is a solution of equation (1.1). Since 
ũ ∈ Ω, we have

0 <

∞∫
t

b(s)(ũ(s))γ ds ≤
∞∫
t

b(s)((α + 1)1/γ + h(s− t1))γ ds → 0

as t → ∞. Together with (3.8) and a(t) → α as t → ∞, we see that ũ′(t) → L as t → ∞. �
Proof of Theorem 3.1. From Lemma 3.1 with L = 0, there exists a solution x(t) of equation (1.1) satisfying 
x′(t) → 0 as t → ∞ and

x(t) = (α + 1)1/γ +
t∫

T

ϕ−1

⎛
⎝ 1
a(s)

∞∫
s

b(τ)(x(τ))γ dτ

⎞
⎠ ds

for T sufficiently large.
We prove that x(t) is an unbounded solution. There exists t1 ≥ T such that α + 1 > a(t) and x(t) ≥

(α + 1)1/γ for t ≥ t1. Hence, we have

x(t) ≥ (α + 1)1/γ +
t∫

t1

ϕ−1

⎛
⎝α + 1

a(s)

∞∫
s

b(τ) dτ

⎞
⎠ ds > (α + 1)1/γ +

t∫
t1

ϕ−1

⎛
⎝ ∞∫

s

b(τ) dτ

⎞
⎠ ds.

From (3.2), we see that x(t) → ∞ as t → ∞. This completes the proof of Theorem 3.1. �
Remark 3.2. We observe that neither (1.4) nor (2.11) are required in Theorem 3.1. However, if assumptions 
of Theorem 3.1 hold together with

lim inf
u→0

ϕ(u)
u

> 0, (3.9)

then, from Fubini’s theorem, we can find positive constants t1 ≥ t0 and c1 such that

∞∫
t1

ϕ−1

⎛
⎝ ∞∫

t

b(s) ds

⎞
⎠ dt < c1

∞∫
t1

⎛
⎝ ∞∫

t

b(s) ds

⎞
⎠ dt = c1

∞∫
t1

⎛
⎝b(t)

t∫
t1

ds

⎞
⎠ dt = c1

∞∫
t1

b(t)(t− t1) dt.

Hence, from (3.1) and (3.2), it is necessary that 0 < γ < 1 holds. Consequently, if (3.9) holds, then 
assumptions of Theorem 3.1 implies 0 < γ < 1.
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Remark 3.3. In [19], Theorem 3.1 was proved for equation (1.1) with ϕ(u) = ϕp(u) and a(t) ≡ 1. We see 
that (3.9) holds if p ≥ 2. Hence, in particular, the existence of weakly increasing solutions for (1.5) with 
0 < γ < 1 follows from [19, Theorem 1.3].

We also obtain the following result, which extends [3, Theorem 3.1 (i1)].

Theorem 3.2. Assume that a(t) → α > 0 as t → ∞. Then, (3.1) is necessary and sufficient condition for 
the existence of asymptotically linear solutions of equation (1.1).

Proof. From Lemma 3.1, (3.1) implies the existence of asymptotically linear solutions of equation (1.1).
Let x(t) be an asymptotically linear solution of equation (1.1) satisfying x′(t) → L > 0 as t → ∞. Then 

there exist t1 ≥ t0 and 0 < L0 ≤ L such that x(t) ≥ L0t for t ≥ t1. Integrating both sides of equation (1.1)
from t1 to ∞, we get

a(t1)ϕ(x′(t1)) = αϕ(L) +
∞∫

t1

b(s)(x(s))γ ds ≥ αϕ(L) +
∞∫

t1

b(s)(L0t)γ ds,

which implies (3.1). �
From Theorems 3.1 and 3.2, we obtain the following corollary.

Corollary 3.1. Assume a(t) → α > 0 as t → ∞, (3.1), and (3.2). Then asymptotically linear solutions and 
weakly increasing solutions of (1.1) coexist.

4. Extremal solutions

In this section, we give the sufficient conditions for the existence of extremal solutions of equation (1.1), 
that is, solution x(t) such that x(t) → ∞ and x′(t) → ∞ as t → ∞. In view of Lemma 2.2, such solutions 
may exist only for bounded ϕ-Laplacian.

