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We show that the attraction-repulsion chemotaxis system

⎧⎪⎨⎪⎩
ut = Δu− χ∇ · (u∇v1) + ξ∇ · (u∇v2)
∂tv1 = Δv1 − βv1 + αu

∂tv2 = Δv2 − δv2 + γu,

posed with homogeneous Neumann boundary conditions in bounded domains Ω =
BR ⊂ R3, R > 0, admits radially symmetric solutions which blow-up in finite time 
if it is attraction-dominated in the sense that χα − ξγ > 0.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Chemotaxis, mathematically often captured in the Keller–Segel system ([17,10,1])

{
ut = Δu− χ∇ · (u∇v),
vt = Δv − v + u,

(1)

is the directed motion of biological agents (usually cells) towards (χ > 0, chemo-attraction) or away from 
(χ < 0, chemo-repulsion) higher concentrations of a signal substance.
At least in the chemo-attractive case, in (1) aggregation can be observed in the extreme form of finite-time 
blow-up (for solutions arising from some initial data), that is

lim sup
t↗T

‖u(·, t)‖L∞(Ω) = ∞
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with some finite T > 0, (see e.g. [39] for the higher- and [30,11] for the 2-dimensional case, as well as [32,9,12]
for closely related systems; or the survey [19]). Chemotaxis appearing in form of repulsion instead, on the 
other hand, can facilitate proofs of classical solvability or long-time behaviour (see, e.g. [5], [8]).
These antithetical outcomes prompt the question: What happens if both effects are present in the same 
model?
Indeed, such a system, namely

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu− χ∇ · (u∇v1) + ξ∇ · (u∇v2) in Ω × (0, T ),
∂tv1 = Δv1 − βv1 + αu in Ω × (0, T ),
∂tv2 = Δv2 − δv2 + γu in Ω × (0, T )
∂νu = ∂νv = ∂νw = 0 on ∂Ω × (0, T ),
u(·, t) = u(0), v1(·, 0) = v(0), v2(·, 0) = v

(0)
2 in Ω,

(2)

has been suggested as model for (a possible explanation of) the formation of plaques during early stages of 
Alzheimer’s disease in [29], where microglia (with density u) react to different substances by being attracted 
(concentration v1) or repelled (v2) by them; both signals are produced by glial cells themselves (or by other 
cells, which are not part of the model, in response to their presence).
All parameters in this system (describing the different strengths of chemo-attraction and -repulsion, of signal 
production and decay of the signals) are assumed to be positive. A first summary of the character of (2) is 
given by the parameter combination χα− ξγ. If χα − ξγ > 0, the system is “dominated by attraction”, if 
χα− ξγ < 0, it is “repulsion-dominated”. A justification of this nomenclature and condition is provided by 
the results in [35], where it was shown for a parabolic-elliptic-elliptic simplification of (2) (i.e. ∂tv1 and ∂tv2

in (2) replaced by 0) that for any dimension n ≥ 2 global classical bounded solutions exist in the repulsion-
dominated case, and under the condition β = δ blow-up is possible in the attraction dominated case already 
in spatially two-dimensional domains for certain initial data. The requirement β = δ was removed in the 
radial case in [6] and for nonradial settings in [22,41]. As in (1) with χ > 0, solutions with critical mass 
([34]; for the determination of the critical value see [7]) exist globally even in the attraction-dominant 2D 
case; if their mass is subcritical, they are bounded ([33]). If solutions blow up, some guaranteed time of 
existence can be estimated from properties of the initial datum [36].
A comparable dichotomy between attraction- and repulsion-dominated case is also known for the parabolic-
parabolic-elliptic system variant, where it was shown in [15] for two-dimensional domains that χα− ξγ ≤ 0
ensures global existence, whereas in the case of χα− ξγ > 0 the initial mass 

∫
Ω u0 decides the possibility of 

blow-up. If solutions are already supposed to be bounded, mild conditions ensuring their convergence are 
available, [26].
For the fully parabolic system, (2), it is known that solutions in one-dimensional domains are global and 
converge, [28,14]. In the two-dimensional repulsion-dominant case, solutions are global and bounded, [27,13], 
and, again for the repulsion-dominant case, global weak solutions were constructed if Ω ⊂ R3 in [13]. If 
χα − ξγ = 0, [25] proved boundedness of solutions (and convergence for small initial mass 

∫
u(0)). If the 

repulsion dominance is even stronger, in the sense that the quotient ξγχα surpasses a certain value, [16], even 
treating unequal diffusion rates for the chemicals, achieved a convergence result for the 2D case.
(For the fully parabolic or the simplified systems there are several further works showing boundedness owing 
to additional system components which have been identified as beneficial for boundedness in the chemotaxis 
literature, like decaying sensitivity functions (e.g. [3,40]), nonlinear diffusion of porous-medium (e.g. [42,20]) 
or p-Laplacian type [21], or the addition of logistic decay terms [37,23,3].)
Concerning blow-up, however, the only result for the fully parabolic system (2) seems to be the recent note 
[4], where finite-time blow-up was shown for radial solutions in n ≥ 3 if β = δ.
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In this article, we will show that blow-up can occur even without the restrictive condition β = δ, and does 
occur for initial data close to any prescribed initial condition, in the following sense:

