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function whose first order partial derivatives grow at most polynomially is at least 
logarithmically Hölder continuous in the initial value.
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1. Introduction

The regularity analysis of nonlinear stochastic differential equations (SDEs) with respect to their initial 
values is an active research topic in stochastic analysis (cf., e.g., [2,3,5,6,8,9,17–19,21–23,28] and the refer-
ences mentioned therein). In particular, establishing sufficient regularity in the initial value for SDEs is of 
fundamental importance in determining convergence rates for numerical approximation schemes for such 
SDEs (see, e.g., [11]). It has recently been revealed in the literature that there exist SDEs with smooth 
coefficient functions which have very poor regularity properties in the initial value. More precisely, it has 
been shown in [6] that there exist additive noise driven SDEs with infinitely often differentiable drift coef-
ficient functions which have a modulus of continuity in the initial value that converges to zero slower than 
with any polynomial rate. Moreover, in [15] additive noise driven SDEs with infinitely often differentiable 
drift coefficient functions have been constructed which even have an arbitrarily slowly converging modu-
lus of continuity in the initial value. In these SDEs it is crucial that the first order partial derivatives of 
the drift coefficient functions grow at least exponentially and, in particular, quicker than any polynomial. 
However, in applications SDEs do typically have coefficient functions whose first order partial derivatives 
grow at most polynomially (cf., e.g., [1,4,7,20,24–27], [16, Chapter 7], and [10, Chapter 4] for examples). In 
particular, in many applications the coefficient functions of the SDEs under consideration are polynomials 
(cf., e.g., [1,4,24,26,27], [16, Chapter 7], and [10, Chapter 4] for examples). In view of this, the natural 
question arises whether such arbitrarily bad regularity phenomena in the initial value may also arise in 
the case of SDEs with coefficient functions whose first order partial derivatives grow at most polynomially. 
It is the subject of the main result of this article to partially answer this question in the negative. More 
precisely, the main result of this article, Theorem 1.1 below, shows that every additive noise driven SDE 
which admits a Lyapunov-type condition (which ensures the existence of a unique solution of the SDE) and 
which has a drift coefficient function whose first order partial derivatives grow at most polynomially is at 
least logarithmically Hölder continuous in the initial value.

Theorem 1.1. Let d, m ∈ N, T, κ ∈ [0, ∞), α ∈ [0, 2), μ ∈ C1(Rd, Rd), σ ∈ Rd×m, V ∈ C1(Rd, [0, ∞)), 
let ‖·‖ : Rd → [0, ∞) and |||·||| : Rm → [0, ∞) be norms, assume for all x, h ∈ Rd, z ∈ Rm that ‖μ′(x)h‖ ≤
κ
(
1 + ‖x‖κ

)
‖h‖, V ′(x)μ(x + σz) ≤ κ(1 + |||z|||α)V (x), and ‖x‖ ≤ V (x), let (Ω, F , P ) be a probability space, 

and let W : [0, T ] × Ω → Rm be a standard Brownian motion with continuous sample paths. Then

(i) there exist unique stochastic processes Xx : [0, T ] ×Ω → Rd, x ∈ Rd, with continuous sample paths such 
that for all x ∈ Rd, t ∈ [0, T ], ω ∈ Ω it holds that

Xx(t, ω) = x +
t∫
μ(Xx(s, ω)) ds + σW (t, ω) (1)
0
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and
(ii) it holds for all R, q ∈ [0, ∞) that there exists c ∈ (0, ∞) such that for all x, y ∈ {v ∈ Rd : ‖v‖ ≤ R} with 

0 < ‖x − y‖ �= 1 it holds that

sup
t∈[0,T ]

E
[
‖Xx(t) −Xy(t)‖

]
≤ c

∣∣ln(‖x− y‖)
∣∣−q

. (2)

Theorem 1.1 is proved as Theorem 7.4 in Subsection 7.3 below. Let us add some explanatory comments 
on the Lyapunov-type assumption in Theorem 1.1 that for all x ∈ Rd, z ∈ Rm it holds that V ′(x)μ(x +σz) ≤
κ(1 + |||z|||α)V (x). In particular, let us illustrate that this assumption is indeed a Lyapunov-type condition 
and that V : Rd → [0, ∞) indeed deserves to be called a Lyapunov-type function. To do so, let us consider 
d ∈ N, T ∈ [0, ∞), F ∈ C0,1([0, T] × Rd, Rd), V ∈ C1(Rd, [0, ∞)), a ∈ C([0, T], [0, ∞)), and functions 
Xx ∈ C1([0, T], Rd), x ∈ Rd, such that for all t ∈ [0, T], x ∈ Rd it holds that

V′(x)F (t, x) ≤ a(t)V(x), (Xx)′(t) = F (t,Xx(t)), and Xx(0) = x. (3)

The assumption that for all t ∈ [0, T], x ∈ Rd it holds that V′(x)F (t, x) ≤ a(t)V(x) is a classical Lyapunov-
type condition for the ordinary differential equation (ODE) in (3) above. Indeed, observe that the assumption 
that for all t ∈ [0, T], x ∈ Rd it holds that V′(x)F (t, x) ≤ a(t)V(x) and the fundamental theorem of calculus 
ensure that for all x ∈ Rd, t ∈ [0, T] it holds that

V(Xx(t)) = V(x) +
t∫

0

V′(Xx(s))F (s,Xx(s)) ds ≤ V(x) +
t∫

0

a(s)V(Xx(s)) ds (4)

and Gronwall’s inequality hence shows that for all t ∈ [0, T], x ∈ Rd it holds that V(Xx(t)) ≤
exp

(∫ t

0 a(s)ds
)
V(x). A priori estimates of this type can then be used to deduce global existence of so-

lutions of the ODE in (3) above. Next we show that the condition in Theorem 1.1 that for all x ∈ Rd, 
z ∈ Rm it holds that V ′(x)μ(x + σz) ≤ κ(1 + |||z|||α)V (x) reduces to a special case of the general Lyapunov 
condition in (3). Indeed, let Xx : [0, T ] × Ω → Rd, x ∈ Rd, satisfy for all x ∈ Rd, t ∈ [0, T ], ω ∈ Ω that 
Xx(t, ω) = Xx(t, ω) − σW (t, ω) and observe that (1) in Theorem 1.1 above ensures that for all x ∈ Rd, 
t ∈ [0, T ], ω ∈ Ω it holds that

∂
∂tX

x(t, ω) = μ(Xx(t, ω) + σW (t, ω)) and Xx(0, ω) = x. (5)

The assumption in Theorem 1.1 that for all x ∈ Rd, z ∈ Rm it holds that V ′(x)μ(x +σz) ≤ κ(1 + |||z|||α)V (x)
now ensures for every ω ∈ Ω that the Lyapunov condition in (3) is satisfied for the ODE in (5) with the 
Lyapunov-type function V = V . For further reading on Lyapunov-type functions and concrete examples 
of nonlinear (stochastic) differential equations satisfying Lyapunov-type conditions, we refer, e.g., to [10, 
Chapter 4].

Next let us add some comments regarding the statement of Theorem 1.1 above. Inequality (2) in Theo-
rem 1.1 proves, roughly speaking, only Hölder continuity in the initial value in a logarithmic sense but does 
neither prove local Lipschitz continuity nor prove local Hölder continuity in the initial value in the usual 
sense. In view of this, the question arises whether the statement of Theorem 1.1 can be strengthened to 
ensure local Hölder continuity in the initial value in the usual sense. In [13] we show that this is not the case 
and specify a concrete additive noise driven SDE which satisfies the hypotheses of Theorem 1.1 but whose 
solution fails for every arbitrarily small α ∈ (0, 1] to be locally α-Hölder continuous in the initial value. In 
particular, we show in [13] that under the hypotheses of Theorem 1.1 the upper bound in (2) can not be 
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substantially improved in general. For the reader’s convenience, we include in Theorem 1.2 below, a special 
case of the central result of [13].

Theorem 1.2. Let m ∈ N, d ∈ {5, 6, . . . }, T ∈ (0, ∞), τ ∈ (0, T ), v ∈ Rd, δ ∈ Rd \ {0} let ‖·‖ : Rd → [0, ∞)
be the standard norm on Rd, let |||·||| : Rm → [0, ∞) be a norm, let (Ω, F , P ) be a probability space, and 
let W : [0, T ] × Ω → Rm be a standard Brownian motion with continuous sample paths. Then there exist 
μ ∈ C∞(Rd, Rd), σ ∈ Rd×m, V ∈ C∞(Rd, [0, ∞)), κ ∈ (0, ∞), and stochastic processes Xx : [0, T ] ×Ω → Rd, 
x ∈ Rd, with continuous sample paths such that it holds for all x, h ∈ Rd, z ∈ Rm, t ∈ [0, T ], ω ∈ Ω, 
s ∈ (τ, T ), α ∈ (0, ∞) that ‖μ′(x)h‖ ≤ κ

(
1 + ‖x‖κ

)
‖h‖, V ′(x)μ(x + σz) ≤ κ(1 + |||z|||)V (x), ‖x‖ ≤ V (x), 

Xx(t, ω) = x +
∫ t

0 μ(Xx(s, ω)) ds + σW (t, ω), and

∃ c ∈ (0,∞) : ∀w ∈ {v + rδ : r ∈ [0, 1]} : E
[
‖Xv(s) −Xw(s)‖

]
≥ c ‖v − w‖α. (6)

Note that the objects whose existence is asserted in Theorem 1.2 satisfy the assumptions from Theorem 1.1
so that Theorem 1.1 can be applied to them. In particular, the stochastic processes Xx : [0, T ] × Ω → Rd, 
x ∈ Rd, whose existence is asserted in Theorem 1.2 satisfy condition (2) in Theorem 1.1 and hence are 
logarithmically Hölder continuous in the initial value. By contrast, we have that (6) in Theorem 1.2 asserts 
that for every α ∈ (0, 1] it holds that these stochastic processes are not α-Hölder continuous in the initial 
value.