Theorem 4.1. Assume that σ < ∞, a(t) is decreasing, and a(t) → α > 0 as t → ∞. Suppose that there exists 
0 < ε < ασ satisfying

1
a(t) − α

∞∫
t

b(s) (a(t0)Φ(s))γ ds < εγ

σγ−1 (4.1)

and

ϕ−1

⎛
⎝ 1
a(t)

⎛
⎝ασ +

∞∫
t

b(s)
(
a(t0)σ

ε
Φ(s)

)γ

ds

⎞
⎠
⎞
⎠ <

1
ε

⎛
⎝ασ +

∞∫
t

b(s) (Φ(s))γ ds

⎞
⎠ϕ−1

(
ασ

a(t)

)
(4.2)

for any t ≥ t0, where

Φ(t) =
t∫

t0

ϕ−1
(

ασ

a(s)

)
ds.

Then equation (1.1) has an extremal solution.
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Proof. We note that a(t0)σ/ε > 1 and Φ(t) → ∞ as t → ∞. Let X be a Fréchet space of all continuous 
functions defined for any t ≥ t0 endowed with the topology of uniform convergence on compact subintervals 
of [t0, ∞), and we put Ω ⊂ X be

Ω =
{
u ∈ X | Φ(t) ≤ u(t) ≤ a(t0)σ

ε
Φ(t)

}
.

Let T : Ω → X be an operator defined by

T (u)(t) =
t∫

t0

ϕ−1

⎛
⎝ 1
a(s)

⎛
⎝ασ +

∞∫
s

b(τ)(u(τ))γ dτ

⎞
⎠
⎞
⎠ ds.

We first prove that T is well defined. From u ∈ Ω and (4.1), we get

∞∫
t

b(s) (u(s))γ ds <
∞∫
t

b(s)
(
a(t0)σ

ε
Φ(s)

)γ

ds < σ(a(t) − α),

and therefore, we obtain

1
a(t)

⎛
⎝ασ +

∞∫
t

b(s) (u(s))γ ds

⎞
⎠ < σ. (4.3)

Hence T is well defined.
We next show that T (Ω) ⊂ Ω. By using u ∈ Ω and (4.2), we have

ϕ−1

⎛
⎝ 1
a(t)

⎛
⎝ασ +

∞∫
t

b(s) (u(s))γ ds

⎞
⎠
⎞
⎠ ≤ ϕ−1

⎛
⎝ 1
a(t)

⎛
⎝ασ +

∞∫
t

b(s)
(
a(t0)σ

ε
Φ(s)

)γ

ds

⎞
⎠
⎞
⎠

<
1
ε

⎛
⎝ασ +

∞∫
t

b(s) (Φ(s))γ ds

⎞
⎠ϕ−1

(
ασ

a(t)

)

≤ 1
ε

⎛
⎝ασ +

∞∫
t

b(s) (u(s))γ ds

⎞
⎠ϕ−1

(
ασ

a(t)

)
. (4.4)

Since a(t) is decreasing and (4.3) holds, we have

ασ +
∞∫
t

b(s) (u(s))γ ds < a(t)σ < a(t0)σ.

From (4.4), we obtain

ϕ−1

⎛
⎝ 1
a(t)

⎛
⎝ασ +

∞∫
t

b(s) (u(s))γ dd

⎞
⎠
⎞
⎠ <

a(t0)σ
ε

ϕ−1
(

ασ

a(t)

)
.

Hence we get
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Φ(t) ≤ T (u)(t) <
t∫

t0

a(t0)σ
ε

ϕ−1
(

ασ

a(s)

)
ds = a(t0)σ

ε
Φ(t),

which implies T (Ω) ⊂ Ω and it is uniformly bounded on every compact subinterval of [t0, ∞).
Proceeding as in the proof of Lemma 3.1, we see that T (Ω) is relatively compact and T is continuous in 

the topology of X. Hence, from the Tychonov fixed point theorem, there exists ũ ∈ Ω such that T (ũ) = ũ. 
Then we have

ũ′(t) = ϕ−1

⎛
⎝ 1
a(t)

⎛
⎝ασ +

∞∫
t

b(s) (ũ(s))γ ds

⎞
⎠
⎞
⎠ . (4.5)

Thus we get

a(t)ϕ(ũ′(t)) = ασ +
∞∫
t

b(s) (ũ(s))γ ds,

and therefore, we obtain (a(t)ϕ(ũ′(t)))′ = −b(t) (ũ(t))γ . Furthermore, from (4.5) and a(t) → α as t → ∞, 
we get

ũ′(t) ≥ ϕ−1

⎛
⎝ 1
a(t)

⎛
⎝ασ +

∞∫
t

b(s) (Φ(s))γ ds

⎞
⎠
⎞
⎠ > ϕ−1

(
ασ

a(t)

)
→ ∞

as t → ∞, which implies that x(t) is an extremal solution of equation (1.1). �
Remark 4.1. We see that neither (1.4) nor (2.11) are needed in Theorem 4.1.

