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The aim of this paper is to study some models of quasi-birth-and-death (QBD) 
processes arising from the theory of bivariate orthogonal polynomials. First we 
will see how to perform the spectral analysis in the general setting as well as to 
obtain results about recurrence and the invariant measure of these processes in terms 
of the spectral measure supported on some domain Ω ⊂ Rd. Afterwards, we will 
apply our results to several examples of bivariate orthogonal polynomials, namely 
product orthogonal polynomials, orthogonal polynomials on a parabolic domain 
and orthogonal polynomials on the triangle. We will focus on linear combinations 
of the Jacobi matrices generated by these polynomials and produce families of 
either continuous or discrete-time QBD processes. Finally, we show some urn models 
associated with these QBD processes.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The connection between one-dimensional birth-death models and orthogonal polynomials goes back to 
the pioneering work of S. Karlin and J. McGregor [29–31]. In a series of papers they established an im-
portant connection between the transition probability functions of continuous-time birth-death processes 
and discrete-time birth-death chains (in this order) by means of a spectral representation, the so-called 
Karlin-McGregor integral representation formula. This representation is possible since the one-step transi-
tion probability matrix of the birth-death chain or the infinitesimal operator of the birth-death process are 
tridiagonal matrices, so we can apply the spectral theorem to find the corresponding spectral measure associ-
ated with the process. Many probabilistic aspects can be analyzed in terms of the corresponding orthogonal 
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polynomials, such as transition probabilities, the invariant measure or the recurrence of the process. In the 
last 60 years, many other authors e.g. M. Ismail, G. Valent, P. Flajolet, F. Guillemin, H. Dette or E. van 
Doorn, to mention a few, have studied this connection and other probabilistic aspects. For a brief account 
of all these relations see [42].

A natural extension in this direction is the so-called quasi-birth-and-death (QBD) processes. The state 
space, instead of N0, is given by pairs of the form (n, k), where n ∈ N0 is usually called the level, while 
1 ≤ k ≤ rn is referred to as the phase. Observe that the number of phases may depend on the different levels. 
For a general setup see [4,36]. Now the QBD process, at each time step, is restricted to move only between 
adjacent levels but transitions between phases are all possible. That means that the transition probability 
matrix (discrete-time) or the infinitesimal operator matrix (continuous-time) of the QBD process is then 
block-tridiagonal of the form (2.1) (see below), also known as a block Jacobi matrix. If rn = 1 for all n ∈ N0

then we go back to the classical birth-death chain. If rn = N for all n ∈ N0, where N is a positive integer, 
then all blocks in the Jacobi matrix have the same dimension N × N . In this case, the spectral analysis 
can be performed using matrix-valued orthogonal polynomials (see [11,19] for the discrete-time case and [12]
for the continuous-time case). In the last years, many new examples related to matrix-valued orthogonal 
polynomials have been analyzed by using spectral methods (see [5,19–21,23,27,28]).

As it was mentioned in Section 5 of [5], a natural source of examples of more complicated QBD processes 
may come from the theory of multivariate orthogonal polynomials. These polynomials can be defined in 
terms of a positive linear functional L which we assume it is expressible as integrals with respect to a 
nonnegative weight function w with finite moments supported on some domain Ω ⊂ Rd. If we start with 
a weight function w then the corresponding multivariate orthogonal polynomials satisfy d different three-
term recurrence relations (see (2.12) below). For each 1 ≤ i ≤ d, the coefficients of these recurrence 
relations can be written in block tridiagonal form (or block Jacobi matrix) Ji and have the same structure 
as in (2.1) (see below). The goal of this paper is to find appropriate normalizations of the multivariate 
orthogonal polynomials such that linear combinations of the corresponding Jacobi matrices Ji of the form 
τ1J1 + · · ·+ τdJd give rise to discrete or continuous-time QBD processes. In particular, we will study several 
examples of bivariate orthogonal polynomials.

Multivariate orthogonal polynomials have appeared before in the literature in connection with probabilis-
tic and stochastic models. The first examples probably appeared in the study of some stochastic models in 
genetics [32], Ehrenfest urn models [33] or linear growth models [34,39]. After that, many other authors like 
P. Diaconis, R. Griffiths, F.A. Grünbaum or M. Rahman have found other connections between multivariate 
orthogonal polynomials and probabilistic models like the multinomial distribution [13,16], Lancaster distri-
butions [17], composition birth-death processes [18] or poker dice games [26]. The multivariate orthogonal 
polynomials involved in these applications are always discrete. Our approach is different since we will start 
from very well known examples of bivariate continuous orthogonal polynomials and try to generate families 
of QBD processes from certain linear combinations of the Jacobi matrices generated by these polynomials.

The paper is divided into two parts. First part (Section 2) comprises an extension of the results from 
Section 5 of [5] for a particular class of bivariate orthogonal polynomials to the general setting. Besides, we 
obtain other important results related with the invariant measure and the recurrence of the QBD processes. 
In the second part, we will apply our results to several examples of QBD processes generated by bivariate 
orthogonal polynomials. In Section 3 we consider product orthogonal polynomials such as the product Jacobi 
and Laguerre polynomials and we show that the QBD processes have independent components. In Section 4
we will study a family of QBD processes associated with orthogonal polynomials on a parabolic domain. 
The two components of the QBD process are now dependent. In particular, we will give an urn model 
associated with one particular situation. In Section 5 we will study a family of QBD processes associated 
with orthogonal polynomials on the triangle. The transitions between the bivariate states are much more 
involved in this situation. Nevertheless, we will be able to give an urn model by considering a stochastic 
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block LU factorization of the Jacobi matrix, in the same spirit as the one used in [24,25]. Finally, we finish 
in Section 6 with some concluding remarks and suggestions for further research.

2. QBD processes and multivariate orthogonal polynomials

Let {Zt : t ≥ 0} be a time-homogeneous Markov chain on the state space of pairs (n, k) where n ∈ N0 is 
usually called the level and 1 ≤ k ≤ rn is usually called the (n-dependent) phase. We say that Zt is a quasi-
birth-and-death (QBD) process if the only allowed transitions are between adjacent levels, but transitions 
between phases are all possible.

If we have a discrete-time QBD process {Zt : t = 0, 1, . . .} this condition is equivalent to

P [Z1 = (n1, k1) | Z0 = (n0, k0)] = 0, |n1 − n0| > 1.

The one step transition probability matrix P has a block-tridiagonal form

P =

⎛
⎜⎜⎜⎜⎝

B0 A0 ©
C1 B1 A1

C2 B2 A2

© . . . . . . . . .

⎞
⎟⎟⎟⎟⎠ , (2.1)

where Ai, Bi and Ci are matrices of dimension ri× ri+1, ri × ri and ri × ri−1, respectively. The symbol ©
stands for block zero matrices which fill the remaining entries. In the entries of the matrix Ai we can find 
the probabilities of all the different ways of moving up one level while going from any phase to any other 
phase, starting at level i. The number of phases ri depend on the level i. The same interpretation applies 
for the coefficients Bi (staying at the same level) and Ci (moving down one level). If ri = 1 for all i then 
we recover the classical discrete-time birth-death chain on N0.

Let us denote by eN the N -dimensional vector with all components equal to 1, i.e.

eN = (1, 1, . . . , 1)T , (2.2)

and we will also use the notation e = e∞. Since P is a stochastic matrix we have nonnegative (scalar) 
entries and all (scalar) rows add up to one, i.e. Pe = e. In other words,

B0er0 + A0er1 = er0 , Cieri−1 + Bieri + Aieri+1 = eri , i ≥ 1. (2.3)

If we have a continuous-time QBD process then we will assume that there exists a conservative infinitesimal 
operator A associated with the transition probability function P (t) and it has the same block tridiagonal 
structure as in (2.1). That means that all off-diagonal (scalar) entries are nonnegative and all (scalar) rows 
add up to 0, i.e. Ae = 0. In other words,

B0er0 + A0er1 = 0, Cieri−1 + Bieri + Aieri+1 = 0, i ≥ 1.

The transition probability function P (t) with P (0) = I and P ′(0) = A satisfies the Kolmogorov equations

P ′(t) = AP (t) = P (t)A, t ≥ 0.

Our goal is to relate transition probabilities matrices or infinitesimal operators of the form (2.1) with the 
theory of multivariate orthogonal polynomials and viceversa. In particular, we will focus on examples already 
known in the theory of multivariate orthogonal polynomials from which we can derive block tridiagonal 
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matrices of the form (2.1) with probabilistic properties. If we start with (2.1) and we want to use the 
spectral theorem for multivariate orthogonal polynomials, then we will have to assume several hypotheses, 
as we will see now. This approach, already introduced in [5] for the case of bivariate orthogonal polynomials 
and coefficients Bn = 0, An upper bidiagonal and Cn lower bidiagonal, relies on the spectral theory 
of commuting self-adjoint operators (see [14]) and it is different from previous approaches (see [34,39]). 
Although we will be interested in finding QBD processes from very well known examples of bivariate 
orthogonal polynomials, we will show the general case of multivariate orthogonal polynomials generated by 
(2.1).

Let us denote by R[x1, . . . , xd] the ring of polynomials with d ∈ N. For each level n ∈ N0, the number of 
phases will depend on n and d in the following form:

rn = rdn =
(
n + d− 1

n

)
. (2.4)

This number is just the dimension of the space of all homogeneous polynomials of total degree n in 
R[x1, . . . , xd]. Let us assume that we can write P (or A) in (2.1) in the following way

P = τ1J1 + · · · + τdJd, (2.5)

where τi ∈ R, i = 1, . . . , d (to be determined depending on the example) and Ji are block tridiagonal 
matrices of the form (2.1) with coefficients Cn+1,i, Bn,i, An,i, i = 1, . . . , d, n ≥ 0, of the same dimension as in 
P . We will denote by CT

n+1, Bn, An, n ≥ 0, the joint matrices associated with CT
n+1,i, Bn,i, An,i, i = 1, . . . , d, 

i.e. the row block column vectors built from these coefficients. All these matrices are subject to the following 
rank conditions:

rank(An,i) = rank(Cn+1,i) = rdn, (2.6)

rank(An) = rank(CT
n+1) = rdn+1. (2.7)

Since An has full rank, it has a generalized inverse, which we denote by DT
n = (DT

n,1 · · · DT
n,d). Therefore, 

we have

DT
nAn =

d∑
i=1

DT
n,iAn,i = I. (2.8)

From here we can construct recursively a family of multivariate polynomials (Pn)n≥0 where Pn =
(Pn,1, . . . , Pn,rdn

)T using Theorem 3.3.5 of [14], by the following formula:

Pn+1(x) =
d∑

i=1
xiD

T
n,iPn(x) + EnPn(x) + FnPn−1(x),

where

En = −
d∑

i=1
DT

n,iBn,i, Fn = −
d∑

i=1
DT

n,iC
T
n,i.