In the following we briefly sketch the key ideas of our proof of inequality (2) in Theorem 1.1. A straight-
forward approach to estimating the expectation of the Euclidean distance between two solutions of the 
SDE (1) with different initial values (cf. the left hand side of (2)) would be (i) to apply the fundamental 
theorem of calculus to the difference of the two solutions with the derivative being taken with respect to 
the initial value, thereafter, (ii) to employ the triangle inequality to get the Euclidean norm inside of the 
Riemann integral which has appeared due to the application of the fundamental theorem of calculus, and, 
finally, (iii) to try to provide a finite upper bound for the expectation of the Euclidean operator norm 
of the derivative processes of solutions of (1) with respect to the initial value. This approach, however, 
fails to work in general under the hypotheses of Theorem 1.1 as the derivative processes of solutions may 
have very poor integrability properties and, in particular, may have infinite absolute moments (cf., e.g., [6, 
Sections 2 and 3], [13, Theorem 1.1], and Theorem 1.2 above). A key idea in this article for overcoming 
the latter obstacle is to estimate the expectation of the Euclidean distance between the two solutions in 
terms of the expectation of a new distance between the two solutions, which is induced from a very slowly 
growing norm-type function. As in the approach above, we then also apply the fundamental theorem of 
calculus to the difference of the two solutions. However, in the latter approach the derivative processes of 
solutions appear only inside of the argument of the very slowly growing norm-type function and the expec-
tation of the resulting random variable is finite. We then estimate the expectation of this random variable 
by employing properties of the derivative processes of solutions and the assumption that the first order 
partial derivatives of the drift coefficient function grow at most polynomially and, thereby, finally establish 
inequality (2).

The remainder of this article is organized as follows. In Section 2 we present an a priori estimate and an 
existence and uniqueness result for a certain class of perturbed ODEs. In Section 3 we provide measurability 
properties for certain space-time maxima of stochastic processes and pathwise solutions of certain additive 
noise driven SDEs. In Section 4 we establish an existence, uniqueness and regularity result for solutions of 
certain additive noise driven SDEs. Section 5 is devoted to integrability properties for standard Brownian 
motions and solutions of certain additive noise driven SDEs. In Section 6 we study regularity properties of 
solutions of certain additive noise driven SDEs with respect to their initial values, conditional on growth 
properties of their derivative processes. Finally, in Section 7 we combine the results from Sections 4–6 to 
establish our main result Theorem 7.4.
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2. Existence of solutions of perturbed ODEs

In this section we employ suitable Lyapunov-type functions to establish in Lemma 2.2 in Subsection 2.2
below an essentially well-known existence and uniqueness result for a certain class of perturbed ODEs. 
Lemma 2.2 follows in a straightforward manner from the essentially well-known a priori estimate in 
Lemma 2.1 in Subsection 2.1 below in combination with standard results on local existence of maximal 
mild solutions of evolution equations from the scientific literature (cf., e.g., [14, Section 8]). Lemma 2.1 is 
also used to establish in Lemma 5.2 in Subsection 5.2 integrability properties for SDEs. A detailed proof of 
Lemma 2.1 can be found, e.g., in the arXiv version of this article [12, Lemma 2.1]. Lemma 2.2 is employed 
to establish in Lemma 4.4 in Subsection 4.3 differentiability properties for SDEs with respect to their initial 
values.

2.1. A priori estimates for solutions of perturbed ODEs

Lemma 2.1. Let d, m ∈ N, T ∈ [0, ∞), ξ ∈ Rd, μ ∈ C(Rd, Rd), σ ∈ Rd×m, ϕ ∈ C(Rm, [0, ∞)), V ∈
C1(Rd, [0, ∞)), let ‖·‖ : Rd → [0, ∞) be a norm, let J ⊆ [0, T ] be an interval with 0 ∈ J , and let y ∈ C(J, Rd), 
w ∈ C([0, T ], Rm) satisfy for all x ∈ Rd, u ∈ Rm, t ∈ J that V ′(x)μ(x + σu) ≤ ϕ(u)V (x), ‖x‖ ≤ V (x), and

y(t) = ξ +
t∫

0

μ(y(s)) ds + σw(t). (7)

Then it holds that supt∈J

[
ϕ(w(t)) + ‖σw(t)‖

]
< ∞ and

sup
t∈J

‖y(t)‖ ≤ V (ξ) exp
(
T

[
sup
t∈J

ϕ(w(t))
])

+
[
sup
t∈J

‖σw(t)‖
]
. (8)

2.2. Existence of solutions of perturbed ODEs

Lemma 2.2. Let d, m ∈ N, T ∈ [0, ∞), ξ ∈ Rd, σ ∈ Rd×m, ϕ ∈ C(Rm, [0, ∞)), V ∈ C1(Rd, [0, ∞)), 
w ∈ C([0, T ], Rm), let ‖·‖ : Rd → [0, ∞) be a norm, let μ : Rd → Rd be a locally Lipschitz continuous 
function, and assume for all x ∈ Rd, z ∈ Rm that V ′(x)μ(x +σz) ≤ ϕ(z)V (x) and ‖x‖ ≤ V (x). Then there 
exists a unique y ∈ C([0, T ], Rd) such that for all t ∈ [0, T ] it holds that y(t) = ξ +

∫ t

0 μ(y(s)) ds + σw(t).

3. Measurability properties for stochastic processes and solutions of SDEs

In this section we provide in Lemma 3.1 well-known measurability properties of space-time maxima of 
stochastic processes, which is used as a technical tool in the proof of Lemma 6.3 in Subsection 6.2 on 
conditional sub-Hölder properties for SDEs. Furthermore, we present in Lemma 3.2 below the well-known 
fact that pathwise solutions of certain additive noise driven SDEs are stochastic processes. Lemma 3.2 is 
used in the proof of Lemma 4.4 in Subsection 4.3 on differentiability properties with respect to the initial 
value for SDEs. A detailed proof of Lemma 3.1 and Lemma 3.2 can be found, e.g., in the arXiv version of 
this article [12, Lemma 3.1, Lemma 3.2].

Lemma 3.1. Let d ∈ N, T, R ∈ [0, ∞), let ‖·‖ : Rd → [0, ∞) be a norm, let (Ω, F , P ) be a probability space, 
and let Y x : [0, T ] ×Ω → [0, ∞), x ∈ Rd, be stochastic processes with continuous sample paths which satisfy 
for all t ∈ [0, T ], ω ∈ Ω that (Rd � x 
→ Y x(t, ω) ∈ [0, ∞)) ∈ C(Rd, [0, ∞)). Then it holds that
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Ω � ω 
→ sup
x∈{z∈Rd : ‖z‖≤R}

sup
t∈[0,T ]

Y x(t, ω) ∈ [0,∞] (9)

is an F/B([0, ∞])-measurable function.

Lemma 3.2. Let d ∈ N, T ∈ [0, ∞), f ∈ C([0, T ] × Rd, Rd), ξ ∈ Rd, let (Ω, F , P ) be a probability space, let 
W : [0, T ] × Ω → Rd be a stochastic process with continuous sample paths, let ‖·‖ : Rd → [0, ∞) be a norm, 
assume for all r ∈ (0, ∞) that

sup
t∈[0,T ]

sup
x,y∈Rd, x �=y,
‖x‖+‖y‖≤r

‖f(t, x) − f(t, y)‖
‖x− y‖ < ∞, (10)

and let Y : [0, T ] × Ω → Rd satisfy for all t ∈ [0, T ], ω ∈ Ω that 
(
[0, T ] � s 
→ Y (s, ω) ∈ Rd

)
∈ C([0, T ], Rd)

and

Y (t, ω) = ξ +
t∫

0

f(s, Y (s, ω)) ds + W (t, ω). (11)

Then it holds that Y is a stochastic process.