Remark 4.2. Let x(t) be an extremal solution of (1.1) such that x′(t) is increasing for t ≥ T for some T ≥ t0. 
Then, from equation (1.1), we see that x[1](t) is decreasing and

x[1](t) = a(t)ϕ(x′(t)) < a(T )ϕ(x′(T )) = x[1](T ).

Hence we have

a(t) < a(T )ϕ(x′(T ))
ϕ(x′(t)) < a(T )

because x′(t) is increasing. Thus, the condition that a(t) is decreasing is a necessary for the existence of 
extremal solutions whose derivatives are increasing for t sufficiently large.

Remark 4.3. Assume a(t) > α, a(t) → α as t → ∞, and (4.1). Then we see that (3.1) holds. In fact, from 
(4.1), we have

∞∫
t

b(s)

⎛
⎝ s∫

t0

ϕ−1
(

ασ

a(τ)

)
dτ

⎞
⎠

γ

ds < ∞.

Since

lim ϕ−1
(

ασ
)

= ∞,

t→∞ a(t)
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we see that

t <

t∫
t0

ϕ−1
(

ασ

a(s)

)
ds

for t sufficiently large, which implies (3.1).

In view of Theorems 3.2 and 4.1, and Remark 4.3, we get the following corollary.

Corollary 4.1. Assume that σ < ∞, a(t) is decreasing, and a(t) → α > 0 as t → ∞. Suppose that there 
exists 0 < ε < α satisfying (4.1) and (4.2) for any t ≥ t0. Then asymptotically linear solutions and extremal 
solutions of equation (1.1) coexist.

The prototype of bounded ϕ-Laplacian is the one-dimensional mean curvature operator. We consider the 
prescribed mean curvature equation

(
a(t) x′√

1 + (x′)2

)′

+ b(t)|x|γ sgn x = 0, (4.6)

which is a special case of equation (1.1). Note that ϕ-Laplacian becomes the one-dimensional mean curvature 
operator in this case. We simply denote that ϕC(u) = u/

√
1 + u2 and ϕ−1

C (u) = u/
√

1 − u2. It is easy to 
show that ϕC : R → (−1, 1) and ϕ−1

C is the inverse function of ϕC . For equation (4.6), we can relax the 
conditions (4.1) and (4.2) in Theorem 4.1.

Theorem 4.2. Assume that a(t) is decreasing and a(t) → α > 0 as t → ∞. Suppose that there exists 
0 < ε < α satisfying

1
a(t) − α

∞∫
t

b(s)

⎛
⎝ s∫

t0

ϕ−1
C

(
α

a(τ)

)
dτ

⎞
⎠

γ

ds < (1 − ε2)
(

ε

a(t0)

)γ

(4.7)

for any t ≥ t0. Then equation (4.6) has an extremal solution.

Proof. Let Φ, X, Ω, and T : Ω → X be defined as in the proof of Theorem 4.1. Then, using u ∈ Ω and 
(4.7), we have

∞∫
t

b(s) (u(s))γ ds < (1 − ε2)(a(t) − α). (4.8)

Since a(t) > α for any t ≥ t0, we see that

1
a(t)

⎛
⎝α +

∞∫
t

b(s) (u(s))γ ds

⎞
⎠ < 1 − ε2

(
1 − α

a(t)

)
< 1 (4.9)

holds and T is well defined.
We show that T (Ω) ⊂ Ω. From (4.8), we get

a(t) − α−
∞∫
b(s) (u(s))γ ds > ε2(a(t) − α).
t
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Hence we have

1 −

⎛
⎝ α

a(t) + 1
a(t)

∞∫
t

b(s) (u(s))γ ds

⎞
⎠ >

ε2

a(t) (a(t) − α). (4.10)