Here x = (x1, . . . , xd). Finally, in order to apply the spectral theorem for commuting self-adjoint operators, 
we need to assume first the following commutativity conditions

JiJj = JjJi, for all i, j = 1, . . . , d,
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and second that we can “symmetrize” in some way each one of the operators Ji. For that, we will have to 
assume that there exists a sequence of nonsingular matrices (Sn)n≥0, each of dimension rdn × rdn such that

SnBn,iS
−1
n is symmetric n ≥ 0, i = 1, . . . , d, (2.9)

and

An,iSn+1S
T
n+1 = SnS

T
nC

T
n+1,i, n ≥ 0, i = 1, . . . , d. (2.10)

Under all these hypotheses we can guarantee (see Theorem 3.5.1 of [14]) that there exists a positive 
definite linear functional L such that

L(PiP
T
j ) = 0ri×rj , i �= j,

L(PjP
T
j ) = Π−1

j , Π−1
j = SjS

T
j .

If we assume that L is expressible as integrals with respect to a (scalar-valued) nonnegative weight function 
w(x) with finite moments supported on Ω ⊂ Rd, then we have

∫
Ω

Pi(x)PT
j (x)w(x)dx = 0ri×rj , i �= j,

∫
Ω

Pj(x)PT
j (x)w(x)dx = Π−1

j , Π−1
j = SjS

T
j .

(2.11)

In particular, the multivariate polynomials (Pn)n≥0 satisfy the three-term recurrence relations

xiPn(x) = An,iPn+1(x) + Bn,iPn(x) + Cn,iPn−1(x), n ≥ 0, i = 1, . . . , d, P−1 = 0. (2.12)

The strong tool of the spectral theorem for commuting self-adjoint operators allows us to derive the 
analogue of the Karlin-McGregor integral representation formula. If we have a discrete-time QBD process, 
then this formula gives an expression of the (i, j) block of the matrix P n in terms of the multivariate 
orthogonal polynomials. Indeed,

P n
i,j =

⎛
⎝∫

Ω

(τ1x1 + · · · + τdxd)nPi(x)PT
j (x)w(x)dx

⎞
⎠Πj . (2.13)

Observe that each block P n
i,j is of dimension rdi × rdj and the entries of this block give all probabilities 

of moving from one phase to any other. In the case when the family of polynomials (Pn)n≥0 is mutually 
orthogonal (and therefore Πj is a diagonal matrix with diagonal entries Πj,k, k = 1, . . . , rdj ) we have a 
compact way of expressing these probabilities by the following formula

P [Zn = (j, j′) | Z0 = (i, i′)] =
(
P n

i,j

)
i′,j′

= Πj,j′

∫
Ω

(
d∑

k=1

τkxk

)n

Pi,i′(x)Pj,j′(x)w(x)dx. (2.14)

If we have a continuous-time QBD process then this formula gives an expression of the (i, j) block of the 
transition function P (t) in terms of the multivariate orthogonal polynomials. Indeed,

P i,j(t) =

⎛
⎝∫ exp ((τ1x1 + · · · + τdxd)t)Pi(x)PT

j (x)w(x)dx

⎞
⎠Πj . (2.15)
Ω
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Again, each block P i,j(t) is of dimension rdi × rdj and if the family of polynomials (Pn)n≥0 is mutually 
orthogonal, then we have

P [Zt = (j, j′) | Z0 = (i, i′)] = (P i,j(t))i′,j′ = Πj,j′

∫
Ω

exp
(

d∑
k=1

τkxk

)
Pi,i′(x)Pj,j′(x)w(x)dx. (2.16)

The case of regular discrete-time birth-death chain can be found in [31], while the case of regular birth-
death processes can be found in [29,30].

On the contrary, if we have a nonnegative weight function w(x) with finite moments supported on some 
domain Ω ⊂ Rd then it is possible to construct a family of multivariate polynomials (Pn)n≥0 satisfying 
(2.12), where the coefficients can be computed in terms of the linear functional generated by the weight 
function (see Theorem 3.3.1 of [14]). All examples we will see in this paper are of this form.

The sequence of “norms” (Π−1
n )n≥0 in (2.11), where each Πn is a nonsingular matrix of dimension rdn×rdn, 

will play an important probabilistic role related with the concept of invariant measure associated with P
(or A), as we will see now. First, we will derive a formula to directly compute (Πn)n≥0 in terms of the 
coefficients An,i and the generalized inverse of CT

n+1.

Lemma 2.1. Let (Πn)n≥0 be defined by (2.11). Then, for n ≥ 1, we have

Πn = Π0
∑

i1,...,in∈{1,...,d}
Gn,i1Gn−1,i2 · · ·G1,inA0,inA1,in−1 · · ·An−1,i1 , (2.17)

where Gn = (Gn,1 · · · Gn,d) is a generalized inverse of CT
n = (Cn,1 · · · Cn,d)T . Moreover, the representation 

is independent of the choice of the generalized inverse Gn.

Proof. From (2.10) we have Πn−1An−1,i = CT
n,iΠn. Written in terms of the joint matrices we have

CT
n Πn =

⎛
⎝Πn−1

. . .
Πn−1

⎞
⎠An−1. (2.18)

Now, multiplying on the left by a generalized inverse Gn of CT
n (so that GnC

T
n = I) we get

Πn =
d∑

i=1
Gn,iΠn−1An−1,i, n ≥ 1.

Iterating this formula we get (2.17). For the invariance of the representation, consider the singular-value 
decomposition of CT

n given by

CT
n = WT

n

[
Λn

©

]
Un,

where Wn, Λn and Un are drdn−1 × drdn−1, rdn × rdn and rdn × rdn matrices, respectively. A generalized inverse 
is then given by

Gn = UT
n

[
Λ−1
n Λn,1

]
Wn,

where Λn,1 is any rdn × (drdn−1 − rdn) matrix. Observe from the definition (2.4) that drdn−1 − rdn ≥ 1 for 
n, d ≥ 2. Gn can be written as
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Gn = UT
n

[
Λ−1
n ©

]
Wn + UT

n [© Λn,1 ]Wn.

The first part of Gn is the so-called pseudo inverse or the Moore-Penrose inverse, which is unique. Multiplying 
this Gn on the left in (2.18) and using again Πn−1An−1,i = CT

n,iΠn, we conclude that the second part of 
the sum in Gn must vanish, so formula (2.17) is independent of the choice Λn,1. �
Remark 2.2. Observe that Π0 in (2.17) is a number which can be taken as 1 if we assume that the spectral 
measure w(x) is a probability measure.

Remark 2.3. Similarly, using a generalized inverse DT
n of An (see (2.8)) we can derive a formula for the 

sequence of norms (Π−1
n )n≥0. Indeed,

Π−1
n = Π−1

0

∑
i1,...,in∈{1,...,d}

DT
n−1,i1D

T
n−2,i2 · · ·D

T
0,inC

T
1,inC

T
2,in−1

· · ·CT
n,i1 ,

and, again, this is independent of the choice of the generalized inverse DT
n .

Remark 2.4. For the univariate case of birth-death chains, the matrices Πn, n ≥ 0, are now numbers, which 
are usually called the potential coefficients. They can be written as

π0 = 1, πn = a0 · · · an−1

c1 · · · cn
, n ≥ 1,

where we denote here πn = Πn, an = An,i and cn = Cn,i (there is only one index i).

Theorem 2.5. Let P be the transition probability matrix given by (2.1). Define the sequence of matrices Πn, 
n ≥ 1, as in (2.17) with Π0 = (

∫
Ω w(x)dx)−1. Consider the following row vector

π = (Π0; (Π1er1)T ; (Π2er2)T ; · · · ), (2.19)

where eN and rn are defined by (2.2) and (2.4), respectively. Then π is an invariant measure for the 
discrete-time QBD process P , i.e. all components of π are nonnegative and

πP = π. (2.20)

Proof. From (2.5) we can see that An =
∑d

i=1 τiAn,i, Bn =
∑d

i=1 τiBn,i and Cn =
∑d

i=1 τiCn,i. To prove 
(2.20), we have to check that

Π0B0 + (Π1er1)TC1 = Π0,

and

(Πn−1ern−1)TAn−1 + (Πnern)TBn + (Πn+1ern+1)TCn+1 = (Πnern)T , n ≥ 1.

The first equality holds using Π0A0 = CT
1 Π1 (see (2.10)), that Πn are symmetric matrices and the fact that 

P is stochastic (see (2.3)). Therefore

Π0B0 + eTr1Π
T
1 C1 = Π0B0 + eTr1A

T
0 Π0 = Π0(B0er0 + A0er1)T = Π0.

Similarly, for n ≥ 1, and using additionally (2.9), we get
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eTrn−1
Πn−1An−1 + eTrnΠnBn + eTrn+1

Πn+1Cn+1 = eTrn−1
CT

nΠn + eTrnB
T
nΠn + eTrn+1

AT
nΠn

=
(
Cnern−1 + Bnern + Anern+1

)T Πn = eTrnΠn = (Πnern)T .

Also observe that by [41, Lemma 5.6] all components of π are nonnegative. �
Remark 2.6. The same result holds for continuous-time QBD processes, where now π satisfies πA = 0.

Remark 2.7. The previous theorem was proved in [27] for QBD processes with a constant number N of 
phases for each level, i.e. rdn = N , for all n ≥ 0.

Remark 2.8. The invariant measure π in (2.19) will become an invariant distribution if

∞∑
n=0

rn∑
j=1

(Πnern)Tj < ∞.

Finally, let us talk about the concept of recurrence. The definition of recurrence that we will use here is 
an extension of the one used in [11,12]. Consider first the case of discrete-time QBD processes. Then, using 
(2.13) and Lebesgue’s theorem, we have

Hi,j(z) =
∞∑

n=0
P n

i,jz
n =

∞∑
n=0

⎛
⎝∫

Ω

(τ1x1 + · · · + τdxd)nznPi(x)PT
j (x)w(x)dx

⎞
⎠Πj

=

⎛
⎝∫

Ω

1
1 − z(τ1x1 + · · · + τdxd)

Pi(x)PT
j (x)w(x)dx

⎞
⎠Πj .

Observe that each block (i, j) is a matrix of dimension rdi × rdj . A state (i, l), where i ∈ N0 and 0 ≤ l ≤ rdi , 
is recurrent if and only if

∞∑
n=0

eTl P
n
i,iel = lim

z→1
eTl Hi,i(z)el

= eTl

⎛
⎝∫

Ω

1
1 − (τ1x1 + · · · + τdxd)

Pi(x)PT
i (x)w(x)dx

⎞
⎠Πiel = ∞,

for some 0 ≤ l ≤ rdi , where eTl = (0, . . . , 0, 1, 0, . . . , 0) is the l-th canonical vector in Rrdi . If we assume that 
the discrete-time QBD process is irreducible, then it is enough to study recurrence at one single state, for 
instance the state (0, 0). In this case we have rd0 = 1, P0(x) = 1 and Π0 = 1. Therefore the discrete-time 
QBD process is recurrent if and only if

∫
Ω

w(x1, . . . , xd)
1 − (τ1x1 + · · · + τdxd)

dx1 · · · dxd = ∞. (2.21)

Otherwise it is transient. From the Karlin-McGregor representation (2.13) for i = j = 0, it is possible to 
see that the discrete-time QBD process is positive recurrent if and only if it is recurrent and the spectral 
weight w has a jump at least at one point x0 = (x0

1, . . . , x
0
d) such that τ1x0

1 + · · · + τdx
0
d = 1.