4. Differentiability with respect to the initial value for SDEs

In this section we establish in Lemma 4.4 in Subsection 4.3 below an existence, uniqueness and regularity 
result for solutions of certain additive noise driven SDEs. Lemma 4.4 is a main tool to prove Proposition 7.1
in Subsection 7.1 on regularity properties with respect to the initial value for SDEs with general noise. Our 
proof of Lemma 4.4 exploits the related regularity results for solutions of certain ODEs in Lemmas 4.1–4.3
below. A detailed proof of Lemma 4.1 can be found, e.g., in the arXiv version of this article [12, Lemma 5.1]. 
For the reader’s convenience we include in this section also proofs for Lemmas 4.2–4.4.

4.1. Local Lipschitz continuity with respect to the initial value for ODEs

Lemma 4.1. Let d ∈ N, w ∈ Rd, T ∈ [0, ∞), f ∈ C0,1([0, T ] ×Rd, Rd), let ‖·‖ : Rd → [0, ∞) be a norm, and 
let yx ∈ C([0, T ], Rd), x ∈ Rd, be functions which satisfy for all x ∈ Rd, t ∈ [0, T ] that

yx(t) = x +
t∫

0

f(s, yx(s)) ds. (12)

Then there exist r, L ∈ (0, ∞) such that for all v ∈ {u ∈ Rd : ‖u − w‖ ≤ r}, t ∈ [0, T ] it holds that

‖yv(t) − yw(t)‖ ≤ L‖v − w‖. (13)

4.2. Differentiability with respect to the initial value for ODEs

Lemma 4.2. Let d ∈ N, T ∈ [0, ∞), f ∈ C0,1([0, T ] ×Rd, Rd) and let yx ∈ C([0, T ], Rd), x ∈ Rd, be functions 
which satisfy for all t ∈ [0, T ], x ∈ Rd that

yx(t) = x +
t∫
f(s, yx(s)) ds. (14)
0
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Then

(i) it holds that ([0, T ] ×Rd � (t, x) 
→ yx(t) ∈ Rd) ∈ C0,1([0, T ] ×Rd, Rd) and
(ii) it holds for all x, h ∈ Rd, t ∈ [0, T ] that

∂
∂xy

x(t)h = h +
t∫

0

f (0,1)(s, yx(s))
(

∂
∂xy

x(s)h
)
ds. (15)

Proof of Lemma 4.2. Throughout this proof let ‖·‖ : Rd → [0, ∞) be the d-dimensional Euclidean norm, 
and for all r ∈ [0, ∞) and u ∈ Rd let

Cr = sup
t∈[0,T ]

sup
x∈{z∈Rd : ‖z‖≤r}

‖f(t, x)‖,

Kr = sup
(x,t,v)∈Rd×[0,T ]×Rd,

‖x‖≤r, ‖v‖=1

‖f (0,1)(t, x)v‖,

Ru = sup
t∈[0,T ]

‖yu(t)‖.

(16)

Observe that the continuity of the functions yu, u ∈ Rd, and the fact that f ∈ C0,1([0, T ] × Rd, Rd) imply 
for all u ∈ Rd and all r ∈ [0, ∞) that Ru, Cr, Kr < ∞. Note that Lemma 4.1 proves that there exist 
Lw, rw ∈ (0, ∞), w ∈ Rd, such that for all v, w ∈ Rd, t ∈ [0, T ] with ‖v − w‖ < rw it holds that

‖yv(t) − yw(t)‖ ≤ Lw‖v − w‖. (17)

Next observe that (14) implies that for all w ∈ Rd, t ∈ [0, T ], u ∈ [0, t] it holds that

‖yw(t) − yw(u)‖ =
∥∥∥∥

t∫
u

f(s, yw(s)) ds
∥∥∥∥ ≤ (t− u)CRw

. (18)

This and (17) prove that for all v, w ∈ Rd, t, u ∈ [0, T ] with ‖v − w‖ < rw it holds that

‖yv(t) − yw(u)‖ ≤ ‖yv(t) − yw(t)‖ + ‖yw(t) − yw(u)‖ ≤ Lw‖v − w‖ + CRw
|t− u|. (19)

Therefore, we obtain that for all v, w ∈ Rd, t, u ∈ [0, T ], ε ∈ (0, ∞) with ‖v−w‖ < min{rw, (2Lw)−1ε} and 
|t − u| < (2CRw

+ 1)−1ε it holds that ‖yv(t) − yw(u)‖ ≤ ε
2 + ε

2 = ε. This establishes that

[0, T ] ×Rd � (t, x) 
→ yx(t) ∈ Rd (20)

is a continuous function. Next note that there exist unique vx,h ∈ C([0, T ], Rd), x, h ∈ Rd, such that for all 
x, h ∈ Rd, t ∈ [0, T ] it holds that

vx,h(t) = h +
t∫

0

f (0,1)(s, yx(s))vx,h(s) ds. (21)

This implies that for all x, h, k ∈ Rd, λ, μ ∈ R, t ∈ [0, T ] it holds that
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λvx,h(t) + μvx,k(t) = λh + μk +
[ t∫

0

f (0,1)(s, yx(s))
(
λvx,h(s) + μvx,k(s)

)
ds

]
. (22)

Combining this with (21) proves that for all x, h, k ∈ Rd, λ, μ ∈ R it holds that vx,λh+μk = λvx,h + μvx,k. 
This shows that for all x ∈ Rd, t ∈ [0, T ] it holds that Rd � h 
→ vx,h(t) ∈ Rd is a linear function. Next 
observe that the fact that f (0,1) is continuous implies that there exist δρε ∈ (0, ∞), ρ, ε ∈ (0, ∞), such that 
for all ρ, ε ∈ (0, ∞), t ∈ [0, T ], θ ∈ {x ∈ Rd : ‖x‖ ≤ ρ}, ϑ ∈ {x ∈ Rd : ‖x − θ‖ ≤ δρε}, h ∈ Rd it holds that

‖f (0,1)(t, ϑ)h− f (0,1)(t, θ)h‖ ≤ ε‖h‖. (23)

In addition, note that (17) implies that for all ρ, ε ∈ (0, ∞), z, x ∈ Rd, t ∈ [0, T ], u ∈ [0, 1] with ‖x − z‖ <
min{rz, (Lz)−1δρε} it holds that

∥∥[yz(t) + u(yx(t) − yz(t))
]
− yz(t)

∥∥ = u‖yx(t) − yz(t)‖ ≤ uLz‖x− z‖ ≤ δρε . (24)

Combining this with (23) shows that for all ε ∈ (0, ∞), z, x, h ∈ Rd, t ∈ [0, T ], u ∈ [0, 1] with ‖x − z‖ <
min{rz, (Lz)−1δRz

ε } it holds that

∥∥f (0,1)(t, yz(t) + u(yx(t) − yz(t))
)
h− f (0,1)(t, yz(t))h

∥∥ ≤ ε‖h‖. (25)

Hence for all ε ∈ (0, ∞), z, x, h, h ∈ Rd, t ∈ [0, T ], u ∈ [0, 1] with ‖x − z‖ < min{rz, (Lz)−1δRz
ε } it holds 

that

∥∥f (0,1)(t, yz(t) + u(yx(t) − yz(t))
)
h− f (0,1)(t, yz(t))h

∥∥
≤

∥∥f (0,1)(t, yz(t) + u(yx(t) − yz(t))
)
h− f (0,1)(t, yz(t))h

∥∥
+ ‖f (0,1)(t, yz(t))h− f (0,1)(t, yz(t))h‖

≤ ε‖h‖ + ‖f (0,1)(t, yz(t))(h− h)‖ ≤ ε‖h‖ + KRz
‖h− h‖.

(26)

The fundamental theorem of calculus and (17) hence prove that for all ε ∈ (0, ∞), z, k ∈ Rd, t ∈ [0, T ] with 
‖k‖ < min{rz, (Lz)−1δRz

ε } it holds that

∥∥f(t, yz+k(t)) − f(t, yz(t)) − f (0,1)(t, yz(t))(vz,k(t))
∥∥

=
∥∥∥∥

1∫
0

f (0,1)(t, yz(t) + u(yz+k(t) − yz(t))
)
(yz+k(t) − yz(t)) − f (0,1)(t, yz(t))vz,k(t) du

∥∥∥∥

≤
1∫

0

ε‖yz+k(t) − yz(t)‖ + KRz
‖yz+k(t) − yz(t) − vz,k(t)‖ du (27)

≤ εLz‖k‖ + KRz
‖yz+k(t) − yz(t) − vz,k(t)‖.

Combining this with (14) and (21) shows that for all ε ∈ (0, ∞), z, k ∈ Rd, t ∈ [0, T ] with ‖k‖ <
min{rz, (Lz)−1δRz

ε } it holds that
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‖yz+k(t) − yz(t) − vz,k(t)‖

=
∥∥∥∥

t∫
0

f(s, yz+k(s)) − f(s, yz(s)) − f (0,1)(s, yz(s))vz,k(s) ds
∥∥∥∥

≤
t∫

0

εLz‖k‖ + KRz
‖yz+k(s) − yz(s) − vz,k(s)‖ ds

≤ TεLz‖k‖ +
t∫

0

KRz
‖yz+k(s) − yz(s) − vz,k(s)‖ ds.