Moreover, since 
∫∞
t

b(s) (u(s))γ ds is nonnegative, we get

1 +

⎛
⎝ α

a(t) + 1
a(t)

∞∫
t

b(s) (u(s))γ ds

⎞
⎠ ≥ 1 + α

a(t) = 1
a(t) (a(t) + α). (4.11)

From (4.10) and (4.11), we obtain

1 −

⎛
⎝ α

a(t) + 1
a(t)

∞∫
t

b(s) (u(s))γ ds

⎞
⎠

2

>
ε2((a(t))2 − α2)

(a(t))2 ,

that is,

⎛
⎜⎝1 −

⎛
⎝ α

a(t) + 1
a(t)

∞∫
t

b(s) (u(s))γ ds

⎞
⎠

2
⎞
⎟⎠

−1/2

<
a(t)

ε
√

(a(t))2 − α2
.

Hence we have

ϕ−1
C

⎛
⎝ 1
a(t)

⎛
⎝α +

∞∫
t

b(s) (u(s))γ ds

⎞
⎠
⎞
⎠ <

1
ε
√

(a(t))2 − α2

⎛
⎝α +

∞∫
t

b(s) (u(s))γ ds

⎞
⎠

= 1
αε

⎛
⎝α +

∞∫
t

b(s) (u(s))γ ds

⎞
⎠ϕ−1

C

(
α

a(t)

)
. (4.12)

Since a(t) is decreasing and (4.9) holds, we have

α +
∞∫
t

b(s) (u(s))γ ds < a(t) ≤ a(t0).

From (4.12), we obtain

ϕ−1
C

⎛
⎝ 1
a(t)

⎛
⎝α +

∞∫
t

b(s) (u(s))γ ds

⎞
⎠
⎞
⎠ <

a(t0)
αε

ϕ−1
C

(
α

a(t)

)
.

Hence we get

Φ(t) ≤ T (u)(t) <
t∫

t0

a(t0)
αε

ϕ−1
C

(
α

a(s)

)
ds = a(t0)

αε
Φ(t),

which implies T (Ω) ⊂ Ω and it is uniformly bounded on every compact subinterval of [t0, ∞).



JID:YJMAA AID:123674 /FLA Doctopic: Partial Differential Equations [m3L; v1.279; Prn:21/11/2019; 11:05] P.17 (1-19)
Z. Došlá, K. Fujimoto / J. Math. Anal. Appl. ••• (••••) •••••• 17
Proceeding as in the proof of Theorem 4.1, we can show that T has a fixed point which is an extremal 
solution of equation (1.1). �
Remark 4.4. We observe that the right-hand side of (4.7) takes the maximum value at ε =

√
γ/(γ + 2). 

Hence, in the case when α >
√
γ/(γ + 2), we can replace (4.7) with

1
a(t) − α

∞∫
t

b(s)

⎛
⎝ s∫

t0

ϕ−1
C

(
α

a(τ)

)
dτ

⎞
⎠

γ

ds < 2
γ + 2

(
1

a(t0)

√
γ

γ + 2

)γ

, (4.13)

which does not contain the parameter ε.

5. Examples and discussion

The following examples illustrate our results.

Example 5.1. Consider the equation

(ϕC(x′))′ + 1
(t + 1)3/2

|x|γ sgn x = 0, γ > 0, t ≥ 0. (5.1)

It is easy to check that (1.2), (1.3), and (1.8) are satisfied.
In the case when γ > 1, from

∞∫
t

1
(s + 1)3/2

ds = 2√
t + 1

,

we get

t∫
0

⎛
⎝ ∞∫

s

1
(τ + 1)3/2

dτ

⎞
⎠ ds = 4

√
t + 1 − 4 → ∞

as t → ∞, which implies (1.6). From Theorem 2.1, all nontrivial solutions of equation (5.1) are oscillatory.
In the case when 1/2 ≤ γ < 1, we have

t∫
0

b(s)

⎛
⎝ s∫

0

1
a(τ) dτ

⎞
⎠

γ

ds =
t∫

0

sγ

(s + 1)3/2
ds >

t∫
1

√
s

(s + 1)3/2
ds

=
t∫

1

1
s + 1

√
1 − 1

s + 1 ds > 1√
2

t∫
1

1
s + 1 ds → ∞

as t → ∞, which implies (1.7). From Theorem 2.2, all nontrivial solutions of equation (5.1) are oscillatory.
In the case when 0 < γ < 1/2, we get