Similar results hold for continuous-time QBD processes, but using (2.15) instead. Indeed, the continuous-
time QBD process is recurrent if and only if
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∫
Ω

w(x1, . . . , xd)
τ1x1 + · · · + τdxd

dx1 · · · dxd = ∞, (2.22)

and it is positive recurrent if and only if is recurrent and the spectral weight w has a jump at least at one 
point x0 = (x0

1, . . . , x
0
d) such that τ1x0

1 + · · · + τdx
0
d = 0.

3. QBD processes associated with product orthogonal polynomials

One simple way to generate examples of bivariate orthogonal polynomials is by considering product 
weight functions w of the form

w(x, y) = w1(x)w2(y),

where w1 and w2 are two one-variable weight functions. It is well known (see Proposition 2.2.1 in [14]) that 
the bivariate polynomials defined by

Pn,k(x, y) = pn−k(x)qk(y), 0 ≤ k ≤ n,

form a mutually orthogonal basis with respect to w, where (pn)n and (qn)n are sequences of orthogonal 
polynomials with respect to w1 and w2, respectively. Observe that, in this case, r2

n = n + 1 where rdn is 
defined by (2.4). We will use the vector notation so we define

Pn(x, y) = (Pn,0(x, y), Pn,1(x, y), . . . , Pn,n(x, y))T , n ≥ 0.

According to Theorem 3.3.1 in [14], we have that the sequence (Pn)n≥0 satisfies the following three-term 
recurrence relations:

xPn(x, y) = An,1Pn+1(x, y) + Bn,1Pn(x, y) + Cn,1Pn−1(x, y),

y Pn(x, y) = An,2Pn+1(x, y) + Bn,2Pn(x, y) + Cn,2Pn−1(x, y),
(3.1)

where An,1, An,2 are matrices of dimension (n +1) × (n + 2), Bn,1, Bn,2 are matrices of dimension (n +1) ×
(n +1), Cn,1, Cn,2 are matrices of dimension (n +1) ×n and they satisfy the rank conditions (2.6) and (2.7). 
From these recurrence relations we can define the block Jacobi matrices

J1 =

⎛
⎜⎜⎜⎜⎝

B0,1 A0,1 ©
C1,1 B1,1 A1,1

C2,1 B2,1 A2,1

© . . . . . . . . .

⎞
⎟⎟⎟⎟⎠ , J2 =

⎛
⎜⎜⎜⎜⎝

B0,2 A0,2 ©
C1,2 B1,2 A1,2

C2,2 B2,2 A2,2

© . . . . . . . . .

⎞
⎟⎟⎟⎟⎠ . (3.2)

If we have the three-term recurrence relations satisfied by the polynomials (pn)n and (qn)n, i.e.

xpn = anpn+1 + bnpn + cnpn−1, p−1 = 0,

xqn = ãnqn+1 + b̃nqn + c̃nqn−1, q−1 = 0,

then we have that the coefficients An,i, Bn,i, Cn,i, i = 1, 2, in (3.1) are given by
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An,1 =

⎡
⎢⎣
an © 0

. . .
...

© a0 0

⎤
⎥⎦ , Bn,1 =

⎡
⎢⎣
bn ©

. . .
© b0

⎤
⎥⎦ , Cn,1 =

⎡
⎢⎢⎢⎢⎣
cn ©

. . .
© c1
0 · · · 0

⎤
⎥⎥⎥⎥⎦ ,

An,2 =

⎡
⎢⎣

0 ã0 ©
...

. . .
0 © ãn

⎤
⎥⎦ , Bn,2 =

⎡
⎢⎣
b̃0 ©

. . .
© b̃n

⎤
⎥⎦ , Cn,2 =

⎡
⎢⎢⎢⎢⎣

0 ©
c̃1

. . . 0
© c̃n

⎤
⎥⎥⎥⎥⎦ .

(3.3)

These are the simplest examples since both variables are separated. Now, we will see a couple of examples 
related with QBD processes.

3.1. Product Jacobi polynomials

Let Q(α,β)
n (x) be the family of Jacobi polynomials normalized in such a way that Q(α,β)

n (1) = 1. They 
are orthogonal with respect to the (normalized) Jacobi weight (or Beta distribution)

w(x) = Γ(α + β + 2)
Γ(α + 1)Γ(β + 1)x

α(1 − x)β , x ∈ [0, 1], α, β > −1,

and they satisfy the following three-term recurrence relation

xQ(α,β)
n (x) = a(α,β)

n Q
(α,β)
n+1 (x) + b(α,β)

n Q(α,β)
n (x) + c(α,β)

n Q
(α,β)
n−1 (x),

where

a(α,β)
n = (n + β + 1)(n + α + β + 1)

(2n + α + β + 1)(2n + α + β + 2) ,

b(α,β)
n = 1 − a(α,β)

n − c(α,β)
n ,

c(α,β)
n = n(n + α)

(2n + α + β)(2n + α + β + 1) .

(3.4)

Let us define an inner product on the square S = [0, 1] × [0, 1] by

〈f, g〉 = Γ(α + β + 2)Γ(γ + δ + 2)
Γ(α + 1)Γ(β + 1)Γ(γ + 1)Γ(δ + 1)

∫
S

f(x, y)g(x, y)xα(1 − x)βyγ(1 − y)δdxdy,

which is normalized in such a way that 〈1, 1〉 = 1. For 0 ≤ k ≤ n the set of polynomials

Qn,k(x, y) = Q
(α,β)
n−k (x)Q(γ,δ)

k (y), (3.5)

constitutes a basis of the space of orthogonal polynomials of degree n with Qn,k(1, 1) = 1. The vector of 
polynomials Qn = (Qn,0, Qn,1, . . . , Qn,n)T satisfies the three-term recurrence relations

xQn(x, y) = An,1Qn+1(x, y) + Bn,1Qn(x, y) + Cn,1Qn−1(x, y),

yQn(x, y) = An,2Qn+1(x, y) + Bn,2Qn(x, y) + Cn,2Qn−1(x, y),

where An,i, Bn,i, Cn,i, i = 1, 2, are given by (3.3) (for an = a
(α,β)
n , bn = b

(α,β)
n , cn = c

(α,β)
n , and ãn =

a
(γ,δ)
n , ̃bn = b

(γ,δ)
n , ̃cn = c

(γ,δ)
n ). Observe that the Jacobi matrices J1 and J2 are both stochastic matrices. 
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Now, let us consider a Jacobi matrix of the form (2.5), i.e. P = τ1J1 + τ2J2. Since J1 and J2 are both 
stochastic matrices, the Jacobi matrix P is always a stochastic matrix if and only if τ2 = 1 − τ1 and 
0 ≤ τ1 ≤ 1. For simplicity we will call τ = τ1. Therefore,

P = τJ1 + (1 − τ)J2, 0 ≤ τ ≤ 1,

can be regarded as the transition probability matrix of a family of discrete-time QBD processes. Thus, the 
Karlin-McGregor representation formula (2.13) for the (i, j) block entry of the matrix P is given by

P n
i,j = C

⎛
⎝∫

S

[τx + (1 − τ)y]nQi(x, y)QT
j (x, y)xα(1 − x)βyγ(1 − y)δdxdy

⎞
⎠Πj ,

where

C = Γ(α + β + 2)Γ(γ + δ + 2)
Γ(α + 1)Γ(β + 1)Γ(γ + 1)Γ(δ + 1) ,

and Πj is a diagonal matrix whose entries are given by

Πj,k =
σ2
j,k

νj,k
, k = 0, 1, . . . , j, σj,k = (β + 1)j−k(δ + 1)k

(j − k)! k!

νj,k = C × Γ(j − k + α + 1)Γ(j − k + β + 1)Γ(k + γ + 1)Γ(k + δ + 1)
(2j − 2k + α + β + 1)(2k + γ + δ + 1)(j − k)! Γ(j − k + α + β + 1)k! Γ(k + γ + δ + 1) .

From (2.14) and (3.5) we can derive a separated expression for all probabilities, given by

(
P n

i,j

)
i′,j′

=C × Πj,j′

n∑
k=0

(
n

k

)
τk(1 − τ)n−k

⎡
⎣ 1∫

0

Q
(α,β)
i−i′ (x)Q(α,β)

j−j′ (x)xα+k(1 − x)βdx

⎤
⎦

×

⎡
⎣ 1∫

0

Q
(γ,δ)
i′ (y)Q(γ,δ)

j′ (y)yγ+n−k(1 − y)δdy

⎤
⎦ .

According to Theorem 2.5 we can construct an invariant measure π for the QBD process given by (2.19). 
The family of discrete-time QBD processes is recurrent (see (2.21)) if and only if

∫
S

xα(1 − x)βyγ(1 − y)δ

1 − τx− (1 − τ)y dxdy = ∞.

After some computations, it turns out that, if 0 < τ < 1, this integral is divergent if and only if β+ δ ≤ −1. 
If τ = 1 the divergence is equivalent to β ≤ 0 and if τ = 0 the divergence is equivalent to δ ≤ 0. Otherwise 
the QBD process is transient. The QBD process can never be positive recurrent since the spectral measure is 
absolutely continuous and does not have any jumps. From the shape of the coefficients An,i, Bn,i, Cn,i, i = 1, 2
a diagram of the possible transitions of the QBD process generated by P is given in Fig. 1.

An interpretation of this QBD process in terms of urn models may be stated as follows. Consider two 
independent urn models for the scalar Jacobi polynomials (see [22], or more recently [24]). The first urn 
model depends on the parameters α, β and the second urn model depends on the parameters γ, δ, where 
α, β, γ, δ are assumed to be nonnegative integers. The parameter τ may be interpreted as the probability 
of heads of a (possible biased) coin which we tose before starting the QBD process. The state space of the 
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...
...

...
...

(3, 0) (4, 1) (5, 2) (6, 3) · · ·

(2, 0) (3, 1) (4, 2) (5, 3) · · ·

(1, 0) (2, 1) (3, 2) (4, 3) · · ·

(0, 0) (1, 1) (2, 2) (3, 3) · · ·

Fig. 1. Diagram of all possible transitions of the discrete-time QBD process corresponding with the product Jacobi polynomials on 
a square.

discrete-time QBD process {Zt : t = 0, 1, . . .} is given by all pairs (n, k) where n ∈ N0 and 0 ≤ k ≤ n. The 
numbers n − k and k can be interpreted as the number of blue balls in each of the two independent urn 
models, being n the total number of blue balls in both models. From a state (n, k) there are five possible 
transitions between the states, except when we are in states of the form (n, 0) and (n, n), where we only 
have 3 possible transitions (see Fig. 1). These five transitions are given by

P [Z1 = (n + 1, k + 1) | Z0 = (n, k)] = (1 − τ)a(γ,δ)
k ,

P [Z1 = (n + 1, k) | Z0 = (n, k)] = τa
(α,β)
n−k ,

P [Z1 = (n− 1, k) | Z0 = (n, k)] = τc
(α,β)
n−k ,

P [Z1 = (n− 1, k − 1) | Z0 = (n, k)] = (1 − τ)c(γ,δ)k ,

P [Z1 = (n, k) | Z0 = (n, k)] = τb
(α,β)
n−k + (1 − τ)b(γ,δ)k ,

(3.6)

where the coefficients an, bn, cn are given by (3.4). This means that the increase or decrease of one blue ball 
at the first urn model (and no changes in the second urn model) only depends on n − k (and α, β). On 
the other hand, the increase or decrease of one blue ball at the second urn model only depends on k (and 
γ, δ). Therefore both components behave independently. Observe that since we are assuming that α, β, γ, δ
are nonnegative integers, the QBD process {Zt : t = 0, 1, . . .} can only be (null) recurrent if and only if 
τ = 1, β = 0 (i.e. the second urn is ignored and β = 0) or τ = 0, δ = 0 (i.e. the first urn is ignored and 
δ = 0). Otherwise, the QBD process is transient.
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Remark 3.1. Observe that we could have relabeled the states in the form (h, k), h, k ∈ N0, where h = n − k, 
and in this way it is more clear that the transitions act independently on both components. This relabeling of 
the states keeps the same transitions in the diagram in Fig. 1, but it will considerably change in the examples 
of orthogonal polynomials on a parabolic domain and on the triangle in Sections 4 and 5, respectively.