Theorem 1.1. Let n = 3, R > 0 and Ω = BR ⊂ Rn. Let α, β, γ, δ, χ, ξ ∈ (0, ∞) be such that χα− ξγ > 0. Let 
u(0) ∈ C(Ω), v(0)

1 ∈ W 1,∞(Ω), v(0)
2 ∈ W 1,∞(Ω) be radially symmetric functions which are positive in Ω and 

satisfy 
∫
Ω u(0) = mu for some mu > 0. Then for each p ∈ (1, 2n

n+2 ) there exist sequences (u(k))k∈N ⊂ C(Ω)
and (v(k)

1 )k∈N , (v(k)
2 )k∈N ⊂ W 1,∞(Ω) of radially symmetric nonnegative functions satisfying 

∫
Ω u(k) = mu

for all k ∈ N and

u(k) → u(0) in Lp(Ω), v
(k)
1 → v

(0)
1 and v

(k)
2 → v

(0)
2 in L

2n
n−2 (Ω)

as k → ∞ and such that for every k ∈ N the solution of (2) with initial data (u(k), v(k)
1 , v(k)

2 ) blows up within 
finite time.

One reason why blow-up has been detected in the parabolic-elliptic-elliptic case more frequently is that 
there the method of blow-up detection by a study of second moments can be employed, which for the 
parabolic-elliptic variant of (1) goes back to [31,2,32] (for a short overview of the core idea see also [19, 
Section 2.1.2]). This method however, crucially relies on the equation for the signal being elliptic.
Other blow-up proofs for (1) stem from an energy functional, and, indeed, it is this functional on which [4]
(for β = δ) and the present article are based. In order to clarify the role of the condition β = δ (and to 
better connect to results concerning (1)), let us employ the following transformations in (2):
We set

w = (χα− ξγ)u (3a)

z = χv1 − ξv2 (3b)

v = v1 (3c)

and

a = δ, b = (δ − β)χ, c = β, d = α

χα− ξγ
. (3d)

From now on, we always assume that a > 0, b ∈ R, c > 0, d > 0 (or, in terms of (2), that α, β, γ, δ, χ, ξ > 0
with χα− ξγ > 0) and the domain Ω = BR(0) ⊂ Rn are fixed. (Accordingly, all constants appearing in the 
calculation may depend on these parameters, without this dependence being mentioned explicitly.)
We then obtain that if (u, v1, v2) is a solution of (2), then (w, z, v) satisfies

wt = (χα− ξγ) (Δu−∇ · (u∇(−χv1 − ξv2)))

= Δw −∇ · (w∇z)

and

zt = Δ(χv1 − ξv2) − χδv1 + χ(δ − β)v1 + ξδv2 + (χα− ξγ)u (4)

= Δz − az + bv + w

as well as

vt = Δv1 − βv1 + αu

= Δv − cv + dw
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and vice versa.
If we additionally transform the inital data according to

w(0) = (χα− ξγ)u(0), z(0) = χv
(0)
1 − ξv

(0)
2 , v(0) = v

(0)
1 , (5)

we thus are interested in solutions of

wt = Δw −∇ · (w∇z) (6a)

zt = Δz − az + bv + w (6b)

vt = Δv − cv + dw (6c)

∂νw
∣∣
∂Ω =∂νz

∣∣
∂Ω = ∂νv

∣∣
∂Ω = 0 (6d)

w(·, 0) =w(0), z(·, 0) = z(0), v(·, 0) = v(0) (6e)

In the attraction-dominant case – which we are dealing with –, χα > ξγ and hence w ≥ 0. If χα = ξγ, the 
transformation (3a) is inadvisable (w = u being a better choice then), but the last term in the first line of 
(4) disappears and thus shows why the balanced case χα = ξγ allows for better existence and boundedness 
results in [25] in the three-dimensional case. If χα < ξγ, similar transformations would still be possible, but 
the sign change of the source term +dw in (6c) would considerably change the character of the system.
If b = 0, that is, β = δ, the first two equations in (6) are decoupled from the third and, more importantly, 
form the classical (attraction-only) Keller–Segel system of chemotaxis, (1), whose well-known blow-up results 
(here: [39]) thereby can directly be transferred. (This is the observation [4] is based on.)
These blow-up proofs rest on the functional

F(w, z) =
∫
Ω

w lnw + a

2

∫
Ω

z2 + 1
2

∫
Ω

|∇z|2 −
∫
Ω

wz (7)

(if we assume χ = 1 in (1) and a = 1). With

D(w, z) =
∫
Ω

w|∇(lnw − z)|2 +
∫
Ω

(az − Δz + w)2 (8)

we then have (for solutions (w, z) of (1)) that

d

dt
F(w, z) + D(w, z) = 0. (9)