(28)

Gronwall’s inequality therefore shows that for all ε ∈ (0, ∞), z, k ∈ Rd, t ∈ [0, T ] with ‖k‖ <

min{rz, (Lz)−1δRz
ε } it holds that

‖yz+k(t) − yz(t) − vz,k(t)‖ ≤ TεLz‖k‖ exp(KRz
t). (29)

Therefore, we obtain that for all z ∈ Rd, t ∈ [0, T ] it holds that

lim sup
k→0,

k∈Rd\{0}

[
‖yz+k(t) − yz(t) − vz,k(t)‖

‖k‖

]
= 0. (30)

Combining this with the fact that for all x ∈ Rd, t ∈ [0, T ] it holds that Rd � h 
→ vx,h(t) ∈ Rd is a linear 
function shows that for all t ∈ [0, T ], x, h ∈ Rd it holds that Rd � z 
→ yz(t) ∈ Rd is a differentiable function 
and

∂
∂xy

x(t)h = vx,h(t). (31)

This and (21) establish (ii). Next note that (21) implies that for all x, h ∈ Rd, t ∈ [0, T ] it holds that

‖vx,h(t)‖ ≤ ‖h‖ +
t∫

0

KRx
‖vx,h(s)‖ ds. (32)

Gronwall’s inequality hence ensures that for all x, h ∈ Rd, t ∈ [0, T ] it holds that

‖vx,h(t)‖ ≤ ‖h‖ exp(KRx
T ). (33)

In addition, observe that (17) implies that for all x, z ∈ Rd, t ∈ [0, T ] with ‖x − z‖ < min{1, rz} it holds 
that

‖yx(t)‖ ≤ ‖yx(t) − yz(t)‖ + ‖yz(t)‖ ≤ Lz‖x− z‖ + Rz ≤ Lz + Rz. (34)

This ensures that for all x, z ∈ Rd with ‖x − z‖ < min{1, rz} it holds that Rx ≤ Rz + Lz. Combining this 
with (33) proves that for all x, z, h ∈ Rd, t ∈ [0, T ] with ‖x − z‖ < min{1, rz} it holds that

‖vx,h(t)‖ ≤ ‖h‖ exp(KRz+Lz
T ). (35)

Next note that (26) and (35) imply that for all ε ∈ (0, ∞), x, z, h ∈ Rd, t ∈ [0, T ] with ‖x − z‖ <
min{1, rz, (Lz)−1δRz

ε } it holds that



10 A. Jentzen et al. / J. Math. Anal. Appl. 502 (2021) 125240
‖vx,h(t) − vz,h(t)‖ =
∥∥∥∥

t∫
0

(
f (0,1)(s, yx(s))vx,h(s) − f (0,1)(s, yz(s))vz,h(s)

)
ds

∥∥∥∥

≤
t∫

0

ε‖vx,h(s)‖ + KRz
‖vx,h(s) − vz,h(s)‖ ds

≤ ε‖h‖ exp(KRz+Lz
T ) +

t∫
0

KRz
‖vx,h(s) − vz,h(s)‖ ds.

(36)

This and Gronwall’s inequality show that for all ε ∈ (0, ∞), z, x, h ∈ Rd, t ∈ [0, T ] with ‖x − z‖ <
min{1, rz, (Lz)−1δRz

ε } it holds that

‖vx,h(t) − vz,h(t)‖ ≤ ε‖h‖ exp(KRz+Lz
T ) exp(KRz

T ) ≤ ε‖h‖ exp(2KRz+Lz
T ). (37)

Moreover, (21) and (33) show that for all z, h ∈ Rd, s ∈ [0, T ], t ∈ [0, s] it holds that

‖vz,h(s) − vz,h(t)‖ =
∥∥∥∥

s∫
t

f (0,1)(u, yz(u))vz,h(u) du
∥∥∥∥

≤
s∫

t

KRz
‖vz,h(u)‖ du ≤ (s− t)KRz

‖h‖ exp(KRz
T ).

(38)

Combining this with (37) proves that for all ε ∈ (0, ∞), z, x, h ∈ Rd, s, t ∈ [0, T ] with ‖x − z‖ <
min

{
1, rz, (Lz)−1δRz

exp(−2KRz+LzT )2−1ε

}
and |s − t| < (2KRz

exp(KRz
T ) + 1)−1ε it holds that

‖vx,h(s) − vz,h(t)‖ ≤ ‖vx,h(s) − vz,h(s)‖ + ‖vz,h(s) − vz,h(t)‖ ≤ ε‖h‖. (39)

Combining this with (31) implies that [0, T ] ×Rd � (t, x) 
→ ∂
∂xy

x(t) ∈ Rd×d is a continuous function. This 
and (20) prove (i). The proof of Lemma 4.2 is thus completed. �
Lemma 4.3. Let d, m ∈ N, T ∈ [0, ∞), μ ∈ C1(Rd, Rd), σ ∈ Rd×m, w ∈ C([0, T ], Rm) and let yx ∈
C([0, T ], Rd), x ∈ Rd, be the functions which satisfy for all x ∈ Rd, t ∈ [0, T ] that

yx(t) = x +
t∫

0

μ(yx(s)) ds + σw(t). (40)

Then

(i) it holds that ([0, T ] ×Rd � (t, x) 
→ yx(t) ∈ Rd) ∈ C0,1([0, T ] ×Rd, Rd) and
(ii) it holds for all x, h ∈ Rd, t ∈ [0, T ] that

∂
∂xy

x(t)h = h +
t∫

0

μ′(yx(s))
(

∂
∂xy

x(s)h
)
ds. (41)

Proof of Lemma 4.3. Let zx : [0, T ] → Rd, x ∈ Rd, be the functions which satisfy for all x ∈ Rd, t ∈ [0, T ]
that zx(t) = yx(t) − σw(t). Next use (40) to obtain that for all x ∈ Rd, t ∈ [0, T ] it holds that
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zx(t) = x +
t∫

0

μ(zx(s) + σw(s)) ds. (42)

The statement of Lemma 4.3 is thus a straightforward consequence of Lemma 4.2 applied with yx = zx, 
x ∈ Rd, and the function f : [0, T ] × Rd → Rd that satisfies for all t ∈ [0, T ], x ∈ Rd that f(t, x) =
μ(x + σw(t)). �
4.3. Differentiability with respect to the initial value for SDEs

Lemma 4.4. Let d, m ∈ N, T ∈ [0, ∞), μ ∈ C1(Rd, Rd), σ ∈ Rd×m, ϕ ∈ C(Rm, [0, ∞)), V ∈ C1(Rd, [0, ∞)), 
let ‖·‖ : Rd → [0, ∞) be a norm, assume for all x ∈ Rd, z ∈ Rm that V ′(x)μ(x + σz) ≤ ϕ(z)V (x) and 
‖x‖ ≤ V (x), let (Ω, F , P ) be a probability space, and let W : [0, T ] × Ω → Rm be a stochastic process with 
continuous sample paths. Then

(i) there exist unique stochastic processes Xx : [0, T ] × Ω → Rd, x ∈ Rd, with continuous sample paths 
which satisfy for all x ∈ Rd, t ∈ [0, T ], ω ∈ Ω that

Xx(t, ω) = x +
t∫

0

μ(Xx(s, ω)) ds + σW (t, ω), (43)

(ii) it holds for all ω ∈ Ω that ([0, T ] ×Rd � (t, x) 
→ Xx(t, ω) ∈ Rd) ∈ C0,1([0, T ] ×Rd, Rd), and
(iii) it holds for all x, h ∈ Rd, t ∈ [0, T ], ω ∈ Ω that

∂
∂xX

x(t, ω)h = h +
t∫

0

μ′(Xx(s, ω))
(

∂
∂xX

x(s, ω)h
)
ds. (44)

Proof of Lemma 4.4. First, observe that Lemma 2.2 proves that there exist unique yxω ∈ C([0, T ], Rd), 
x ∈ Rd, ω ∈ Ω, such that for all x ∈ Rd, ω ∈ Ω, t ∈ [0, T ] it holds that

yxω(t) = x +
t∫

0

μ(yxω(s)) ds + σW (t, ω). (45)

In addition, note that the hypothesis that μ ∈ C1(Rd, Rd) ensures that for all r ∈ (0, ∞) it holds that

sup
x,y∈Rd, x �=y,
‖x‖+‖y‖≤r

‖μ(x) − μ(y)‖
‖x− y‖ < ∞. (46)

Combining this and (45) with Lemma 3.2 shows that for all x ∈ Rd it holds that [0, T ] ×Ω � (t, ω) 
→ yxω(t) ∈
Rd is a stochastic process. This and (45) establish (i). Next note that (45) and Lemma 4.3 establishes (ii) 
and (iii). The proof of Lemma 4.4 is thus completed. �
5. Integrability properties for solutions of SDEs

In this section we present well-known elementary integrability properties for standard Brownian motions 
in Lemma 5.1 in Subsection 5.1 and for solutions of certain additive noise driven SDEs in Lemma 5.2 in 
Subsection 5.2. These lemmas are used in Subsections 7.1 and 7.2 for the proof of Proposition 7.1 and 
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Corollary 7.2 on regularity properties with respect to the initial value for SDEs with general noise and 
Wiener noise, respectively. A detailed proof of Lemma 5.1 can be found, e.g., in the arXiv version of this 
article [12, Lemma 6.1]. For the reader’s convenience, we provide a proof of Lemma 5.2.