Remark 3.2. In the previous situation we have normalized the polynomials at the upper right corner (1, 1)
of the square S = [0, 1] × [0, 1] in such a way that Qn,k(1, 1) = 1. It is possible to see that we can also get 
probabilistic interpretations of this example if we normalize the polynomials at any corner of the unit square. 
For instance, if we choose to normalize the polynomials in such a way that Qn,k(0, 0) = 1, then we will obtain 
a two-parameter family of continuous-time QBD processes with infinitesimal generators A = τ1J1 + τ2J2, 
with τ1, τ2 ≥ 0 (observe that the coefficients in J1 and J2 will change after the normalization of the 
polynomials). The same can be done for the points (1, 0) and (0, 1) where now we will get one-parameter 
families of discrete-time QBD processes where the free parameter will depend on the values of α, β, γ, δ. We 
will see a similar situation later in Section 5.

3.2. Product Laguerre polynomials

Let L(α)
n (x) be the classical family of Laguerre polynomials normalized in such a way that

L(α)
n (0) =

(
n + α

n

)
.

They are orthogonal with respect to the (normalized) Laguerre weight (or Gamma distribution)

w(x) = 1
Γ(α + 1)x

αe−x, x ∈ [0,∞), α > −1,

and they satisfy the following three-term recurrence relation

−xL(α)
n (x) = a(α)

n L
(α)
n+1(x) + b(α)

n L(α)
n (x) + c(α)

n L
(α)
n−1(x),

where

a(α)
n = n + 1, b(α)

n = −(2n + α + 1), c(α)
n = n + α. (3.7)

Let us define an inner product on the first quadrant C = [0, ∞) × [0, ∞) by

〈f, g〉 = 1
Γ(α + 1)Γ(β + 1)

∫
C

f(x, y)g(x, y)xαyβe−x−ydxdy,

which is normalized in such a way that 〈1, 1〉 = 1. For 0 ≤ k ≤ n the set of polynomials

Qn,k(x, y) = L
(α)
n−k(x)L(β)

k (y), (3.8)

constitutes a basis of the space of orthogonal polynomials of degree n with

Qn,k(0, 0) =
(
n− k + α

α

)(
k + β

k

)
.

The vector of polynomials Qn = (Qn,0, Qn,1, . . . , Qn,n)T satisfies the three-term recurrence relations
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−xQn(x, y) = An,1Qn+1(x, y) + Bn,1Qn(x, y) + Cn,1Qn−1(x, y),

−yQn(x, y) = An,2Qn+1(x, y) + Bn,2Qn(x, y) + Cn,2Qn−1(x, y),

where An,i, Bn,i, Cn,i, i = 1, 2, are given by (3.3) (for an = a
(α)
n , bn = b

(α)
n , cn = c

(α)
n , and ãn = a

(β)
n , ̃bn =

b
(β)
n , ̃cn = c

(β)
n ). Observe that the Jacobi matrices J1 and J2 are both the (nonconservative) infinitesimal 

operator of a continuous-time (diagonal) QBD process. Now, let us consider a Jacobi matrix of the form 
(2.5), i.e. A = τ1J1 + τ2J2. The Jacobi matrix A is always the infinitesimal operator of a continuous-time 
QBD process if and only if τ1, τ2 ≥ 0. Thus, the Karlin-McGregor representation formula (2.15) for the (i, j)
block entry of the transition function matrix P (t) is given by

P i,j(t) = 1
Γ(α + 1)Γ(β + 1)

⎛
⎝∫

C

e−(τ1x+τ2y)tQi(x, y)QT
j (x, y)xαyβe−x−ydxdy

⎞
⎠Πj ,

where Πj is a diagonal matrix whose entries are given by

Πj,k = Γ(α + 1)Γ(β + 1)(j − k)! k!
Γ(j − k + α + 1)Γ(k + β + 1) , k = 0, 1, . . . , j.

As before, from (2.16) and (3.8) we can derive a separated expression for all probabilities, given by

(P i,j(t))i′,j′ =Πj,j′

⎡
⎣ ∞∫

0

e−τ1xtL
(α)
i−i′(x)L(α)

j−j′(x)xαe−xdx

⎤
⎦
⎡
⎣ ∞∫

0

e−τ2ytL
(β)
i′ (y)L(β)

j′ (y)yβe−ydy

⎤
⎦ .

According to Theorem 2.5 we can construct an invariant measure π for the QBD process given by (2.19). 
Finally, the family of continuous-time QBD processes is recurrent (see (2.22)) if and only if

∫
C

xαyβe−x−y

τ1x + τ2y
dxdy = ∞.

After some computations, it turns out that, if τ1, τ2 > 0, this integral is divergent if and only if α+β ≤ −1. 
If τ1 = 0 the divergence is equivalent to β ≤ 0 and if τ2 = 0 the divergence is equivalent to α ≤ 0. Otherwise 
the QBD process is transient. Again, the QBD process can never be positive recurrent since the spectral 
measure is absolutely continuous and does not have any jumps. A diagram of the possible transitions of the 
QBD process generated by A is similar to the one given in Fig. 1, but without self-transitions.

An interpretation of this QBD process is similar to the situation considered in the previous case of 
product Jacobi polynomials, but changing the urn models by two independent linear growth models, similar 
to the models studied in [34,39]), but in these papers both components are dependent of each other. The 
parameters τ1, τ2 ≥ 0 may be interpreted as an initial preference of choosing either one of these linear 
growth models. Again, the state space of the continuous-time QBD process {Zt : t ≥ 0} is given by all pairs 
(n, k) where n ∈ N0 and 0 ≤ k ≤ n and now n − k and k can be interpreted as the number of elements 
in the population in each of the models. From a state (n, k) there are four possible transitions between the 
states, except when we are in states of the form (n, 0) and (n, n), where we only have 2 possible transitions 
(see Fig. 1). As in (3.6), during an interval (t, t + h) of infinitesimal length h > 0, the infinitesimal birth 
and death rates of the process are given by
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P [Zt+h = (n + 1, k + 1) | Zt = (n, k)] = τ2a
(β)
k h + o(h),

P [Zt+h = (n + 1, k) | Zt = (n, k)] = τ1a
(α)
n−kh + o(h),

P [Zt+h = (n− 1, k) | Zt = (n, k)] = τ1c
(α)
n−kh + o(h),

P [Zt+h = (n− 1, k − 1) | Zt = (n, k)] = τ2c
(β)
k h + o(h),

where the coefficients an, bn, cn are given by (3.7). Again we can see from the coefficients that both compo-
nents behave independently. Now, if we assume that we do not ignore any of the populations (i.e. τ1, τ2 > 0), 
it is possible that the QBD process is (null) recurrent if we choose negative α, β such that α + β ≤ −1. 
Another important observation now is that there is a positive probability that the QBD process is killed if 
the process is located at one of the states of the form (n, 0) or (n, n) for n ≥ 0 (i.e. the boundary in the 
grid in Fig. 1).

Remark 3.3. Observe that we could have taken another normalization of the polynomials Qn,k(x, y) in (3.8)
in such a way that Qn,k(0, 0) = 1. In that situation, the coefficients of the three-term recurrence relation 
for the new normalized Laguerre polynomials are a(α)

n = n + α + 1, b(α)
n = −(2n + α + 1), c(α)

n = n. Then, 
we will obtain another family of continuous-time QBD processes. The only difference is that this model is 
conservative, meaning that the process will evolve always in time and will never stop, unlike the case we 
studied before.

Remark 3.4. It is also possible to consider product Jacobi-Laguerre polynomials, in which case the region 
is given by the strip S = [0, 1] × [0, ∞). After a proper normalization of the polynomials, it is possible to 
see that the only corner for which we get a probabilistic interpretation of this example is (0, 0), but not 
(0, 1). This is due to the fact that the coefficients of the three-term recurrence relation for the Laguerre 
polynomials are unbounded, contrary to the coefficients for the Jacobi polynomials.

4. QBD processes associated with orthogonal polynomials on a parabolic domain

In [35], T. Koornwinder studied analogues of Jacobi orthogonal polynomials in two variables. In particular, 
he established seven different classes of bivariate orthogonal polynomials, some of them obtained by using 
a construction defined by Agahanov in [2]. One of these classes are orthogonal polynomials on the domain

R = {(x, y) ∈ R2 : y2 < x < 1},

bounded by a straight line and a parabola. For α, β > −1, the inner product is given by the integral

〈f, g〉 =
Γ(α + β + 5

2 )√
π Γ(α + 1)Γ(β + 1)

∫
R

f(x, y) g(x, y) (1 − x)α(x− y2)β dx dy,

where the weight is normalized in such a way that 〈1, 1〉 = 1. A mutually orthogonal basis of polynomials 
{Pn,k : 0 ≤ k ≤ n} can be obtained from a modified product of Jacobi polynomials in this way

Pn,k(x, y) = P
(α,β+k+1/2)
n−k (2x− 1)xk/2 P

(β,β)
k

(
y√
x

)
. (4.1)

Here P (α,β)
n (t) are the standard Jacobi polynomials (see [1, Chapter 22] or [43]). For α, β > −1, the Jacobi 

polynomials are orthogonal with respect to the weight function

wα,β(t) = (1 − t)α(1 + t)β , −1 < t < 1, (4.2)
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and they satisfy the properties

P (α,β)
n (1) =

(
n + α

n

)
= (α + 1)n

n! , P (α,β)
n (−1) = (−1)n

(
n + β

n

)
= (−1)n (β + 1)n

n! . (4.3)

We look for a basis of polynomials {Qn,k : 0 ≤ k ≤ n} satisfying Qn,k(1, 1) = 1 so, if we denote

σn,k = Pn,k(1, 1) = P
(α,β+k+1/2)
n−k (1)P (β,β)

k (1) = (α + 1)n−k

(n− k)!
(β + 1)k

k! , (4.4)

and we define Qn,k(x, y) = σ−1
n,kPn,k(x, y), the condition holds. We can use vector notation and the vector 

polynomials Qn = (Qn,0, Qn,1, . . . , Qn,n)T satisfy the three-term recurrence relations

xQn(x, y) = An,1Qn+1(x, y) + Bn,1Qn(x, y) + Cn,1Qn−1(x, y),

yQn(x, y) = An,2Qn+1(x, y) + Bn,2Qn(x, y) + Cn,2Qn−1(x, y),

where the Jacobi matrices have a special shape (see [14,37]). On one side, the matrices An,1, Bn,1 and Cn,1
are diagonal matrices:

An,1 =

⎡
⎢⎢⎢⎢⎣
an,0 0

an,1
...