Therefore F decreases along the trajectories of solutions. This Lyapunov functional is not only helpful in 
obtaining boundedness of solutions with small mass (on the set of which F can be shown to be bounded 
from below in two-dimensional scenarios, where also the resulting bounds can be used to bootstrap higher 
regularity, cf. [1, Lemma 3.3]), but also extremely advantageous for finding blow-up solutions (see [19, 
Section 2.1.3]): It is known that F(w̃, ̃z) ≥ −K for some K > 0 on the set of stationary solutions (w̃, ̃z) and 
that every bounded solution must converge to such a stationary state (at least along a sequence of times 
(tj)j∈N with tj → ∞). But since F is decreasing and one can find initial data (w(0), z(0)) such that already 
F(w(0), z(0)) < −K, the corresponding solutions cannot be global and bounded.
However, despite (6a) coinciding with the first equation of (1), (6) and (1) are not identical. Let us compute 
d F(w, z) for solutions of (6):
dt
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d

dt
F(w, z) = d

dt

⎛⎝∫
Ω

w lnw + a

2

∫
Ω

z2 + 1
2

∫
Ω

|∇z|2 −
∫
Ω

wz

⎞⎠
=

∫
Ω

wt lnw −
∫
Ω

wtz + a

∫
Ω

ztz +
∫
Ω

∇z · ∇zt −
∫
Ω

wzt

=
∫
Ω

∇ · (w (∇ lnw −∇z)) (lnw − z) +
∫
Ω

zt (az − Δz − w)

= −
∫
Ω

w|∇(lnw − z)|2 −
∫
Ω

(az − Δz − w)2 + b

∫
Ω

v (az − Δz − w) .

Apparently, we have

d

dt
F(w, z) + D(w, z) = b

∫
Ω

v(az − Δz + w), (10)

with no discernible sign on the right-hand side, thus losing F ’s Lyapunov property.
Two remarks seem in order: Firstly, the related functional

F (u, v1, v2) =
∫
Ω

u ln u− χ

∫
Ω

uv1 + ξ

∫
Ω

uv2 + χ

2α

∫
Ω

(βv2
1 + |∇v1|2) −

ξ

2γ

∫
Ω

(δv2
2 + |∇v2|2)

has been identified as Lyapunov functional for the parabolic-parabolic-elliptic system in [15]. (We give it 
in the original variables, since (3b), or rather (4), does not cope well with the equation for v2 in (2) being 
elliptic); however, for the computations (in particular identities like [15, (5.65)]; see also [24, (2.14)] for a 
related functional in a system with nonlinear diffusion), which ensured that no term like that on the right 
of (10) remained, the ellipticity of the equation for v2 was imperative.
Secondly: Actually, it is not important that F be a Lyapunov functional. Already refining the above-sketched 
argument why a solution cannot be global and bounded to the assertion of blow-up within finite time (see 
[39]) uses that D can be estimated by a superlinear power of F , i.e.

D(w, z) ≥ (−cF(w, z) − 1)λ+ (11)

for some c > 0, λ > 1 and all functions (w, z) from a suitable set to which solutions belong, so that (9) turns 
into

d

dt
F(w, z) + (−cF(w, z) − 1)λ+ ≤ 0

or rather

d

dt
(−cF(w, z) − 1) ≥ (−cF(w, z) − 1)λ+, (12)

ensuring finite-time blow-up whenever −cF(w(0), z(0)) − 1 > 0 due to λ > 1. However, this line of reasoning 
can prevail over the substraction of an additional constant on the right of (12). Hence, if we estimate the 
term in (10) by Young’s inequality and the definition of D

b

∫
v(az − Δz + w) ≤ 1

2

∫
(az − Δz − w)2 + b2

2

∫
v2 ≤ 1

2D(w, z) + b2

2

∫
v2, (13)
Ω Ω Ω Ω
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investing half of the dissipation term, we only need to ensure boundedness of ‖v(·, t)‖L2(Ω) to employ 
essentially the same argument. Said boundedness will be achieved in Section 5 from a short application of 
semigroup estimates. (This is the only place where the spatial dimension may not exceed 3. We will keep all 
other lemmata general, writing n there.) Beforehand, we state a local existence result (Section 2), prepare 
a superlinear estimate akin to (11) (Section 3) for functions belonging to a certain set S(m, M, B, κ) (as 
defined in (15)) and ensure that (w(·, t), z(·, t)) lie in this set if the initial data satisfy simple conditions 
(Lemma 4.4). In Section 6, we combine all previous parts to obtain a differential inequality like (12). After 
recalling unboundedness of F in Section 7, we finally prove Theorem 1.1 in Section 8.

2. Local existence

In a first step we ensure existence of solutions. For the initial data we assume nonnegativity for two of the 
components and some regularity,

0 ≤ w(0) ∈ C(Ω), 0 ≤ v(0) ∈ C(Ω), z(0) ∈ W 1,∞(Ω), (14)

with radial symmetry being a frequent later additional assumption.