5.1. Integrability properties for multi-dimensional Brownian motions

Lemma 5.1. Let m ∈ N, T, C ∈ [0, ∞), α ∈ [0, 2), let ‖·‖ : Rm → [0, ∞) be a norm, let (Ω, F , P ) be a 
probability space, let W : [0, T ] ×Ω → Rm be a standard Brownian motion with continuous sample paths and 
let ϕ : Rm → [0, ∞) satisfy for all z ∈ Rm that ϕ(z) ≤ C(1 + ‖z‖α). Then it holds for all c ∈ [0, ∞) that

E

[
sup

t∈[0,T ]
exp

(
c ϕ(W (t))

)]
< ∞. (47)

5.2. Integrability properties for solutions of SDEs

Lemma 5.2. Let d, m ∈ N, T ∈ [0, ∞), μ ∈ C1(Rd, Rd), σ ∈ Rd×m, ϕ ∈ C(Rm, [0, ∞)), V ∈ C1(Rd, [0, ∞)), 
let ‖·‖ : Rd → [0, ∞) be a norm, assume for all x ∈ Rd, z ∈ Rm that V ′(x)μ(x + σz) ≤ ϕ(z)V (x) and 
‖x‖ ≤ V (x), let (Ω, F , P ) be a probability space, let W : [0, T ] × Ω → Rm be a stochastic process with 
continuous sample paths, let Xx : [0, T ] × Ω → Rd, x ∈ Rd, be stochastic processes with continuous sample 
paths, assume for all c ∈ [0, ∞) that E

[
supt∈[0,T ] exp

(
c ϕ(W (t))

)]
+ E

[
supt∈[0,T ](‖σW (t)‖c)

]
< ∞, and 

assume for all x ∈ Rd, t ∈ [0, T ], ω ∈ Ω that

Xx(t, ω) = x +
t∫

0

μ(Xx(s, ω)) ds + σW (t, ω). (48)

Then

(i) it holds for all R, r ∈ [0, ∞) that

Ω � ω 
→
[

sup
x∈{z∈Rd : ‖z‖≤R}

sup
t∈[0,T ]

(
‖Xx(t, ω)‖r

)]
∈ [0,∞] (49)

is an F/B([0, ∞])-measurable function and
(ii) it holds for all R, r ∈ [0, ∞) that

E

[
sup

x∈{z∈Rd : ‖z‖≤R}
sup

t∈[0,T ]

(
‖Xx(t)‖r

)]
< ∞. (50)

Proof of Lemma 5.2. Note that Lemma 4.3 ensures that for all ω ∈ Ω it holds that

([0, T ] ×Rd � (t, x) 
→ Xx(t, ω) ∈ Rd) ∈ C0,1([0, T ] ×Rd,Rd). (51)

Hence for all R, r ∈ [0, ∞) and ω ∈ Ω it holds that

sup
x∈{z∈Rd : ‖z‖≤R}

sup
t∈[0,T ]

(
‖Xx(t, ω)‖r

)
= sup

x∈{z∈Rd : ‖z‖≤R}∩Qd

sup
t∈[0,T ]∩Q

(
‖Xx(t, ω)‖r

)
, (52)

which implies (i). Let Y, Z : Ω → [0, ∞) be the functions which satisfy for all ω ∈ Ω that
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Y (ω) = sup
t∈[0,T ]

exp
(
ϕ(W (t, ω))

)
and Z(ω) = sup

t∈[0,T ]
‖σW (t, ω)‖. (53)

Note that Lemma 2.1 ensures that for all x ∈ Rd, ω ∈ Ω it holds that

sup
t∈[0,T ]

‖Xx(t, ω)‖ ≤ V (x) exp
(
T

[
sup

t∈[0,T ]
ϕ(W (t, ω))

])
+
[

sup
t∈[0,T ]

‖σW (t, ω)‖
]

= V (x)[Y (ω)]T + Z(ω).
(54)

Hence for all ω ∈ Ω, R, r ∈ [0, ∞) it holds that

sup
x∈{z∈Rd : ‖z‖≤R}

sup
t∈[0,T ]

(
‖Xx(t, ω)‖r

)
≤ 2r

([
supx∈{z∈Rd : ‖z‖≤R} V (x)

]r[Y (ω)]Tr + [Z(ω)]r
)
.

(55)

In the next step we observe that the assumption that for all c∈[0, ∞) it holds that E
[
supt∈[0,T ]exp

(
c ϕ(W (t))

)]
< ∞, ensures that for all r ∈ [0, ∞) it holds that

E
[
Y Tr

]
< ∞. (56)

Note further that the continuity of V implies that for all R ∈ [0, ∞) it holds that

sup
x∈{z∈Rd : ‖z‖≤R}

V (x) < ∞. (57)

Finally, observe that the fact that for all c ∈ [0, ∞) it holds that E
[
supt∈[0,T ](‖σW (t)‖c)

]
< ∞ shows that 

for all r ∈ [0, ∞) it holds that E[Zr] < ∞. Combining this, (52), (56), and (57) with (55) implies that for 
all R, r ∈ [0, ∞) it holds that

E

[
sup

x∈{z∈Rd : ‖z‖≤R}
sup

t∈[0,T ]

(
‖Xx(t)‖r

)]

≤ 2r
([

supx∈{z∈Rd : ‖z‖≤R} V (x)
]r
E
[
Y Tr

]
+ E

[
Zr

])
< ∞.

(58)

This completes the proof of Lemma 5.2. �
6. Conditional regularity with respect to the initial value for SDEs

In this section we study in Lemmas 6.3 and 6.4 in Subsection 6.2 below regularity properties of solutions 
of certain additive noise driven SDEs with respect to their initial values. In particular, in Lemma 6.4 we 
establish in inequality (99) a quantitative estimate for the mean difference of two solutions of certain additive 
noise driven SDEs in terms of the distance of the respective initial values. Lemma 6.4 is the main tool to 
establish Proposition 7.1 in Subsection 7.1 on regularity properties with respect to the initial value for SDEs 
with general noise. Our proof of Lemma 6.4 is based on an application of Lemma 6.3 which establishes a 
similar statement in wider generality. Our proof of Lemma 6.3, in turn, uses, besides other arguments, the 
auxiliary results in Lemma 6.1 in Subsection 6.1 below and in Lemma 6.2 in Subsection 6.2 below. For 
convenience of the reader we include in this section also a proof for the elementary result in Lemma 6.2.
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6.1. Conditional local Lipschitz continuity for ODEs

Note that in (59) in Lemma 6.1 below, we use the fact that under the assumptions of the lemma it holds 
for all x ∈ Rd, h ∈ Rd that the function [0, T ] � t 
→ ∂

∂xz
x(t)h ∈ Rd is B([0, T ])/B(Rd)-measurable. A 

detailed proof of this assertion can be found, e.g., in the arXiv version of this article [12, Lemma 7.1].

Lemma 6.1. Let d ∈ N, T ∈ [0, ∞), ϕ ∈ C(Rd, [0, ∞)), let ‖·‖ : Rd → [0, ∞) be a norm, let zx ∈ C([0, T ], Rd), 
x ∈ Rd, be functions which satisfy for all t ∈ [0, T ] that (Rd � x 
→ zx(t) ∈ Rd) ∈ C1(Rd, Rd), and assume 
for all x ∈ Rd, t ∈ [0, T ], h ∈ Rd that 

∫ T

0

∥∥ ∂
∂xz

x(s)h
∥∥ ds < ∞ and

∥∥ ∂
∂xz

x(t)h
∥∥ ≤ ‖h‖ +

t∫
0

ϕ(zx(s))
∥∥ ∂
∂xz

x(s)h
∥∥ ds. (59)

Then it holds for all x, y ∈ Rd, t ∈ [0, T ] that

‖zx(t) − zy(t)‖ ≤ sup
u∈[0,1]

[
‖x− y‖ exp

(
T

[
sup

s∈[0,T ]
ϕ(z(1−u)y+ux(s))

])]
. (60)

Proof of Lemma 6.1. Throughout this proof let Dx : [0, T ] → Rd×d, x ∈ Rd, be the functions which satisfy 
for all x ∈ Rd, t ∈ [0, T ] that

Dx(t) = ∂
∂xz

x(t). (61)

Clearly, for all t ∈ [0, T ], h ∈ Rd it holds that Rd � x 
→ Dx(t)h ∈ Rd is continuous. The fundamental 
theorem of calculus hence implies that for all x, y ∈ Rd, t ∈ [0, T ] it holds that

‖zx(t) − zy(t)‖ =
∥∥∥∥

1∫
0

D(1−u)y+ux(t)(x− y) du
∥∥∥∥

≤ sup
u∈[0,1]

‖D(1−u)y+ux(t)(x− y)‖.
(62)

By the properties of the mappings ϕ and zx, x ∈ Rd, it follows that for all x, h ∈ Rd it holds that

T∫
0

‖Dx(s)h‖ ds < ∞, and sup
s∈[0,T ]

ϕ(zx(s)) < ∞. (63)

Moreover, using (59) we obtain that for all x, h ∈ Rd, t ∈ [0, T ] it holds that

‖Dx(t)h‖ ≤ ‖h‖ +
t∫

0

ϕ(zx(s)) ‖Dx(s)h‖ ds

≤ ‖h‖ +
[

sup
s∈[0,T ]

ϕ(zx(s))
] t∫

0

‖Dx(s)h‖ ds.