. . .
an,n 0

⎤
⎥⎥⎥⎥⎦ ,

Bn,1 =

⎡
⎢⎢⎢⎢⎣
bn,0

bn,1
. . .

bn,n

⎤
⎥⎥⎥⎥⎦ , Cn,1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

cn,0
cn,1

. . .
cn,n−1

0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(4.5)

On the other side, the matrices An,2, Bn,2 and Cn,2 are tridiagonal matrices:

An,2 =

⎡
⎢⎢⎢⎢⎢⎣

a
(2)
n,0 a

(3)
n,0

a
(1)
n,1 a

(2)
n,1 a

(3)
n,1

. . . . . . . . .

a
(1)
n,n a

(2)
n,n a

(3)
n,n

⎤
⎥⎥⎥⎥⎥⎦ , Bn,2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
(2)
n,0 b

(3)
n,0

b
(1)
n,1 b

(2)
n,1 b

(3)
n,1

. . . . . . . . .

b
(1)
n,n−1 b

(2)
n,n−1 b

(3)
n,n−1

b
(1)
n,n b

(2)
n,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Cn,2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c
(2)
n,0 c

(3)
n,0

c
(1)
n,1 c

(2)
n,1 c

(3)
n,1

. . . . . . . . .

c
(1)
n,n−2 c

(2)
n,n−2 c

(3)
n,n−2

c
(1)
n,n−1 c

(2)
n,n−1

c
(1)
n,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.6)

The elements in the coefficients An,1, Bn,1 and Cn,1 are given by
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an,k = (n− k + α + 1)(n + α + β + 3/2)
(2n− k + α + β + 3/2)2

, k = 0, 1, . . . , n,

bn,k = (n− k + 1)(n− k + α + 1)
(2n− k + α + β + 3/2)2

+ (n + α + β + 1/2)(n + β + 1/2)
(2n− k + α + β + 1/2)2

, k = 0, 1, . . . , n,

cn,k = (n− k)(n + β + 1/2)
(2n− k + α + β + 1/2)2

, k = 0, 1, . . . , n− 1,

while the elements in the coefficients An,2, Bn,2 and Cn,2 are given by

a
(1)
n,k = 0, k = 1, . . . , n, a

(2)
n,k = 0, k = 0, 1, . . . , n,

a
(3)
n,k = (k + 2β + 1)(n + α + β + 3/2)

(2k + 2β + 1) (2n− k + α + β + 3/2) , k = 0, 1, . . . , n,

b
(1)
n,k = k(n− k + α + 1)

(2k + 2β + 1)(2n− k + α + β + 3/2) , k = 1, . . . , n,

b
(2)
n,k = 0, k = 0, 1, . . . , n,

b
(3)
n,k = (k + 2β + 1)(n− k)

(2k + 2β + 1) (2n− k + α + β + 3/2) , k = 0, 1, . . . , n− 1,

c
(1)
n,k = k(n + β + 1/2)

(2k + 2β + 1)(2n− k + α + β + 3/2) , k = 1, . . . , n,

c
(2)
n,k = 0, k = 0, 1, . . . , n− 1, c

(3)
n,k = 0, k = 0, 1, . . . , n− 2.

(4.7)

Similar results hold when we normalize the polynomials Qn,k at the point (1, −1). The only change is to 
multiply σn,k in (4.4) by (−1)k. Observe that the previous coefficients are not separable in the variables n
and k, unlike the case of product orthogonal polynomials.

It is possible to see that the Jacobi matrices J1 and J2 in (3.2) are indeed both stochastic matrices. 
Therefore, we get discrete-time QBD processes (the first one being trivial). For instance, a diagram of the 
possible transitions of the QBD process generated by J2 is given in Fig. 2.

Now consider a Jacobi matrix of the form (2.5), i.e.

P = τ1J1 + τ2J2.

Since J1 and J2 are both stochastic matrices, the Jacobi matrix P is a stochastic matrix if and only if 
τ2 = 1 − τ1 and 0 ≤ τ1 ≤ 1. For simplicity, we will call τ = τ1. Therefore

P = τJ1 + (1 − τ)J2, 0 ≤ τ ≤ 1, (4.8)

is always a family of discrete-time QBD processes. Thus, the Karlin-McGregor representation formula (2.13)
for the (i, j) block entry of the matrix P is given by

P n
i,j = C

⎛
⎝∫

R

[τx + (1 − τ)y]nQi(x, y)QT
j (x, y)(1 − x)α(x− y2)βdxdy

⎞
⎠Πj ,

where

C =
Γ(α + β + 5

2 )√ ,

π Γ(α + 1)Γ(β + 1)
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(4, 0) · · ·

(3, 0) (4, 1) · · ·

(2, 0) (3, 1) (4, 2) · · ·

(1, 0) (2, 1) (3, 2) (4, 3) · · ·

(0, 0) (1, 1) (2, 2) (3, 3) (4, 4) · · ·

Fig. 2. Diagram of all possible transitions of the discrete-time QBD process corresponding with J2 for the orthogonal polynomials 
on a parabolic domain.

and Πj is a diagonal matrix whose entries can be computed using (2.17) (for Π0 = 1). Indeed, we have, for 
k = 0, 1, . . . , j,

Πj,k =
√
π(2k + 2β + 1)(2j − k + α + β + 3/2)Γ(j + α + β + 3/2)Γ(k + 2β + 1)Γ(j − k + α + 1)

22β+1Γ(j + β + 3/2)Γ(α + β + 5/2)Γ(α + 1)Γ(β + 1)(j − k)!k! .

From (2.14) and (4.1) we can derive a separated expression for all probabilities, given by

(
P n

i,j

)
i′,j′

=C × Πj,j′

σi,i′σj,j′

n∑
k=0

(
n

k

)
τk(1 − τ)n−k

×

⎛
⎝∫

R

xk+i′/2+j′/2yn−kP
(α,β+i′+1)
i−i′ (2x− 1)P (α,β+j′+1)

j−j′ (2x− 1)

× P
(β,β)
i′

(
x
√
y

)
P

(β,β)
j′

(
x
√
y

)
(1 − x)α(x− y2)βdxdy

)
.

According to Theorem 2.5 we can construct an invariant measure π for the QBD process given by (2.19). 
Finally, the family of discrete-time QBD processes is recurrent (see (2.21)) if and only if

∫
R

(1 − x)α(x− y2)β

1 − τx− (1 − τ)y dxdy = ∞.

After some computations, it turns out that, if 0 ≤ τ < 1, this integral is divergent if and only if α+β ≤ −1. 
If τ = 1 the divergence is equivalent to α ≤ 0. Otherwise the QBD process is transient. Again, the QBD 
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process can never be positive recurrent since the spectral measure is absolutely continuous and does not 
have any jumps.

4.1. An urn model for the orthogonal polynomials on a parabolic domain

In this section we will give a probabilistic interpretation of one of the QBD models introduced in the 
previous subsection. For simplicity, we will study the case of the discrete-time QBD process (4.8) with 
τ = 0, so that P = J2 (see Fig. 2). Assume that α, β are nonnegative integers. Consider {Zt : t = 0, 1, . . .}
the discrete-time QBD process on the state space {(n, k) : 0 ≤ k ≤ n, n ∈ N0} whose one-step transition 
probability matrix is given by P = J2 (see (4.6) and (4.7)). We have two urns A and B and, at every time 
step t = 0, 1, 2, . . ., the state (n, k) will represent the number of n blue balls in urn A and the number of 
k blue balls in urn B. Now, in urn B we add/remove red balls until we have k + 2β + 1 and draw one ball 
from the urn at random with the uniform distribution. We have two possibilities:

(1) If we get a blue ball then we add/remove balls in urn A until we have 2n − 2k + 2α + 2 blue balls and 
2n + 2β + 1 red balls. Then we draw again one ball from urn A and we have two possibilities:
• If we get a blue ball then we leave urn A with n blue balls and urn B with k− 1 blue balls and start 

over. Therefore, joining both steps, we have

P [Z1 = (n, k − 1) | Z0 = (n, k)] = k

2β + 2k + 1
2(n− k + α + 1)

4n− 2k + 2α + 2β + 3 .

Observe that this probability is given by b(1)n,k in (4.7).
• If we get a red ball then we leave urn A with n − 1 blue balls and urn B with k − 1 blue balls and 

start over. Therefore, joining both steps, we have

P [Z1 = (n− 1, k − 1) | Z0 = (n, k)] = k

2β + 2k + 1
2n + 2β + 1

4n− 2k + 2α + 2β + 3 .

Observe that this probability is given by c(1)n,k in (4.7).
(2) If we get a red ball then we add/remove balls in urn A until we have 2n + 2α + 2β + 3 blue balls and 

2n − 2k red balls. Then we draw again one ball from urn A and we have two possibilities:
• If we get a blue ball then we leave urn A with n + 1 blue balls and urn B with k + 1 blue balls and 

start over. Therefore, joining both steps, we have

P [Z1 = (n + 1, k + 1) | Z0 = (n, k)] = k + 2β + 1
2β + 2k + 1

2n + 2α + 2β + 3
4n− 2k + 2α + 2β + 3 .

Observe that this probability is given by a(3)
n,k in (4.7).

• If we get a red ball then we leave urn A with n blue balls and urn B with k + 1 blue balls and start 
over. Therefore, joining both steps, we have

P [Z1 = (n, k + 1) | Z0 = (n, k)] = k + 2β + 1
2β + 2k + 1

2n− 2k
4n− 2k + 2α + 2β + 3 .

Observe that this probability is given by b(3)n,k in (4.7).

Therefore from a state (n, k) there are four possible transitions between the states, except when the number 
of blue balls in urn B is zero, i.e. the state (n, 0), in which case we only have two transitions, or when 
the initial state is (0, 0) where the only transition is to (1, 0) with probability 1 (see Fig. 2). Since we are 
assuming that α and β are nonnegative integers, this urn model will always be a transient process.
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5. QBD processes associated with orthogonal polynomials on the triangle

Orthogonal polynomials on the triangle were first introduced by Proriol in [40] and after that they have 
been studied by several authors. The classical inner product on the triangle

T 2 := {(x, y) ∈ R2 : x + y ≤ 1, x ≥ 0, y ≥ 0}

is given by

〈f, g〉 = Γ(α + β + γ + 3)
Γ(α + 1)Γ(β + 1)Γ(γ + 1)

∫
T2

f(x, y) g(x, y)xαyβ(1 − x− y)γ dx, α, β, γ > −1.

Some results about this inner product and different bases of orthogonal polynomials with respect to it can 
be found in [14, pp. 35]. For 0 ≤ k ≤ n, we can define

Pn,k(x, y) = P
(2k+β+γ+1,α)
n−k (2x− 1) (1 − x)k P (γ,β)

k

(
2y

1 − x
− 1
)
, (5.1)

where P (α,β)
n (t) is the standard Jacobi polynomial orthogonal with respect to the weight function (4.2). 