Lemma 2.1. Let (w(0), z(0), v(0)) be as in (14). Then there are Tmax > 0 and

(w, z, v) ∈ C2,1(Ω × (0, Tmax)) ∩ C(Ω × [0, Tmax))

such that (w, z, v) solves (6) classically and

either Tmax = ∞ or lim sup
t↗Tmax

‖w(·, t)‖L∞(Ω) = ∞.

Moreover, (w, z, v)(·, t) is radially symmetric for every t ∈ (0, Tmax) if w(0), v(0), z(0) are radially symmetric. 
Finally, w ≥ 0 and v ≥ 0 in Ω × (0, Tmax).

Proof. This local existence result can be obtained by the fixed-point based reasoning well-established in the 
context of chemotaxis models, [1, Lemma 3.1] (see also [35, Lemma 3.1]); nonnegativity for the first and 
third component follow from the comparison principle. �
Remark 2.2. We do not assert positivity of the second component, since we do not want to impose a 
restriction on the sign of b.

3. Estimating F in terms of D on the set S

We let

S(m,M,B, κ) =
{

(w, z) ∈ C1(Ω) × C2(Ω) | w and z are radially symmetric,

w is positive ,

∫
Ω

w = m,

∫
Ω

|z| ≤ M,∂νz = 0 on ∂Ω, and |z(x)| ≤ B|x|−κ

}
(15)

and show that for (w, z) ∈ S(m, M, B, κ), D(w, z) corresponds to a superlinear power of F(w, z). The key 
for this estimate is the following lemma:
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Lemma 3.1. Let m > 0, M > 0, κ > n − 2, B > 0. Then there are C = C(m, M, B, κ) > 0 and θ ∈ (1
2 , 1)

such that for every (w, z) ∈ S(m, M, B, κ) we have

∫
Ω

w|z| ≤ C ·
(
‖Δz − az + w‖2θ

L2(Ω) + ‖
√
w (∇ lnw − z) ‖L2(Ω) + 1

)
.

Proof. For the case of a = 1 and the additional assumption z ≥ 0, this is the statement of [39, Lemma 4.1]. 
Only minor changes are required to make it applicable here. We include a brief discussion of the necessary 
adjustments in Appendix A. �
Lemma 3.2. Let m > 0, M > 0, κ > n − 2, B > 0. Then there are C = C(m, M, B, κ) > 0 and θ ∈ (1

2 , 1)
such that for every (w, z) ∈ S(m, M, B, κ) we have

F(w, z) ≥ −C(m,M,B, κ)
(
Dθ(w, z) + 1

)
.

Proof. As in [39, Lemma 5.1], this follows directly from Lemma 3.1: With some C1 > 0, C2 > 0 and 
θ ∈ (1

2 , 1),

F(w, z) =
∫
Ω

w lnw + a

2

∫
Ω

z2 + 1
2

∫
Ω

|∇z|2 −
∫
Ω

wz

≥ −|Ω|
e

−
∫
Ω

w |z|

≥ −C1(1 + ‖Δz − az + w‖2θ
L2(Ω) + ‖

√
w (∇ lnw − v) ‖L2(Ω))

≥ −C2(1 + (‖Δz − az + w‖2
L2(Ω) + ‖

√
w (∇ lnw − v) ‖2

L2(Ω))θ)

= −C2(1 + Dθ(w, z))

for every (w, z) ∈ S(m, M, B, κ). �
4. Ensuring that solutions remain in S

The crucial estimate in Lemma 3.2 hinges on the fact that (w, z) ∈ S(m, M, B, κ). In this section we will 
take care that (w(·, t), z(·, t)) ∈ S(m, M, B, κ) for every t ∈ (0, Tmax). We will focus on the component z
with the largest part of the work directed to the pointwise estimate |z(x)| ≤ B|x|−κ.

Lemma 4.1. There is C1 > 0 and for every p ∈ (1, n
n−1 ) there is C2(p) > 0 such that for any choice of 

w(0), v(0), z(0) as in (14), the solution (w, z, v) of (6) satisfies

‖z(·, t)‖L1(Ω) ≤ C1

(
‖w(0)‖L1(Ω) + ‖z(0)‖L1(Ω) + ‖v(0)‖L1(Ω)

)
(16)

and

‖∇z(·, t)‖Lp(Ω) ≤ C2(p)
(
‖∇z(0)‖L2(Ω) + ‖v(0)‖L1(Ω) + ‖w(0)‖L1(Ω)

)
(17)

for every t ∈ (0, Tmax).
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Proof. An integration of (6c) and (6a) shows that

d

dt

∫
Ω

v = −c

∫
Ω

v + d

∫
Ω

w = −c

∫
Ω

v + d

∫
Ω

w(0) in (0, Tmax)

and thus

∫
Ω

v(·, t) ≤ max

⎧⎨⎩
∫
Ω

v(0),
d

c

∫
Ω

w(0)