(64)

Observing (63) we may thus employ Gronwall’s inequality to conclude that for all x, h ∈ Rd, t ∈ [0, T ] it 
holds that
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‖Dx(t)h‖ ≤ ‖h‖ exp
(
T

[
sup

s∈[0,T ]
ϕ(zx(s))

])
. (65)

Combining this with (62) shows that for all x, y ∈ Rd, t ∈ [0, T ] it holds that

‖zx(t) − zy(t)‖ ≤ sup
u∈[0,1]

[
‖x− y‖ exp

(
T

[
sup

s∈[0,T ]
ϕ(z(1−u)y+ux(s))

])]
. (66)

This completes the proof of Lemma 6.1. �
6.2. Conditional sub-Hölder continuity for SDEs

Lemma 6.2. Let q ∈ [0, ∞). Then it holds for all a, b ∈ [eq, ∞) with a ≤ b that

a2

(ln(a))2q ≤ b2

(ln(b))2q . (67)

Proof of Lemma 6.2. In the case q = 0 the statement is obviously true (note that for all x ∈ {1}, q ∈ {0} it 
holds that (ln(x))2q = (ln(1))0 = 00 = 1). Hence we assume q > 0. Let f : (1, ∞) → (0, ∞) be the function 
which satisfies for all z ∈ (1, ∞) that

f(z) = z2

(ln(z))2q . (68)

Note that f is a continuously differentiable function and for all z ∈ [eq, ∞) it holds that

f ′(z) = 2z[ln(z)]2q − 2qz2[ln(z)]2q−1z−1

[ln(z)]4q = 2z ln(z) − 2qz
[ln(z)]2q+1 ≥ 0. (69)

Hence f |[eq,∞) is increasing. This establishes (67). The proof of Lemma 6.2 is thus completed. �
Lemma 6.3. Let d ∈ N, T, R, q, K ∈ [0, ∞), ϕ ∈ C(Rd, [0, ∞)), let (Ω, F , P ) be a probability space, let 
‖·‖ : Rd → [0, ∞) be a norm, let Xx : [0, T ] × Ω → Rd, x ∈ Rd, be stochastic processes with continuous 
sample paths which satisfy for all t ∈ [0, T ], ω ∈ Ω that (Rd � x 
→ Xx(t, ω) ∈ Rd) ∈ C1(Rd, Rd), assume 
for all x ∈ Rd, t ∈ [0, T ], ω ∈ Ω, h ∈ Rd that 

∫ T

0

∥∥ ∂
∂xX

x(s, ω)h
∥∥ ds < ∞ and

∥∥ ∂
∂xX

x(t, ω)h
∥∥ ≤ ‖h‖ +

t∫
0

ϕ(Xx(s, ω))
∥∥ ∂
∂xX

x(s, ω)h
∥∥ ds, (70)

assume that

E

[
sup

x∈{z∈Rd : ‖z‖≤R+1}
sup

t∈[0,T ]

(
[ϕ(Xx(t))]4q+4)] ≤ K, (71)

and assume that

sup
x∈{z∈Rd : ‖z‖≤R+1}

sup
t∈[0,T ]

E
[
‖Xx(t)‖2] ≤ K. (72)

Let K = 1 + 24q+4(|ln(2 + eq)|4q+4 + T 4q+4K
)
. Then it holds for all x ∈ {z ∈ Rd : ‖z‖ ≤ R}, h ∈ {v ∈

Rd \ {0} : ‖v‖ < 1}, t ∈ [0, T ] that

E
[
‖Xx+h(t) −Xx(t)‖

]
≤ 2

√
(1 + 4K)K

∣∣ln(‖h‖)
∣∣−q

. (73)
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Proof of Lemma 6.3. Let

Y = sup
x∈{z∈Rd : ‖z‖≤R+1}

sup
t∈[0,T ]

ϕ(Xx(t)), (74)

and note that Y is F/B([0, ∞])-measurable, due to Lemma 3.1. In particular, the left hand side in (71) is 
well-defined. Let F, G : [0, ∞) → [0, ∞) be the functions which satisfy for all y ∈ [0, ∞) that

F (y) = ln(1 + y), G(y) =
{

0 if y = 0,
[ln(1 + y)]−1y if y �= 0,

(75)

let Dx : [0, T ] × Ω → Rd×d, x ∈ Rd, be the functions which satisfy for all x ∈ Rd, t ∈ [0, T ], ω ∈ Ω that

Dx(t, ω) = ∂
∂xX

x(t, ω), (76)

let

A = {ω ∈ Ω: Y (ω) < ∞}, (77)

and let Z : Ω → [0, ∞) be the function which satisfies for all ω ∈ Ω that

Z(ω) =
{

exp(T Y (ω)) if ω ∈ A,

1 if ω ∈ Ω \A.
(78)

Clearly, for all y ∈ [0, ∞) it holds that

y = G(y)F (y). (79)

Hence we obtain that for all x, h ∈ Rd, t ∈ [0, T ] it holds that

E
[
‖Xx+h(t) −Xx(t)‖

]
= E

[
G(‖Xx+h(t) −Xx(t)‖)F (‖Xx+h(t) −Xx(t)‖)

]
. (80)

Next observe that the fundamental theorem of calculus ensures that for all y ∈ [0, ∞) it holds that

ln(1 + y) =
y∫

0

1
1 + z

dz ≥ y

1 + y
. (81)

This shows that for all y ∈ [0, ∞) it holds that

G(y) ≤ 1 + y. (82)

It follows that for all x, h ∈ Rd, t ∈ [0, T ] it holds that

E
[∣∣G(‖Xx+h(t) −Xx(t)‖)

∣∣2] ≤ E
[(

1 + ‖Xx+h(t) −Xx(t)‖
)2]

≤ 2
(
1 + 2

(
E
[
‖Xx+h(t)‖2] + E

[
‖Xx(t)‖2])). (83)

The hypothesis that for all x ∈ {z ∈ Rd : ‖z‖ ≤ R + 1}, t ∈ [0, T ] it holds that E[‖Xx(t)‖2] ≤ K hence 
implies that for all x ∈ {z ∈ Rd : ‖z‖ ≤ R}, h ∈ {v ∈ Rd : ‖v‖ < 1}, t ∈ [0, T ] it holds that
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E
[∣∣G(‖Xx+h(t) −Xx(t)‖)

∣∣2] ≤ 2 + 8K. (84)

In the next step we note that (70), the hypothesis that for all x ∈ Rd, ω ∈ Ω, h ∈ Rd it holds that ∫ T

0

∥∥ ∂
∂xX

x(s, ω)h
∥∥ds < ∞, and Lemma 6.1 show that for all x, h ∈ Rd, t ∈ [0, T ], ω ∈ Ω it holds that

‖Xx+h(t, ω) −Xx(t, ω)‖ ≤ sup
u∈[0,1]

[
‖h‖ exp

(
T

[
sup

s∈[0,T ]
ϕ(Xx+uh(s, ω)

])]
. (85)

Therefore, we obtain that for all x ∈ {z ∈ Rd : ‖z‖ ≤ R}, h ∈ {v ∈ Rd : ‖v‖ < 1}, t ∈ [0, T ], ω ∈ A it holds 
that

‖Xx+h(t, ω) −Xx(t, ω)‖ ≤ sup
y∈{z∈Rd : ‖z‖≤R+1}

[
‖h‖ exp

(
T

[
sup

s∈[0,T ]
ϕ(Xy(s, ω)

])]

= ‖h‖ exp(T Y (ω))

= ‖h‖Z(ω).