Then {Pn,k : 0 ≤ k ≤ n} is a basis of the space of orthogonal polynomials of degree n, and the square norm 
of the polynomial Pn,k, denoted by νn,k, is given by

νn,k = (n + k + α + β + γ + 2)(k + β + γ + 1)(α + 1)n−k (β + 1)k (γ + 1)k (β + γ + 2)n+k

(n− k)! k! (2n + α + β + γ + 2)(2k + β + γ + 1)(β + γ + 2)k (α + β + γ + 3)n+k
.

These polynomials satisfy the three term recurrence relations (3.1) and the matrix coefficients of these 
relations are of the same form as in (4.5) and (4.6). Now we will normalize the polynomials in such a way 
that all of them equal 1 at one of the boundary points of the support of the measure. The boundary in this 
case is formed by all points in the border of the triangle, but it turns out that not all of these boundary 
points lead to a probabilistic model. We have found that normalizing at the vertices (0, 1) and (0, 0) gives 
coefficients of the three term recurrence relation with probabilistic interpretations. The problem with the 
vertex (1, 0) is that Pn,k(1, 0) = 0 for k = 1, . . . , n (see (5.1)) so it is not possible to normalize the way we 
are looking for.

5.1. Normalization at the point (0, 1)

Using (4.3), let us denote

σn,k = Pn,k(0, 1) = P
(2k+β+γ+1,α)
n−k (−1)P (γ,β)

k (1) = (−1)n−k (α + 1)n−k

(n− k)!
(γ + 1)k

k! ,

and let us define the polynomials Qn,k by Qn,k(x, y) = σ−1
n,kPn,k(x, y). This new basis of orthogonal poly-

nomials {Qn,k, 0 ≤ k ≤ n} satisfies Qn,k(0, 1) = 1 for all n ≥ 0 and 0 ≤ k ≤ n. The inverse of the square 
norms Πn in (2.11) is diagonal matrices with diagonal entries given by

Πn,k =
σ2
n,k

νn,k
, k = 0, 1, . . . , n. (5.2)

The vector of polynomials Qn = (Qn,0, Qn,1, . . . , Qn,n)T satisfies the three-term recurrence relations
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−xQn(x, y) = An,1Qn+1(x, y) + Bn,1Qn(x, y) + Cn,1Qn−1(x, y),

yQn(x, y) = An,2Qn+1(x, y) + Bn,2Qn(x, y) + Cn,2Qn−1(x, y),
(5.3)

where the elements in the coefficients An,1, Bn,1, Cn,1 (see (4.5)) are given by

an,k = (n− k + α + 1)(n + k + α + β + γ + 2)
(2n + α + β + γ + 2)2

, k = 0, 1, . . . , n,

bn,k = −(an,k + cn,k), k = 0, 1, . . . , n,

cn,k = (n− k)(n + k + β + γ + 1)
(2n + α + β + γ + 1)2

, k = 0, 1, . . . , n− 1,

(5.4)

the elements in coefficient An,2 (see (4.6)) are given by

a
(1)
n,k = (n− k + α + 1)2 k(k + β)

(2n + α + β + γ + 2)2 (2k + β + γ)2
, k = 1, . . . , n,

a
(2)
n,k =

(
1 + β2 − γ2

(2k + β + γ + 2)(2k + β + γ)

)
an,k
2 , k = 0, 1, . . . , n,

a
(3)
n,k = (n + k + α + β + γ + 2)2 (k + γ + 1)(k + β + γ + 1)

(2n + α + β + γ + 2)2 (2k + β + γ + 1)2
, k = 0, 1, . . . , n,

(5.5)

the ones in coefficient Bn,2 are

b
(1)
n,k = 2k(k + β)(n− k + α + 1)(n + k + β + γ + 1)

(2k + β + γ)2 (2n + α + β + γ + 1)(2n + α + β + γ + 3) , k = 1, . . . , n,

b
(2)
n,k =

(
1 + β2 − γ2

(2k + β + γ)(2k + β + γ + 2)

)
1 + bn,k

2 , k = 0, 1, . . . , n,

b
(3)
n,k = 2(n− k)(n + k + α + β + γ + 2)(k + γ + 1)(k + β + γ + 1)

(2n + α + β + γ + 1)(2n + α + β + γ + 3)(2k + β + γ + 1)2
, k = 0, 1, . . . , n− 1,

(5.6)

and in Cn,2

c
(1)
n,k = (n + k + β + γ)2 (k + β)k

(2n + α + β + γ + 1)2 (2k + β + γ)2
, k = 1, . . . , n,

c
(2)
n,k =

(
1 + β2 − γ2

(2k + β + γ + 2)(2k + β + γ)

)
cn,k
2 , k = 0, 1, . . . , n− 1,

c
(3)
n,k = (n− k − 1)2 (k + β + γ + 1)(k + γ + 1)

(2n + α + β + γ + 1)2(2k + β + γ + 1)2
, k = 0, 1, . . . , n− 2.

(5.7)

It is possible to see that all entries of An,2, Bn,2, Cn,2 are nonnegative numbers. Evaluating the equations 
(5.3) at the point (0, 1) we get that the Jacobi matrix J2 in (3.2) is a stochastic matrix. Therefore we get a 
nontrivial and non homogeneous discrete-time QBD process. In Fig. 3 we can see a diagram of the possible 
transitions of this discrete-time QBD process.

The Jacobi matrix J1 also has a probabilistic interpretation. Indeed, observe that the coefficients an,k, cn,k
are always nonnegative (and bounded by 1) and an,k+bn,k+cn,k = 0. That means that J1 is the infinitesimal 
operator of a continuous-time QBD process. Since all coefficients are diagonal that means that transitions 



22 L. Fernández, M.D. de la Iglesia / J. Math. Anal. Appl. 499 (2021) 125029
(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) · · ·

(1, 1) (2, 1) (3, 1) (4, 1) · · ·

(2, 2) (3, 2) (4, 2) · · ·

(3, 3) (4, 3) · · ·

(4, 4) · · ·

. . .

Fig. 3. Diagram of all possible transitions of the discrete-time QBD process corresponding with J2 for the orthogonal polynomials 
on the triangle.

between phases are not possible. Therefore, for each phase k, the QBD process is a regular continuous-time 
birth-death process.

Now consider a Jacobi matrix of the form (2.5), i.e.

P = τ1J1 + τ2J2. (5.8)

We want to give P a probabilistic interpretation. For that there are at least two possibilities, either a 
continuous or a discrete-time QBD process. If we want to have a continuous-time QBD process then we 
need Pe = 0 and nonnegative off-diagonal entries. But this is possible if and only if τ2 = 0 and τ1 > 0, i.e. 
a scalar multiple of J1, which has all diagonal coefficients and the QBD process is trivial.

If we want to have a discrete-time QBD process then we need Pe = e and nonnegative (scalar) entries. 
This is possible if and only if τ2 = 1 and the parameter τ1 is chosen in such a way that all entries of 
P are nonnegative. For simplicity, we will call τ = τ1. Bearing in mind the shape of the coefficients 
An,i, Bn,i, Cn,i, n ≥ 0, i = 1, 2, in (4.5) and (4.6) and looking at their entries in (5.4)–(5.7), the entries 
of P = τJ1 + J2 are nonnegative if and only if
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τan,k + a
(2)
n,k ≥ 0,

τ(an,k + cn,k) ≤ b
(2)
n,k,

τcn,k + c
(2)
n,k ≥ 0,

for all n ≥ 0, k = 0, 1, . . . , n.

In other words,

τ ≥ −Dβ,γ
k ,

τ ≤ Dβ,γ
k

(
−1 + 1

an,k + cn,k

)
,

for all n ≥ 0, k = 0, 1, . . . , n,

where

Dβ,γ
k = 1

2

(
1 + β2 − γ2

(2k + β + γ + 2)(2k + β + γ)

)
. (5.9)

From (5.4), we observe that

an,k + cn,k = 1
2

(
1 + α2 − (2k + β + γ + 1)2

(2n + α + β + γ + 1)(2n + α + β + γ + 3)

)
.

On one hand, we have

min
0≤k≤n

{
Dβ,γ

k

}
=

⎧⎪⎨
⎪⎩

1/2, if β2 ≥ γ2,

β + 1
β + γ + 2 , if β2 < γ2.

On the other hand, it is possible to see that

min
n∈N0,0≤k≤n

{
−1 + 1

an,k + cn,k

}
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Kα,β,γ , if α < −(β + γ + 1),
1, if α2 ≤ (β + γ + 1)2,
2 + β + γ

α + 1 , if α > β + γ + 1,

where

Kα,β,γ = 1 − α2 − (β + γ + 1)2

4 + (α + 3)(α + β + γ + 1) .

Combining these two relations we have that the entries of P = τJ1 + J2 are nonnegative (and therefore P
is a stochastic matrix) if and only if the upper bound of τ is given by

τ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kα,β,γ/2, if β2 ≥ γ2 and α < −(β + γ + 1),
1/2, if β2 ≥ γ2 and α2 ≤ (β + γ + 1)2,
β + γ + 2
2(α + 1) , if β2 ≥ γ2 and α > β + γ + 1,

(β + 1)Kα,β,γ

β + γ + 2 , if β2 < γ2 and α < −(β + γ + 1),

β + 1
β + γ + 2 , if β2 < γ2 and α2 ≤ (β + γ + 1)2,

β + 1
, if β2 < γ2 and α > β + γ + 1,

(5.10)
α + 1
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while the lower bound of τ is given by

τ ≥

⎧⎪⎨
⎪⎩
−1/2, if β2 ≥ γ2,

− β + 1
β + γ + 2 , if β2 < γ2.

(5.11)

Therefore, for all values of τ in the range (5.10) and (5.11), we have a family of discrete-time QBD process 
with transition probability matrix P = τJ1 + J2. Thus the Karlin-McGregor representation formula (2.13)
for the (i, j) block entry of the matrix P is given by

P n
i,j = Γ(α + β + γ + 3)

Γ(α + 1)Γ(β + 1)Γ(γ + 1)

⎛
⎝∫

T

(y − τx)nQi(x, y)QT
j (x, y)xαyβ(1 − x− y)γdxdy

⎞
⎠Πj ,

where Πj is a diagonal matrix with entries given by (5.2). From (2.14) and (5.1) we can derive a separated 
expression for all probabilities, given by

(
P n

i,j

)
i′,j′

= Γ(α + β + γ + 3)
Γ(α + 1)Γ(β + 1)Γ(γ + 1)

Πj,j′

σi,i′σj,j′

n∑
k=0

(
n

k

)
(−1)kτk

×

⎛
⎝∫

T

xα+kyβ+n−kP
(2i′+β+γ+1,α)
i−i′ (2x− 1)P (2j′+β+γ+1,α)

j−j′ (2x− 1)

× P
(γ,β)
i′

(
2y√
1 − x

− 1
)
P

(γ,β)
j′

(
2y√
1 − x

− 1
)

(1 − x)i
′+j′(1 − x− y)γdxdy

)
.