⎫⎬⎭ for every t ∈ (0, Tmax),

so that by nonnegativity of v and, again, mass-conservation for w,

‖bv(·, t) + w(·, t)‖L1(Ω) ≤ |b|‖v(0)‖L1(Ω) +
(

1 + |b|d
c

)
‖w(0)‖L1(Ω) (18)

for all t ∈ (0, Tmax).
On account of the representation

z(·, t) = et(Δ−a)z(0) +
t∫

0

e−(t−s)ae(t−s)Δ(bv(·, s) + w(·, s))ds, t ∈ (0, Tmax), (19)

and the maximum principle for the heat equation we may estimate

‖z(·, t)‖L1(Ω) ≤ e−at‖z(0)‖L1(Ω) +
t∫

0

e−a(t−s)‖bv(·, s) + w(·, s)‖L1(Ω)ds

≤ ‖z(0)‖L1(Ω) + 1
a

sup
s∈(0,Tmax)

‖bv(·, s) + w(·, s)‖L1(Ω)

for every t ∈ (0, Tmax), which by (18) entails (16).
Again starting from (19), we employ well-known estimates for the Neumann heat semigroup (see [38, Lemma 
1.3]) and obtain a constant c1 > 0 such that

‖∇z(·, t)‖Lp(Ω) ≤ c1‖∇z(0)‖L2(Ω) + c1

t∫
0

(t− s)−
1
2−n

2 (1− 1
p )e−a(t−s)‖bv(·, s) + w(·, s)‖L1(Ω)ds

holds for every t ∈ (0, Tmax) and every solution of (6). As the condition on p ensures that

c2 :=
∞∫
0

σ− 1
2−n

2 (1− 1
p )e−aσdσ < ∞,

this together with (18) implies (17) if we set C(p) = c1 + c1c2(|b| + 1 + |b|d
c ). �

In the following lemma we use the radial symmetry of solutions, writing z(r, t) with r = |x| in place of z(x, t). 
The proof follows [39, Lemma 3.2] closely (where, however, additionally nonnegativity of z was used).
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Lemma 4.2. Let p ∈ (1, n
n−1 ). Then there exists C(p) > 0 such that for every radially symmetric 

(w(0), z(0), v(0)) as in (14), the solution of (6) satisfies

|z(r, t)| ≤ C(p)
(
‖w(0)‖L1(Ω) + ‖v(0)‖L1(Ω) + ‖z(0)‖L1(Ω) + ‖∇z(0)‖L2(Ω)

)
r−

n−p
p

for all (r, t) ∈ (0, R) × (0, Tmax).

Proof. If we set K = C1
(
‖w(0)‖L1(Ω) + ‖z(0)‖L1(Ω) + ‖v(0)‖L1(Ω)

)
with C1 from Lemma 4.1, we know from 

said lemma that ∫
BR\BR

2

|z(·, t)| ≤
∫
Ω

|z(·, t)| ≤ K

for every t ∈ (0, Tmax), and thus for every t ∈ (0, Tmax) can find r0(t) ∈ (R2 , R) such that

|z(r0(t), t)| ≤
K

|BR \BR
2
| .

In particular, by Hölder’s inequality and Lemma 4.1 (with C2(p) taken from the latter),

|z(r, t)| − K

|BR \BR
2
|R

n−p
p r−

n−p
p ≤ |z(r, t)| − |z(r0(t), t)| ≤ |z(r, t) − z(r0, t)|

≤

∣∣∣∣∣∣∣
r∫

r0(t)

zr(ρ, t)dρ

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
r∫

r0(t)

ρn−1|zr(ρ, t)|pdρ

∣∣∣∣∣∣∣
1
p
∣∣∣∣∣∣∣

r∫
r0(t)

ρ−
n−1
p−1 dρ

∣∣∣∣∣∣∣
p−1
p

≤ C2(p)
(
‖∇z(0)‖L2(Ω) + ‖v(0)‖L1(Ω) + ‖w(0)‖L1(Ω)

) ∣∣∣∣∣∣∣
r∫

r0(t)

ρ−
n−1
p−1 dρ

∣∣∣∣∣∣∣
p−1
p

for every (r, t) ∈ (0, R) × (0, Tmax). Since

∣∣∣∣∣∣∣
r∫

r0(t)

ρ−
n−1
p−1 dρ

∣∣∣∣∣∣∣
p−1
p

≤ 2
n−p
p

(
p− 1
n− p

) p−1
p

r−
n−p
p

for every r ∈ (0, R) and t ∈ (0, Tmax) (cf. [39, (3.6), (3.7)]) due to r0(t) > R
2 , the lemma follows. �

In the same way as in [39, Cor. 3.3], we summarize these results:

Corollary 4.3. For every κ > n − 2 there is C(κ) > 0 such that for all radially symmetric (w(0), z(0), v(0))
as in (14), the solution of (6) satisfies

|z(r, t)| ≤ C(κ)
(
‖w(0)‖L1(Ω) + ‖v(0)‖L1(Ω) + ‖z(0)‖L1(Ω) + ‖∇z(0)‖L2(Ω)

)
r−κ
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for all (r, t) ∈ (0, R) × (0, Tmax).