∞∫
0

b(s)

⎛
⎝ s∫

0

1
a(τ) dτ

⎞
⎠

γ

ds =
∞∫
0

sγ

(s + 1)3/2
ds <

∞∫
0

1
(s + 1)3/2−γ

ds < ∞,

which implies that (1.7) does not hold. From Theorem 2.2, there exists a nonoscillatory solution of equation 
(5.1).
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Example 5.2. Consider the equation

(ϕC(x′))′ + 1
(t + 1)2 |x|

1/2 sgn x = 0, t ≥ 0. (5.2)

We have
∞∫

t0

b(t)tγ dt =
∞∫
0

t1/2

(t + 1)2 dt <
∞∫
0

1
(t + 1)3/2

dt < ∞,

which implies (3.1). Moreover, we have

∞∫
t0

ϕ−1
C

⎛
⎝ ∞∫

t

b(s) ds

⎞
⎠ dt =

∞∫
0

ϕ−1
C

(
1

t + 1

)
dt >

∞∫
0

1
t + 1 dt = ∞,

and therefore, (3.2) is satisfied. From Theorem 3.1, there exists a weakly increasing solution of equation 
(5.2). Moreover, from Remark 4.2, equation (5.2) has no extremal solutions.

Example 5.3. Consider the equation
((

1 + 1
t

)
ϕC(x′)

)′
+ λ

t5
|x|2 sgn x = 0, t ≥ 1, (5.3)

where 0 < λ < 3/16. For any t ≥ 1,

t5 >
16
9 λt4(2t + 1)

and

t∫
1

ϕ−1
C

(
s

s + 1

)
ds =

t∫
1

s√
2s + 1

ds = (t− 1)
√

2t + 1
3 −

√
5

3 <
t
√

2t + 1
3

hold, and therefore, we have

1
1 + 1/t− 1

∞∫
t

λ

s5

⎛
⎝ s∫

0

ϕ−1
C

(
τ

τ + 1

)
dτ

⎞
⎠

2

ds < t

∞∫
t

9
16s4(2s + 1)

(
s
√

2s + 1
3

)2

ds = t

16

∞∫
t

1
s2 ds = 1

16 ,

which implies (4.13). From Theorem 4.2 and Remark 4.4, we see that equation (5.3) has an extremal solution.

We next refer to the result for the corresponding difference equation

Δ (anϕ(Δxn)) + bn|xn+1|γ sgn xn+1 = 0, (5.4)

where {an} and {bn} are positive sequences, and Δ is the forward difference operator. In [5], oscillation 
criteria for equation (5.4) was established. Theorem 2.2 is a continuous counterpart of [5, Theorems 5], and 
Theorem 2.1 corresponds to [5, Theorems 4] under the strong assumption lim infn→∞ an > 0. Moreover, 
in [4], the asymptotic behavior of solutions of the difference equation which is a generalization of equation 
(5.4) was considered. The pair of Theorems 3.1 and 3.2, and Theorem 4.2 correspond to [4, Theorems 1 and 
3], respectively.
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We finally propose the following open problems.

(1) From Lemma 2.2, it is an open problem whether extremal solutions of equation (1.1) with σ = ∞ can 
exist if lim inft→∞ a(t) = 0.

(2) From Corollaries 3.1 and 4.1, asymptotically linear solutions of equation (1.1) can coexist with either 
weakly increasing solutions or extremal solutions. However, it is an open problem whether solutions of 
all these types can coexist. Noting that, from numerical computation, we guess that equation (5.3) has 
all these solutions.

(3) Suppose that a(t) → α > 0 as t → ∞ holds and (3.1) does not hold. Then, from Theorem 3.2, there 
are no asymptotically linear solutions of equation (1.1). Moreover, from Theorem 2.2, we see that all 
nontrivial solutions are oscillatory if 0 < γ < 1 in this case. On the other hand, it is an open problem 
to show the existence of weakly increasing solutions and extremal solutions if γ > 1.

(4) It is an open problem to give sufficient conditions for the existence of positive increasing solution x such 
that limt→∞ x′(t) does not exist. For example, equation (1.1) has the solution x(t) = 2t + sin t.
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