According to Theorem 2.5 we can construct an invariant measure π for the QBD process given by (2.19). 
Finally, the family of discrete-time QBD processes is recurrent (see (2.21)) if and only if

∫
T

xαyβ(1 − x− y)γ

1 − y + τx
dxdy = ∞.

After some computations it turns out that, in the range of the values of τ in (5.10) and (5.11), this integral 
is divergent if and only if α+ γ ≤ −1. Otherwise the QBD process is transient. The QBD process can never 
be positive recurrent since the spectral matrix is absolutely continuous and does not have any jumps.

5.2. Normalization at the point (0, 0)

In this case, using again (4.3), the coefficients σn,k are given by

σn,k = Pn,k(0, 0) = P
(2k+β+γ+1,α)
n−k (−1)P (γ,β)

k (−1) = (−1)n (α + 1)n−k

(n− k)!
(β + 1)k

k! .

Therefore, the polynomials Qn,k(x, y) = σ−1
n,kPn,k(x, y) satisfy Qn,k(0, 0) = 1 for all n ≥ 0 and 

0 ≤ k ≤ n. The inverse of the square norms can be computed as in (5.2). The vector of polynomials 
Qn = (Qn,0, Qn,1, . . . , Qn,n)T satisfies now the three-term recurrence relations

−xQn(x, y) = An,1Qn+1(x, y) + Bn,1Qn(x, y) + Cn,1Qn−1(x, y),

−yQ (x, y) = A Q (x, y) + B Q (x, y) + C Q (x, y).
(5.12)
n n,2 n+1 n,2 n n,2 n−1
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The coefficients of (4.5) and (4.6) are exactly the same as in the previous case, i.e. (5.4)–(5.7) interchanging 
β by γ, except for the coefficients a(2)

n,k, b
(2)
n,k and c(2)n,k, where it appears a minus sign (but not interchanging 

β by γ).
In this case we have, evaluating at (0, 0) in (5.12), that J1e = J2e = 0. J1 is the same matrix as before, so 

it represents a trivial continuous-time QBD process. Nevertheless, although J2e = 0, J2 does not generate
a continuous-time QBD process itself since a(2)

n,k ≤ 0 and c(2)n,k ≤ 0.
Consider now the Jacobi matrix

A = τ1J1 + τ2J2.

In order to have a continuous-time QBD process (now it can not be a discrete-time QBD process) we need 
that Ae = 0 (which is always satisfied) and all nonnegative off-diagonal entries. This holds if and only if 
τ2 ≥ 0 and

τ1an,k + τ2a
(2)
n,k ≥ 0,

τ1cn,k + τ2c
(2)
n,k ≥ 0,

for all n ≥ 0, k = 0, 1, . . . , n.

This is equivalent to

τ1 ≥ τ2 max
0≤k≤n

{
Dβ,γ

k

}
,

where, Dβ,γ
k is defined by (5.9). In other words

τ1
τ2

≥

⎧⎪⎨
⎪⎩

1/2, if β2 ≤ γ2,

β + 1
β + γ + 2 , if β2 > γ2.

(5.13)

If τ2 = 0 then we need τ1 ≥ 0. A diagram of the possible transition for this continuous-time QBD process 
is the same in Fig. 3, but without self transitions.

Therefore, for all values of τ1 and τ2 in the range (5.13), we have again a family of continuous-time QBD 
process with infinitesimal operator matrix A = τ1J1 + τ2J2. Thus, the Karlin-McGregor representation 
formula (2.13) for the (i, j) block entry of the transition function matrix P (t) is given by

P i,j(t) = Γ(α + β + γ + 3)
Γ(α + 1)Γ(β + 1)Γ(γ + 1)

⎛
⎝∫

T

e−(τ1x+τ2y)tQi(x, y)QT
j (x, y)xαyβ(1 − x− y)γdxdy

⎞
⎠Πj ,

where Πj is a diagonal matrix with entries given by (5.2). From (2.16) and (5.1) we can derive a separated 
expression for all probabilities, given by

(P i,j(t))i′,j′ = Γ(α + β + γ + 3)
Γ(α + 1)Γ(β + 1)Γ(γ + 1)

Πj,j′

σi,i′σj,j′

×

⎛
⎝∫

T

e−(τ1x+τ2y)txαyβP
(2i′+β+γ+1,α)
i−i′ (2x− 1)P (2j′+β+γ+1,α)

j−j′ (2x− 1)

× P
(γ,β)
i′

(
2y√
1 − x

− 1
)
P

(γ,β)
j′

(
2y√
1 − x

− 1
)

(1 − x)i
′+j′(1 − x− y)γdxdy

)
.
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According to Theorem 2.5 we can construct an invariant measure π for the QBD process given by (2.19). 
Finally, the family of continuous-time QBD processes is recurrent (see (2.22)) if and only if

∫
T

xαyβ(1 − x− y)γ

τ1x + τ2y
dxdy = ∞.

After some computations it turns out that, in the range of the values of τ1 in (5.13), this integral is divergent 
if and only if α + β ≤ −1. If τ2 = 0 and τ1 > 0 the divergence is equivalent to α ≤ 0. Otherwise the QBD 
process is transient. The QBD process can never be positive recurrent since the spectral measure is absolutely 
continuous and does not have any jumps.

5.3. An urn model for the orthogonal polynomials on the triangle

In this section we will give a probabilistic interpretation of one of the QBD models introduced in Sec-
tion 5.1. For simplicity, we will study the case of the discrete-time QBD process (5.8) with τ1 = 0 and τ2 = 1
(therefore P = J2).

As we can see from (5.5)–(5.7), the probability coefficients are quite complicated and depend on three 
parameters α, β, γ, apart from the level n and phase k. However, we managed to find an urn model for this 
QBD process by decomposing it into two simpler urn models. For that, we will try to get a stochastic block 
LU factorization of the Jacobi matrix J2. The spirit of this method is the same as the one used in [24,25]. 
Write J2 in (3.2) as

J2 =

⎛
⎜⎜⎜⎜⎝

S0 ©
R1 S1

R2 S2

© . . . . . .

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Y0 X0 ©
Y1 X1

Y2 X2

© . . . . . .

⎞
⎟⎟⎟⎟⎠ = JLJU . (5.14)

A direct computation shows that

An,2 = SnXn, n ≥ 0,

Bn,2 = RnXn−1 + SnYn, n ≥ 0,

Cn,2 = RnYn−1, n ≥ 1.

(5.15)

Since An,2, Bn,2, Cn,2 are matrices of dimension (n +1) ×(n +2), (n +1) ×(n +1) and (n +1) ×n, respectively, 
we have that Xn, Yn are matrices of dimension (n + 1) × (n + 2) and (n + 1) × (n + 1), respectively, and 
Sn, Rn are matrices of dimension (n +1) × (n +1) and (n +1) ×n, respectively. We found that one solution 
of equations (5.15) is given by coefficients Xn, Yn, Sn, Rn, where

Xn =

⎡
⎢⎢⎢⎢⎢⎣

x
(2)
n,0 x

(3)
n,0

x
(2)
n,1 x

(3)
n,1
. . . . . .

x
(2)
n,n x

(3)
n,n

⎤
⎥⎥⎥⎥⎥⎦ , Yn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
(2)
n,0 y

(3)
n,0

y
(2)
n,1 y

(3)
n,1
. . . . . .

y
(2)
n,n−1 y

(3)
n,n−1

y
(2)
n,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and



L. Fernández, M.D. de la Iglesia / J. Math. Anal. Appl. 499 (2021) 125029 27
Sn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s
(2)
n,0

s
(1)
n,1 s

(2)
n,1
. . . . . .

s
(1)
n,n−1 s

(2)
n,n−1

s
(1)
n,n s

(2)
n,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Rn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r
(2)
n,0

r
(1)
n,1 r

(2)
n,1
. . . . . .

r
(1)
n,n−2 r

(2)
n,n−2

r
(1)
n,n−1 r

(2)
n,n−1

r
(1)
n,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The elements in Xn, Yn are given by

x
(2)
n,k = (n− k + α + 1)(β + k + 1)

(2n + α + β + γ + 3)(β + γ + 2k + 2) , k = 0, 1, . . . , n,

x
(3)
n,k = (n + k + α + β + γ + 3)(γ + k + 1)

(2n + α + β + γ + 3)(β + γ + 2k + 2) , k = 0, 1, . . . , n,

y
(2)
n,k = (n + k + β + γ + 2)(β + k + 1)

(2n + α + β + γ + 3)(β + γ + 2k + 2) , k = 0, 1, . . . , n,

y
(3)
n,k = (n− k)(γ + k + 1)

(2n + α + β + γ + 3)(β + γ + 2k + 2) , k = 0, 1, . . . , n− 1,

(5.16)

while the elements of Sn, Rn are given by

s
(1)
n,k = k(n− k + α + 1)

(2n + α + β + γ + 2)(β + γ + 2k + 1) , k = 1, . . . , n,

s
(2)
n,k = (n + k + α + β + γ + 2)(β + γ + k + 1)

(2n + α + β + γ + 2)(β + γ + 2k + 1) , k = 0, 1, . . . , n,

r
(1)
n,k = k(n + k + β + γ + 1)

(2n + α + β + γ + 2)(β + γ + 2k + 1) , k = 1, . . . , n,

r
(2)
n,k = (n− k)(β + γ + k + 1)

(2n + α + β + γ + 2)(β + γ + 2k + 1) , k = 0, 1, . . . , n− 1.

(5.17)

Observe the important simplification of these elements compared with (5.5)–(5.7). Another important ob-
servation is that JL and JU are also stochastic matrices, so each one of them is again a discrete-time QBD 
process.

Remark 5.1. The stochastic LU factorization in (5.14) is not necessarily unique, but it is certainly one that 
simplifies all computations significantly. Similar considerations apply if we take into account a stochastic UL 
factorization. It is possible to see that the elements of the factors Xn, Yn, Sn, Rn for the UL factorization (at 
least one) are the same as the ones of the LU factorization but replacing β by β − 1. For more information 
about stochastic UL or LU factorizations see [24,25].

From now on, we will assume that α, β, γ are nonnegative integers. Consider {Zt : t = 0, 1, . . .} the 
discrete-time QBD process on the state space {(n, k) : 0 ≤ k ≤ n, n ∈ N0} whose one-step transition 
probability matrix is given by the coefficients An,2, Bn,2, Cn,2 in (5.5)–(5.7) (see also (3.2) and (4.6)). 
Consider the LU block factorization (5.14) J2 = JLJU . Each of these matrices JL and JU will give rise to an 
urn experiment which we call Experiment 1 and Experiment 2, respectively. At every time step t = 0, 1, 2, . . .
the state (n, k) will represent the number of n blue balls inside the k-th urn Ak, k = 0, 1, . . . , n. Observe 
that the number of urns available goes with the number of blue balls at every time step. All the urns we 
use in both experiments sit in a bath consisting of an infinite number of blue and red balls.
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(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) · · ·

(1, 1) (2, 1) (3, 1) (4, 1) · · ·

(2, 2) (3, 2) (4, 2) · · ·

(3, 3) (4, 3) · · ·

(4, 4) · · ·

. . .

Fig. 4. Diagram of all possible transitions of the discrete-time pure-death QBD process generated by the Jacobi matrix JL.