Proof. This follows upon an application of Lemma 4.2 to some p > 1 fulfilling p ∈ ( n
κ+1 , 

n
n−1 ). �

Lemma 4.4. Let m > 0 and A > 0 and κ > n − 2. Then there are M > 0 and B > 0 such that for every 
choice of radially symmetric (w(0), z(0), v(0)) as in (14) and with∫

Ω

w(0) = m, ‖v(0)‖L1(Ω) ≤ A, ‖z(0)‖L1(Ω) ≤ A, ‖∇z(0)‖L2(Ω) ≤ A

the solution (w, z, v) of (6) satisfies

(w(·, t), z(·, t)) ∈ S(m,M,B, κ) for every t ∈ (0, Tmax).

Proof. This is a consequence of mass-conservation of w, (16) (indicating a suitable choice of M) and Corol-
lary 4.3 (yielding B). �
5. The time-uniform bound for v in L2(Ω)

As discussed in the introduction, here we give an estimate for the seemingly inconvenient term in (13):

Lemma 5.1. Let n = 3, A > 0 and m > 0. Then there is C = C(A, m) > 0 such that whenever w(0) satisfies 
(14) and 

∫
Ω w(0) ≤ m and v(0) is such that ‖v(0)‖L2(Ω) ≤ A, then any solution of (6) satisfies

‖v(·, t)‖L2(Ω) ≤ C for all t ∈ (0, Tmax). (20)

Proof. Representing v by means of the Neumann heat semigroup, we find that according to [38, Lemma 
1.3] there are c1, c2 > 0 such that for every t ∈ (0, Tmax),

‖v(·, t)‖L2(Ω) = ‖et(Δ−c)v(0) +
t∫

0

e(t−s)(Δ−c)w(·, s)ds‖L2(Ω)

≤ c1e
−ct‖v(0)‖L2(Ω) + c2

t∫
0

e−c(t−s)(1 + (t− s)− 3
2 (1− 1

2 ))‖w(·, s)‖L1(Ω)ds.

Since 
∫∞
0 e−cσσ− 3

4 dσ is finite and ‖w(·, s)‖L1(Ω) = ‖w(0)‖L1(Ω) for every s ∈ (0, Tmax), this shows (20). �
6. The differential inequality

This section is dedicated to the differential inequality, from which the blow-up arises. Let us first summarize 
the outcome of the corresponding discussion in the introduction:

Lemma 6.1. Let (w(0), z(0), v(0)) be as in (14). Then every solution (w, z, v) of (6) fulfilling

‖v(t)‖L2(Ω) ≤ K for all t ∈ (0, Tmax) (21)

satisfies

d F(w, z) + 1D(w, z) ≤ b2K2
in (0, Tmax). (22)
dt 2 2
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Proof. By (10) and (13) together with (21), we directly obtain that

d

dt
F(w, z) + D(w, z) ≤ 1

2D(w, z) + b2K2

2

and hence (22). �
Thanks to Lemma 5.1, this statement can be transformed to pose conditions on the solution at the initial 
time only. If additionally combined with the outcomes of Section 3 and Section 4, we obtain the following:

Lemma 6.2. Let n = 3, m > 0 and A > 0. Then there are θ ∈ (1
2 , 1), C1 > 0, C2 > 0 and C3 > 0 such that 

for every choice of radially symmetric (w(0), z(0), v(0)) as in (14) with

∫
Ω

w(0) = m, ‖v(0)‖L1(Ω) ≤ A, ‖z(0)‖L1(Ω) ≤ A,

‖v(0)‖L2(Ω) ≤ A, ‖∇z(0)‖L2(Ω) ≤ A

the solution (w, z, v) of (6) satisfies

d

dt

(
− 1
C1

F(w, z) − 1
)

≥ C2

(
− 1
C1

F(w, z) − 1
) 1

θ

+
− C3 in (0, Tmax). (23)

Proof. We let κ > n −2 and according to Lemma 4.4, we can find M , B such that every solution emanating 
from initial data as in the lemma satisfies (w(·, t), z(·, t)) ∈ S(m, M, B, κ) for every t ∈ (0, Tmax). Thus 
Lemma 3.2 asserts the existence of some constant c1 > 0 such that with θ ∈ (1

2 , 1) as in Lemma 3.2

F(w, z) ≥ −c1(Dθ(w, z) + 1),

and hence

D(w, z) ≥
(
− 1
c1

F(w, z) − 1
) 1

θ

+
throughout (0, Tmax)

for every such solution. As Lemma 5.1 ensures that with some c2 = c2(A, m) > 0,

‖v(·, t)‖L2(Ω) ≤ c2 for every t ∈ (0, Tmax),

Lemma 6.1 becomes applicable and shows that with c3 = b2c22
2

d

dt
F(w, z) ≤ c3 −

1
2D(w, z) in (0, Tmax)

and therefore

d

dt

(
− 1
c1

F(w, z) − 1
)