(86)

By (71) we have

P (A) = 1. (87)

Combining this and (86), demonstrates that for all x ∈ {z ∈ Rd : ‖z‖ ≤ R}, h ∈ {v ∈ Rd : ‖v‖ < 1}, 
t ∈ [0, T ] it holds that

E
[∣∣F (‖Xx+h(t) −Xx(t)‖)

∣∣2] ≤ E
[∣∣ln(1 + ‖h‖Z)

∣∣2]. (88)

Moreover, note that for all C ∈ [1, ∞), r ∈ [0, 4q + 4], ω ∈ A it holds that

|ln(CZ(ω))|r ≤ 1 + |ln(CZ(ω))|4q+4 ≤ 1 + 24q+4(|ln(C)|4q+4 + T 4q+4[Y (ω)]4q+4). (89)

Combining this with (87) and (71) proves that for all C ∈ [1, 2 + eq], r ∈ [0, 4q + 4] it holds that

E
[
|ln(CZ)|r

]
≤ 1 + 24q+4(|ln(2 + eq)|4q+4 + T 4q+4K

)
= K. (90)

Next note that Z ≥ 1, the fact that for all y ∈ [0, ∞) it holds that ln(1 + y) ≤ y and Lemma 6.2 show that 
for all h ∈ {v ∈ Rd \ {0} : ‖v‖ < 1} it holds that

E
[
|ln(1 + ‖h‖Z)|21{Z≤1/‖h‖}

]
≤ E

[
‖h‖2Z21{Z≤1/‖h‖}

]
= ‖h‖2e−2q E

[
(eqZ)2

|ln(eqZ)|2q |ln(eqZ)|2q1{Z≤1/‖h‖}

]

≤ ‖h‖2e−2q E

[ (
eq

‖h‖
)2

∣∣ln( eq

‖h‖
)∣∣2q |ln(eqZ)|2q1{Z≤1/‖h‖}

]

≤
∣∣ln( eq

‖h‖
)∣∣−2q

E
[
|ln(eqZ)|2q

]
≤

∣∣ln(‖h‖)
∣∣−2q

E
[
|ln(eqZ)|2q

]
.

(91)

This and (90) establish that for all h ∈ {v ∈ Rd \ {0} : ‖v‖ < 1} it holds that

E
[
|ln(1 + ‖h‖Z)|21{Z≤1/‖h‖}

]
≤ K

∣∣ln(‖h‖)
∣∣−2q

. (92)
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In the next step we observe that (90) implies that for all h ∈ {v ∈ Rd \ {0} : ‖v‖ < 1} it holds that

E
[
1{Z>1/‖h‖}

]
≤ E

[
|ln(Z)|4q|ln(1/‖h‖)|−4q1{Z>1/‖h‖}

]
≤ E

[
|ln(Z)|4q

]∣∣ln(‖h‖)
∣∣−4q

≤ K
∣∣ln(‖h‖)

∣∣−4q
.

(93)

Furthermore, observe that (90) shows that

E
[
|ln(2Z)|4

]
≤ K. (94)

Combining (93) with (94) establishes that for all h ∈ {v ∈ Rd \ {0} : ‖v‖ < 1} it holds that

E
[
|ln(1 + ‖h‖Z)|21{Z>1/‖h‖}

]
≤ E

[
|ln(2Z)|21{Z>1/‖h‖}

]
≤

(
E
[
|ln(2Z)|4

]
E
[
1{Z>1/‖h‖}

])1/2

≤ K
∣∣ln(‖h‖)

∣∣−2q
.

(95)

Combining this, (88), and (92) proves that for all x ∈ {z ∈ Rd : ‖z‖ ≤ R}, h ∈ {v ∈ Rd \ {0} : ‖v‖ < 1}, 
t ∈ [0, T ] it holds that

E
[∣∣F (‖Xx+h(t) −Xx(t)‖)

∣∣2] ≤ 2K
∣∣ln(‖h‖)

∣∣−2q
. (96)

Combining this with (84) and (80) proves that for all x ∈ {z ∈ Rd : ‖z‖ ≤ R}, h ∈ {v ∈ Rd \ {0} : ‖v‖ < 1}, 
t ∈ [0, T ] it holds that

E
[
‖Xx+h(t) −Xx(t)‖

]
≤

(
E
[∣∣G(‖Xx+h(t) −Xx(t)‖)

∣∣2]E[∣∣F (‖Xx+h(t) −Xx(t)‖)
∣∣2])1/2

≤
(
(4 + 16K)K

∣∣ln(‖h‖)
∣∣−2q)1/2

= 2
√

(1 + 4K)K
∣∣ln(‖h‖)

∣∣−q
.

(97)

This completes the proof of Lemma 6.3. �
The following result is an immediate consequence of Lemma 6.3.

Lemma 6.4. Let d ∈ N, T, κ ∈ [0, ∞), let (Ω, F , P ) be a probability space, let ‖·‖ : Rd → [0, ∞) be 
a norm, let Xx : [0, T ] × Ω → Rd, x ∈ Rd, be stochastic processes which satisfy for all ω ∈ Ω that 
([0, T ] × Rd � (t, x) 
→ Xx(t, ω) ∈ Rd) ∈ C0,1([0, T ] × Rd, Rd), assume for all R, r ∈ [0, ∞) that 
E
[
supx∈{z∈Rd : ‖z‖≤R} supt∈[0,T ]

(
‖Xx(t)‖r

)]
< ∞, and assume for all x, h ∈ Rd, t ∈ [0, T ], ω ∈ Ω that

∥∥ ∂
∂xX

x(t, ω)h
∥∥ ≤ ‖h‖ + κ

t∫
0

(1 + ‖Xx(s, ω)‖κ)
∥∥ ∂
∂xX

x(s, ω)h
∥∥ds. (98)

Then it holds for all R, q ∈ [0, ∞) that there exists c ∈ [0, ∞) such that for all h ∈ {v ∈ Rd \ {0} : ‖v‖ < 1}
it holds that

sup
d

sup E
[
‖Xx+h(t) −Xx(t)‖

]
≤ c

∣∣ln(‖h‖)
∣∣−q

. (99)

x∈{z∈R : ‖z‖≤R} t∈[0,T ]
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7. Regularity with respect to the initial value for SDEs

In this section we establish in Theorem 7.4 in Subsection 7.3 below the main result of this article. 
Theorem 7.4 proves that every additive noise driven SDE with a drift coefficient function whose derivatives 
grow at most polynomially and which also admits a Lyapunov-type condition (which ensures the existence of 
a unique solution) is at least logarithmically Hölder continuous in the initial value (see (118) in Theorem 7.4
below for the precise statement). Our proof of Theorem 7.4 exploits Corollary 7.2 in Subsection 7.2 below and 
the auxiliary continuity-regularity result in Lemma 7.3 in Subsection 7.3 below. Our proof of Corollary 7.2
is based on an application of Proposition 7.1 below. Our proof of Proposition 7.1, in turn, is based on the 
differentiability result in Lemma 4.4 in Subsection 4.3, the integrability result in Lemma 5.2 in Subsection 5.2
and the regularity result in Lemma 6.4 in Subsection 6.2 above.

7.1. Regularity with respect to the initial value for SDEs with general noise

Proposition 7.1. Let d, m ∈ N, T, κ ∈ [0, ∞), μ ∈ C1(Rd, Rd), σ ∈ Rd×m, ϕ ∈ C(Rm, [0, ∞)), V ∈
C1(Rd, [0, ∞)), let ‖·‖ : Rd → [0, ∞) be a norm, assume for all x, h ∈ Rd, z ∈ Rm that ‖μ′(x)h‖ ≤
κ
(
1 + ‖x‖κ

)
‖h‖, V ′(x)μ(x + σz) ≤ ϕ(z)V (x), and ‖x‖ ≤ V (x), let (Ω, F , P ) be a probability space, let 

W : [0, T ] × Ω → Rm be a stochastic process with continuous sample paths, and assume for all c ∈ [0, ∞)
that E

[
supt∈[0,T ] exp

(
c ϕ(W (t))

)]
+ E

[
supt∈[0,T ](‖σW (t)‖c)

]
< ∞. Then

(i) there exist unique stochastic processes Xx : [0, T ] × Ω → Rd, x ∈ Rd, with continuous sample paths 
which satisfy for all x ∈ Rd, t ∈ [0, T ], ω ∈ Ω that

Xx(t, ω) = x +
t∫

0

μ(Xx(s, ω)) ds + σW (t, ω), (100)

(ii) it holds for all R, r ∈ [0, ∞) that supx∈{z∈Rd : ‖z‖≤R} supt∈[0,T ] E
[
‖Xx(t)‖r

]
< ∞, and

(iii) it holds for all R, q ∈ [0, ∞) that there exists c ∈ (0, ∞) such that for all h ∈ {v ∈ Rd \ {0} : ‖v‖ < 1}
it holds that

sup
x∈{v∈Rd : ‖v‖≤R}

sup
t∈[0,T ]

E
[
‖Xx+h(t) −Xx(t)‖

]
≤ c

∣∣ln(‖h‖)
∣∣−q

. (101)

Proof of Proposition 7.1. First, observe that Lemma 4.4 shows

(a) that there exist unique stochastic processes Xx : [0, T ] ×Ω → Rd, x ∈ Rd, with continuous sample paths 
which satisfy for all x ∈ Rd, t ∈ [0, T ], ω ∈ Ω that

Xx(t, ω) = x +
t∫

0

μ(Xx(s, ω)) ds + σW (t, ω), (102)