Experiment 1 (for JL) will give rise to a discrete-time pure-death QBD process {Z(1)
t : t = 0, 1, . . .} on 

{(n, k) : 0 ≤ k ≤ n, n ∈ N0} with diagram given by Fig. 4. The initial state is (n, k), where n is the number 
of blue balls inside the k-th urn Ak. Remove all the balls and put k blue balls and k+β + γ + 1 red balls in 
the urn Ak. Draw one ball from the urn at random with the uniform distribution. We have two possibilities:

(1) If we get a blue ball then we remove/add balls until we have n −k+α+1 blue balls and n +k+β+γ+1 red 
balls in the urn Ak. Then we draw again one ball from the urn at random with the uniform distribution 
and we have two possibilities:
• If we get a blue ball then we remove all balls in urn Ak and add n blue balls to the urn Ak−1 and 

start over. Therefore, joining both steps, we have

P
[
Z

(1)
1 = (n, k − 1) | Z(1)

0 = (n, k)
]

= k

β + γ + 2k + 1
n− k + α + 1

2n + α + β + γ + 2 .

Observe that this probability is given by s(1)
n,k in (5.17).

• If we get a red ball then we remove all balls in urn Ak and add n − 1 blue balls to the urn Ak−1 and 
start over. Therefore, joining both steps, we have

P
[
Z

(1)
1 = (n− 1, k − 1) | Z(1)

0 = (n, k)
]

= k n + k + β + γ + 1
.

β + γ + 2k + 1 2n + α + β + γ + 2
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Observe that this probability is given by r(1)
n,k in (5.17).

(2) If we get a red ball then we remove/add balls until we have n +k+α+β+γ+2 blue balls and n −k red 
balls in the urn Ak. Then we draw again one ball from the urn at random with the uniform distribution 
and we have two possibilities:
• If we get a blue ball then we remove/add balls in urn Ak until we have n blue balls in urn Ak and 

start over. Therefore, joining both steps, we have

P
[
Z

(1)
1 = (n, k) | Z(1)

0 = (n, k)
]

= β + γ + k + 1
β + γ + 2k + 1

n + k + α + β + γ + 2
2n + α + β + γ + 2 .

Observe that this probability is given by s(2)
n,k in (5.17).

• If we get a red ball then we remove/add balls in urn Ak until we have n − 1 blue balls in urn Ak and 
start over. Therefore, joining both steps, we have

P
[
Z

(1)
1 = (n− 1, k) | Z(1)

0 = (n, k)
]

= β + γ + k + 1
β + γ + 2k + 1

n− k

2n + α + β + γ + 2 .

Observe that this probability is given by r(2)
n,k in (5.17).

Experiment 2 (for JU ) is similar but it will give rise to a discrete-time pure-birth QBD process {Z(2)
t :

t = 0, 1, . . .} on {(n, k) : 0 ≤ k ≤ n, n ∈ N0} with diagram given by Fig. 5. Again, the initial state is (n, k), 
where n is the number of blue balls inside the k-th urn Ak. Remove all the balls and put k+γ+1 blue balls 
and k+β +1 red balls in the urn Ak. Draw one ball from the urn at random with the uniform distribution. 
We have two possibilities:

(1) If we get a blue ball then we remove/add balls until we have n + k + α + β + γ + 3 blue balls and 
n − k red balls in the urn Ak. Then we draw again one ball from the urn at random with the uniform 
distribution and we have two possibilities:
• If we get a blue ball then we remove all balls in urn Ak and add n + 1 blue balls to the urn Ak+1

and start over. Therefore, joining both steps, we have

P
[
Z

(2)
1 = (n + 1, k + 1) | Z(2)

0 = (n, k)
]

= γ + k + 1
β + γ + 2k + 2

n + k + α + β + γ + 3
2n + α + β + γ + 3 .

Observe that this probability is given by x(3)
n,k in (5.16).

• If we get a red ball then we remove all balls in urn Ak and add n blue balls to the urn Ak+1 and 
start over. Therefore, joining both steps, we have

P
[
Z

(2)
1 = (n, k + 1) | Z(2)

0 = (n, k)
]

= γ + k + 1
β + γ + 2k + 2

n− k

2n + α + β + γ + 3 .

Observe that this probability is given by y(3)
n,k in (5.16).

(2) If we get a red ball then we remove/add balls until we have n −k+α+1 blue balls and n +k+β+γ+2 red 
balls in the urn Ak. Then we draw again one ball from the urn at random with the uniform distribution 
and we have two possibilities:
• If we get a blue ball then we remove/add balls in urn Ak until we have n + 1 blue balls in urn Ak

and start over. Therefore, joining both steps, we have

P
[
Z

(2)
1 = (n + 1, k) | Z(2)

0 = (n, k)
]

= β + k + 1 n− k + α + 1
.

β + γ + 2k + 2 2n + α + β + γ + 3
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(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) · · ·

(1, 1) (2, 1) (3, 1) (4, 1) · · ·

(2, 2) (3, 2) (4, 2) · · ·

(3, 3) (4, 3) · · ·

(4, 4) · · ·

. . .

Fig. 5. Diagram of all possible transitions of the discrete-time pure-birth QBD process generated by the Jacobi matrix JU .

Observe that this probability is given by x(2)
n,k in (5.16).

• If we get a red ball then we remove/add balls in urn Ak until we have n blue balls in urn Ak and 
start over. Therefore, joining both steps, we have

P
[
Z

(2)
1 = (n, k) | Z(2)

0 = (n, k)
]

= β + k + 1
β + γ + 2k + 2

n + k + β + γ + 2
2n + α + β + γ + 3 .

Observe that this probability is given by y(2)
n,k in (5.16).

The urn model for J2 will be the composition of Experiment 1 and then Experiment 2. Combining all 
possibilities we have the transition probabilities for the QBD process {Zt : t = 0, 1, . . .}. Indeed

P [Z1 = (n + 1, k − 1) | Z0 = (n, k)] = s
(1)
n,kx

(2)
n,k−1 = a

(1)
n,k,

P [Z1 = (n + 1, k) | Z0 = (n, k)] = s
(1)
n,kx

(3)
n,k−1 + s

(2)
n,kx

(2)
n,k = a

(2)
n,k,

P [Z1 = (n + 1, k + 1) | Z0 = (n, k)] = s
(2)
n,kx

(3)
n,k = a

(3)
n,k,

P [Z1 = (n, k − 1) | Z0 = (n, k)] = s
(1)
n,ky

(2)
n,k−1 + r

(1)
n,kx

(2)
n−1,k−1 = b

(1)
n,k,

P [Z1 = (n, k) | Z0 = (n, k)] = s
(1)

y
(3) + s

(2)
y
(2) + r

(1)
x

(3) + r
(2)

x
(2) = b

(2)
,
n,k n,k−1 n,k n,k n,k n−1,k−1 n,k n−1,k n,k
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P [Z1 = (n, k + 1) | Z0 = (n, k)] = s
(2)
n,ky

(3)
n,k + r

(2)
n,kx

(3)
n−1,k = b

(3)
n,k,

P [Z1 = (n− 1, k − 1) | Z0 = (n, k)] = r
(1)
n,ky

(2)
n−1,k−1 = c

(1)
n,k,

P [Z1 = (n− 1, k) | Z0 = (n, k)] = r
(1)
n,ky

(3)
n−1,k−1 + r

(2)
n,ky

(2)
n−1,k = c

(2)
n,k,

P [Z1 = (n− 1, k + 1) | Z0 = (n, k)] = r
(2)
n,ky

(3)
n−1,k = c

(3)
n,k.

As we showed before, and since we are assuming that α, β, γ are nonnegative integers, the urn model derived 
by this discrete-time QBD process is always transient.

A similar continuous-time QBD process could have been derived for the normalization of the polynomials 
at the point (0, 0) in Section 5.2, but now with two parameters τ1, τ2 subject to the restrictions in (5.13).

6. Concluding remarks and further research

In this paper we have studied several examples of bivariate orthogonal polynomials related to discrete 
or continuous-time QBD processes. Also, we gave probabilistic models for them in terms of, mainly, urn 
models. All examples are constructed according to certain normalization of the polynomials at one of the 
“corners” of the support of orthogonality. This restriction seems to be important in order to have recurrence 
relations with probabilistic interpretations (like the situation of scalar birth-death chains), but not all points 
in the boundary (including corners) lead to coefficients which may be interpreted as a QBD process, as we 
saw, for instance, in the case of orthogonal polynomials on the triangle. One open problem could be trying 
to explain why this restriction is needed in order to construct a QBD process.

Certainly, we have analyzed other examples of bivariate orthogonal polynomials. In particular, the seven 
different classes studied by T. Koornwinder in [35]. But we have not found any probabilistic interpretation 
in terms of QBD processes in any of them. The two main reasons for that are:

(1) The bivariate orthogonal polynomials {Pn,k : 0 ≤ k ≤ n} (any way of constructing them) can not be 
normalized at some interesting point (a, b) at the boundary of the support of orthogonality such that 
Pn,k(a, b) = 1 for all n ∈ N0 and 0 ≤ k ≤ n, since they may vanish at that point for some degree of the 
polynomials. In this situation, we can not proceed in the same way as we have proceeded through this 
paper. It is possible, though, that there may exist another normalization of the polynomials such that 
the coefficients of the three-term recurrence relations can be linearly combined in such a way that they 
lead to a probabilistic interpretation (for instance, for the product Laguerre polynomials in Section 3.2), 
but we have not found any nontrivial situation where this happens.

(2) It is possible to normalize the bivariate orthogonal polynomials {Pn,k : 0 ≤ k ≤ n} at certain point (a, b)
at the boundary (or inside) the support of orthogonality such that Pn,k(a, b) = 1 for all n ∈ N0 and 
0 ≤ k ≤ n, but there are no possible linear combinations of the two corresponding Jacobi matrices such 
that they lead to a QBD process. This is the situation, for instance, for the product Jacobi-Laguerre 
polynomials at the point (0, 1) (see Remark 3.4) or any other example normalized at some point which 
is not a “corner” of the support of orthogonality.

There is one iconic example that we have not been able to find any probabilistic interpretation for, 
namely orthogonal polynomials on the unit disk. We have tried several definitions and normalizations of 
the polynomials, but it seems that neither of them works out due to some of the two reasons mentioned 
above. We believe that the problem with this example may lie in the fact that the unit disk does not have 
any “corners”.

There are many examples of bivariate orthogonal polynomials that have not been considered in this paper, 
like, for instance, the two families of Koornwinder polynomials (see Sections 2.7 and 2.9 of [14]) or some 
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families of Krall or Sobolev type bivariate polynomials (see for example [3,6–10,15,38,44]), where a Dirac 
delta is added at one (or several) points of the support of orthogonality or some other more complicated 
situations. Also we have not considered examples of multivariate orthogonal polynomials for d ≥ 3. For 
instance, three-dimensional examples, like the unit ball, the unit sphere or the simplex. In this case we have 
d = 3 in (2.4) and we will have diagrams similar to the one in Fig. 3, but now the number of phases is (
n+2

2
)
. Certainly some of the previous problems will be dealt with in future publications.
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