≥ −c3
c1

+ 1
2

(
− 1
c1

F(w, z) − 1
) 1

θ

+
in (0, Tmax). �

In terms of blow-up, we can conclude the following from Lemma 6.2:
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Lemma 6.3. Let n = 3, m > 0 and A > 0. Then there is K > 0 such that for every choice of radially 
symmetric (w(0), z(0), v(0)) as in (14) with∫

Ω

w(0) = m, ‖v(0)‖L1(Ω) ≤ A, ‖z(0)‖L1(Ω) ≤ A,

‖v(0)‖L2(Ω) ≤ A, ‖∇z(0)‖L2(Ω) ≤ A

and

F(w(0), z(0)) < −K

the solution (w, z, v) of (6) blows up in finite time.

Proof. Given m and A, we let C1, C2, C3 be as provided by Lemma 6.2. Setting K = C1

((
C3
C2

)θ

+ 1
)

, we 

conclude from (23) that y(t) = − 1
C1

F(w(·, t), z(·, t)) − 1 satisfies the superlinear differential inequality

y′ ≥ C2y
1
θ
+ − C3

together with y(0) > 1
C1

K − 1, which ensures that C2y
1
θ
+(0) − C3 > 0. Hence y (therefore F(w, z) and thus 

w) must blow up in finite time. �
7. Preparing initial data

It is well-known that F is unbounded from below (even on each set of pairs of functions with fixed L1-norm 
of the first component). We recall the corresponding result:

Lemma 7.1. Let n ≥ 3, m > 0 and w ∈ C(Ω) and z ∈ W 1,∞(Ω) be radially symmetric and let w be positive 
with 

∫
Ω w = m. Then for each p ∈ (1, 2n

n+2 ) there are sequences (w(k))k∈N ⊂ C(Ω) and (z(k))k∈N ⊂ W 1,∞(Ω)
of radially symmetric functions such that w(k) is positive and satisfies 

∫
Ω w(k) = m for every k ∈ N and 

such that

w(k) → w in Lp(Ω) and z(k) → z in W 1,2(Ω) as k → ∞

but such that with F from (7)

F(w(k), z(k)) → −∞ as k → ∞.

Proof. This can be shown by the construction in [39, Lemma 6.1] (see also [18]). �
8. Proof of Theorem 1.1

In order to prove Theorem 1.1, we mainly have to combine Lemma 6.2 with Lemma 7.1. Additionally, we 
return to the variables of the original system (2).

Proof of Theorem 1.1. In line with (5), we define

w(0) = (χα− ξγ)u(0), z(0) = χv
(0)
1 − ξv

(0)
2 , v(0) = v

(0)
1 .
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We let m =
∫
Ω w(0),

A = 2 max
{
‖v(0)‖L2(Ω), ‖v(0)‖L1(Ω), ‖z(0)‖L1(Ω), ‖∇z(0)‖L2(Ω)

}
and introduce K > 0 as provided for these choices of A and m by Lemma 6.3. Aided by Lemma 7.1, we then 
pick a sequence ((w(k), z(k)))k∈N of radially symmetric functions satisfying w(k) ≥ 0 in Ω and 

∫
Ω w(k) = m

for every k ∈ N,

w(k) → w(0) in Lp(Ω) and z(k) → z(0) in W 1,2(Ω)

as well as F(w(k), z(k)) → −∞ as k → ∞. We then let v(k) = 1
χ (ξv(0)

2 + z(k))+ and note that due to 

W 1,2(Ω) ↪→ L
2n

n−2 (Ω) the term 1
χ (ξv(0)

2 + z(k)) converges in L
2n

n−2 (Ω) and the same holds true for its positive 
part:

v(k) → 1
χ

(
ξv

(0)
2 + z(0)

)
+

= 1
χ

(
χv

(0)
1

)
+

= v
(0)
1 = v(0) in L

2n
n−2 (Ω) as k → ∞.