(b) that for all ω ∈ Ω it holds that

(
[0, T ] ×Rd � (t, x) 
→ Xx(t, ω) ∈ Rd

)
∈ C0,1([0, T ] ×Rd,Rd), (103)

and



20 A. Jentzen et al. / J. Math. Anal. Appl. 502 (2021) 125240
(c) that for all x, h ∈ Rd, t ∈ [0, T ], ω ∈ Ω it holds that

∂
∂xX

x(t, ω)h = h +
t∫

0

μ′(Xx(s, ω))
(

∂
∂xX

x(s, ω)h
)
ds. (104)

In the next step we note that Lemma 5.2 ensures that for all R, r ∈ [0, ∞) it holds that

E

[
sup

x∈{z∈Rd : ‖z‖≤R}
sup

t∈[0,T ]

(
‖Xx(t)‖r

)]
< ∞, (105)

which establishes (ii). In the next step we combine (104) and the hypothesis that for all x, h ∈ Rd it holds 
that ‖μ′(x)h‖ ≤ κ

(
1 + ‖x‖κ

)
‖h‖ to obtain that for all x, h ∈ Rd, t ∈ [0, T ], ω ∈ Ω it holds that

∥∥ ∂
∂xX

x(t, ω)h
∥∥ ≤ ‖h‖ +

t∫
0

∥∥μ′(Xx(s, ω))
(

∂
∂xX

x(s, ω)h
)∥∥ ds

≤ ‖h‖ + κ

t∫
0

(1 + ‖Xx(s, ω)‖κ)
∥∥ ∂
∂xX

x(s, ω)h
∥∥ds.

(106)

Combining this and (103), with Lemma 6.4 establishes (iii). The proof of Proposition 7.1 is thus com-
pleted. �
7.2. Regularity with respect to the initial value for SDEs with Wiener noise

Corollary 7.2. Let d, m ∈ N, T, κ ∈ [0, ∞), α ∈ [0, 2), μ ∈ C1(Rd, Rd), σ ∈ Rd×m, V ∈ C1(Rd, [0, ∞)), 
let ‖·‖ : Rd → [0, ∞) and |||·||| : Rm → [0, ∞) be norms, assume for all x, h ∈ Rd, z ∈ Rm that ‖μ′(x)h‖ ≤
κ
(
1 + ‖x‖κ

)
‖h‖, V ′(x)μ(x + σz) ≤ κ(1 + |||z|||α)V (x), and ‖x‖ ≤ V (x), let (Ω, F , P ) be a probability space, 

and let W : [0, T ] × Ω → Rm be a standard Brownian motion with continuous sample paths. Then

(i) there exist unique stochastic processes Xx : [0, T ] × Ω → Rd, x ∈ Rd, with continuous sample paths 
such that for all x ∈ Rd, t ∈ [0, T ], ω ∈ Ω it holds that

Xx(t, ω) = x +
t∫

0

μ(Xx(s, ω)) ds + σW (t, ω), (107)

(ii) it holds for all R, r ∈ [0, ∞) that supx∈{z∈Rd : ‖z‖≤R} supt∈[0,T ] E
[
‖Xx(t)‖r

]
< ∞, and

(iii) it holds for all R, q ∈ [0, ∞) that there exists c ∈ (0, ∞) such that for all h ∈ {v ∈ Rd \ {0} : ‖v‖ < 1}
it holds that

sup
x∈{v∈Rd : ‖v‖≤R}

sup
t∈[0,T ]

E
[
‖Xx+h(t) −Xx(t)‖

]
≤ c

∣∣ln(‖h‖)
∣∣−q

. (108)

Proof of Corollary 7.2. Throughout this proof let ϕ : Rm → [0, ∞) be the function which satisfies for all 
z ∈ Rm that

ϕ(z) = κ(1 + |||z|||α). (109)
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Note that Lemma 5.1 shows that for all c ∈ [0, ∞) it holds that

E

[
sup

t∈[0,T ]
exp

(
c ϕ(W (t))

)]
< ∞. (110)

Furthermore, it is well-known that for all c ∈ [0, ∞) it holds that

E

[
sup

t∈[0,T ]
(‖σW (t)‖c)

]
< ∞. (111)

Combining this and (110) with Proposition 7.1 establishes (i), (ii), and (iii). The proof of Corollary 7.2 is 
thus completed. �
7.3. Sub-Hölder continuity with respect to the initial value for SDEs

Lemma 7.3. Let d ∈ N, T, R, q, c ∈ [0, ∞), let (Ω, F , P ) be a probability space, let Xx : [0, T ] ×Ω → Rd, x ∈
Rd, be stochastic processes, let ‖·‖ : Rd → [0, ∞) be a norm, and assume for all h ∈ {v ∈ Rd \{0} : ‖v‖ < 1}
that

sup
x∈{v∈Rd : ‖v‖≤R}

sup
t∈[0,T ]

E
[
‖Xx+h(t) −Xx(t)‖

]
≤ c

∣∣ln(‖h‖)
∣∣−q

. (112)

Let C = supx∈{v∈Rd : ‖v‖≤R} supt∈[0,T ] E
[
‖Xx(t)‖

]
. Then it holds for all x, y ∈ {v ∈ Rd : ‖v‖ ≤ R} with 

0 < ‖x − y‖ �= 1 that

sup
t∈[0,T ]

E
[
‖Xx(t) −Xy(t)‖

]
≤ max{c, 2C |ln(2R + 1)|q}

∣∣ln(‖x− y‖)
∣∣−q

. (113)

Proof of Lemma 7.3. First, note that (112) implies that for all x, y ∈ {v ∈ Rd : ‖v‖ ≤ R} with x �= y and 
‖x − y‖ < 1 it holds that

sup
t∈[0,T ]

E
[
‖Xx(t) −Xy(t)‖

]
≤ c

|ln(‖x− y‖)|q . (114)

Furthermore, observe that for all x, y ∈ {v ∈ Rd : ‖v‖ ≤ R}, t ∈ [0, T ] it holds that

E
[
‖Xx(t) −Xy(t)‖

]
≤ 2C. (115)

The fact that for all x, y ∈ {v ∈ Rd : ‖v‖ ≤ R} it holds that ‖x −y‖ ≤ 2R hence shows that for all t ∈ [0, T ], 
x, y ∈ {v ∈ Rd : ‖v‖ ≤ R} with ‖x − y‖ > 1 it holds that

sup
t∈[0,T ]

E
[
‖Xx(t) −Xy(t)‖

]
≤ 2C |ln(‖x− y‖)|q

|ln(‖x− y‖)|q ≤ 2C |ln(2R + 1)|q
|ln(‖x− y‖)|q . (116)

Combining this with (114) completes the proof of Lemma 7.3. �
Theorem 7.4. Let d, m ∈ N, T, κ ∈ [0, ∞), α ∈ [0, 2), μ ∈ C1(Rd, Rd), σ ∈ Rd×m, V ∈ C1(Rd, [0, ∞)), 
let ‖·‖ : Rd → [0, ∞) and |||·||| : Rm → [0, ∞) be norms, assume for all x, h ∈ Rd, z ∈ Rm that ‖μ′(x)h‖ ≤
κ
(
1 + ‖x‖κ

)
‖h‖, V ′(x)μ(x + σz) ≤ κ(1 + |||z|||α)V (x), and ‖x‖ ≤ V (x), let (Ω, F , P ) be a probability space, 

and let W : [0, T ] × Ω → Rm be a standard Brownian motion with continuous sample paths. Then
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(i) there exist unique stochastic processes Xx : [0, T ] ×Ω → Rd, x ∈ Rd, with continuous sample paths such 
that for all x ∈ Rd, t ∈ [0, T ], ω ∈ Ω it holds that

Xx(t, ω) = x +
t∫

0

μ(Xx(s, ω)) ds + σW (t, ω) (117)

and
(ii) it holds for all R, q ∈ [0, ∞) that there exists c ∈ (0, ∞) such that for all x, y ∈ {v ∈ Rd : ‖v‖ ≤ R} with 

0 < ‖x − y‖ �= 1 it holds that

sup
t∈[0,T ]

E
[
‖Xx(t) −Xy(t)‖

]
≤ c

∣∣ln(‖x− y‖)
∣∣−q

. (118)

Proof of Theorem 7.4. Note that Corollary 7.2 establishes (i) as well as that for all R ∈ [0, ∞) it holds that

sup
x∈{z∈Rd : ‖z‖≤R}

sup
t∈[0,T ]

E
[
‖Xx(t)‖

]
< ∞, (119)

and that for all R, q ∈ [0, ∞) there exists cR,q ∈ (0, ∞) such that for all h ∈ {v ∈ Rd \ {0} : ‖v‖ < 1} it 
holds that

sup
x∈{v∈Rd : ‖v‖≤R}

sup
t∈[0,T ]

E
[
‖Xx+h(t) −Xx(t)‖

]
≤ cR,q

∣∣ln(‖h‖)
∣∣−q

. (120)

Combining (119) and (120) with Lemma 7.3 establishes (ii). The proof of Theorem 7.4 is thus completed. �
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