If necessary discarding a finite number of elements from the sequence, on account of the convergence we 
may assume that

‖v(k)‖L2(Ω) ≤ A, ‖v(k)‖L1(Ω) ≤ A, ‖z(k)‖L1(Ω) ≤ A, ‖∇z(k)‖L2(Ω) ≤ A

and

F(w(k), z(k)) ≤ −K

for every k ∈ N. Lemma 6.3 then asserts that the corresponding solutions (w, z, v) blow up in finite 
time. Defining u = 1

χα−ξγw, v1 = v and v2 = 1
ξ (χv − z) we have blow up of solutions to the original 

system (2). Concerning nonnegativity of the corresponding initial data u(k) = 1
χα−ξγw

(k), v(k)
1 = v(k) and 

v
(k)
2 = 1

ξ (χv(k) − z(k)) let us note that nonnegativity of u(k) immediately follows from that of w(k), that of 
v
(k)
1 is ensured by the positive part in the definition of v(k) and for

ξv
(k)
2 = χv(k) − z(k) = (ξv(0)

2 + z(k))+ − z(k) ≥ 0

we can rely on the nonnegativity of v(0)
2 . �

Appendix A

A.1. Proof of Lemma 3.1

For Lemma 3.1, we have referred to [39]. However, there only the case of a = 1 was covered and, more 
importantly, the definition of S(m, M, B, κ) contained the condition that z be nonnegative. In order to 
avoid a gap in the proof, we discuss necessary changes. However, since most necessary adjustments are 
rather small, we will confine ourselves to a brief outline. We already change the variable names (u, v) to 
(w, z) in line with the notation in the earlier proofs.
Throughout this section, we assume that m > 0, M > 0, B > 0, κ > n − 2, n ≥ 3, a > 0 are fixed.
Following [39, (4.5) and (4.6)], but including a, we introduce the abbreviations

f = −Δz + az − w, g =
(
∇w√ −

√
w∇z

)
· x =

√
w∇ (lnw − z) · x

.

w |x| |x|
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Lemma A.1. There exists C(M) > 0 such that for all (w, z) ∈ S(m, M, B, κ) we have∫
Ω

w|z| ≤ 2
∫
Ω

|∇z|2 + C(M)
(
‖Δz − az + w‖

2n+4
n+4
L2(Ω) + 1

)
.

Proof. If we multiply the definition of f by |z|, we obtain∫
Ω

w|z| =
∫
Ω

z

|z| |∇z|2 + a

∫
Ω

z|z| −
∫
Ω

f |z|.

Since 
∣∣∣∫Ω

z
|z| |∇z|2

∣∣∣ ≤
∫
Ω |∇z|2, 

∣∣a ∫Ω z|z|
∣∣ ≤ 1

2
∫
Ω |∇z|2 + c2 for some suitable c2 > 0 and 

∣∣− ∫
Ω fz

∣∣ ≤
‖f‖L2(Ω)‖z‖L2(Ω), the proof of [39, Lemma 4.2] remains applicable. �
Lemma A.2. Let r0 ∈ (0, R) and ε ∈ (0, 1). Then there is C(ε, m, M, B, κ) > 0 such that for all (w, z) ∈
S(m, M, B, κ) we have∫

Ω\Br0

|∇z|2 ≤ ε

∫
Ω

w|z| + ε

∫
Ω

|∇z|2 + C(ε,m,M,B, κ)
(
r
− 2n+4

n κ
0 + ‖Δz − az + w‖

2n+4
n+4
L2(Ω)

)
.

Proof. Testing the definition of f by sgn(z)|z|α for some α ∈ (0, 1), we obtain α
∫
Ω |z|α−1|∇z|2+a 

∫
Ω |z|α+1 =∫

Ω w|z|α +
∫
Ω f |z|α. Merely replacing every other occurrence of v or vα in the proof of [39, Lemma 4.3] by 

|z| or |z|α instead of by z and zα, we can copy said proof. �
Lemma A.3. There is C(m) > 0 such that for every r0 ∈ (0, R) and all (w, z) ∈ S(m, M, B, κ) we have∫

Br0

|∇z|2 ≤ C(m)
(
r0‖Δz − az + w‖2

L2(Ω) + ‖
√
w∇(lnw − z)‖L2(Ω) + ‖z‖2

L2(Ω) + 1
)
.

Proof. This is [39, Lemma 4.4] and apart from an additional coefficient a in the definition of f in the first 
two lines of the proof and in front of the last term in [39, (4.25)] and the preceding inequality, no changes 
are necessary. �
Lemma A.4. For each ε > 0 there is C(ε, m, M, B, κ) > 0 such that every (w, z) ∈ S(m, M, B, κ) obeys the 
estimate∫

Ω

|∇z|2 ≤ ε

∫
Ω

w|z| + C(ε,m,M,B, κ)
(
‖Δz − az + w‖2θ

L2(Ω) + ‖
√
w∇(lnw − z)‖L2(Ω) + 1

)
,

where θ = 1
1+ n

(2n+4)κ
∈ (1

2 , 1).

Proof. Here the term 
∫
Ω uv arising from an application of [39, Lemma 4.3] (i.e. Lemma A.2) has to be 

replaced by 
∫
Ω w|z|. Apart from that, we can follow the proof of Lemma 4.5 in the preprint of [39] on 

arxiv.org. (Note that the seemingly slightly better exponent in the published journal version stems from an 
unfortunate mistake near the end of the proof.) �
Proof of Lemma 3.1. Lemma 3.1 follows from a combination of Lemma A.1 with Lemma A.4 applied to 
ε = 1 , since 2n+4 ≤ 2θ. �
4 n+4
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