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This paper addresses the extension of the Bayliss]Turkel second-order radiation
condition to an arbitrarily shaped surface. The derivation is based mainly on the
pseudo-differential calculus as well as on the introduction of a criterion providing a
precise handling of the approximation process involved in the derivation of the
radiation condition. The radiation condition then ranges among the most accurate
of those of order two. As a by-product of the derivation, almost all known radiation
conditions of order less than or equal to two are recovered and their respective
accuracies are compared. Q 1999 Academic Press
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1. INTRODUCTION

The field of a scalar time-harmonic scattered wave is generally governed
Ž w x w xby the following model problem cf., e.g., 12 in electromagnetic and 7 in

. Nacoustic scattering . Find u defined in an exterior domain V of R , withq
Ž .N s 2, 3 i.e., such that its complement V is a compact set , satisfying they

Helmholtz equation

Du q k 2 u s 0 in V , 1Ž .q
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the Sommerfeld radiation condition

< < ŽNy1.r2lim x ­ u y iku s 0, 2Ž .Ž .< x <
< <x ª`

expressing that the energy propagates from the obstacle V towardy
infinity, and a boundary condition

BBu s g [ yBBuinc on S ,

expressed by a given boundary differential operator BB. uinc stands for the
incident wave and is a given solution to the Helmholtz equation in the

Ž .vicinity of the obstacle; the time variation exp yi2pn t is suppressed by
linearity; n ) 0 is the frequency; and k s 2pnrc is the related wave
number, where c is the velocity of the propagation. Hereafter, we assume

` Nthat V is a CC compact manifold with boundary S imbedded in R .y
However, such a degree of smoothness is needed only for theoretical
purposes. This is relative to the use of the pseudo-differential calculus and
may largely be weakened at the level of the final obtained radiation
conditions.

It is well known that a process limiting the computational domain has to
be used before any attempt to numerically solve the above problem. A
broadly used approach consists of truncating the infinite domain with a
terminating closed boundary G enclosing the obstacle. A boundary condi-
tion is then introduced on G in such a way that the resulting boundary-value
problem is well posed and its solution approximates the restriction of u to
the bounded domain V limited by S and G. Two classes of such a
boundary condition can be used. Exact conditions give exactly the restric-

Žtion of u if no further approximation is made. The approximate some-
.times also called radiation or absorbing boundary conditions only yield an

approximation of this restriction. They can be designed from numerous
w xstandpoints, such as low-reflecting boundary conditions 12, 20 , one-way

w xpropagating waves 9, 10 , radiation conditions obtained from a Wilcox
w xexpansion far from the obstacle 5, 18, 19 , the behavior of the solution

w xnear a wave front 13, 14 , etc. These boundary conditions can be seen as
an exact or an approximate way to deal with the following so-called
Dirichlet-to-Neumann operator. Let V

X be the exterior domain limited by
the introduced boundary G. For a function w defined on G, consider w,

Ž . X Ž .the solution to Eq. 1 in V subject to 2 and to the boundary condition

w s w on G.

The operator is then defined by

Lw s ­ w on G ,n

where n is the unit normal to G inwardly directed to V
X.
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It is well known that L is a pseudo-differential operator of order q1
Ž w xsee 6, 23 concerning this point and for standard notation as well as
functional spaces, which will be used in the sequel without further com-

.ment . Hereafter we limit ourselves to the extreme case where G exactly
coincides with S. The problem to be solved is then reduced to a system of
two boundary equations,

BBu s g , Lu y ­ u s 0 on G ,n

in the two unknowns u and ­ u , classically referred to as the Cauchy<G n <G

data of the problem. The determination of these unknowns yields the
solution entirely from the classical Helmholtz integral representation
formula. The above approach is exactly what is done in a boundary integral
equation method even if the effective derivation of this equation follows a
different path.

Unfortunately, the mapping L is not a differential operator. As a result,
a standard discretization of L by a finite-element method leads to a full
matrix. Somewhat obviously, this results in storage and computational
difficulties, especially when high-frequency or three-dimensional problems
are considered.

w xRather surprisingly, Kriegsmann et al. 16 have succeeded in designing
a differential approximation of the operator A in a heuristic way that
yields a reasonably accurate solution in the case of a bidimensional
convex-shaped obstacle. They called the resulting equation an on surface

Ž .radiation condition OSRC . The essential trick of the approach is to write
a radiation condition intrinsically on a large circle of radius R by putting
the curvature z in place of the term 1rR and substituting the derivative
with respect to the curvilinear abscissa ­ to the differential operators
Ry1­ , where u is the angular variable.u

w xFrom numerical experiments 1, 3 we have observed that the most
accurate second-order condition is based on the related Bayliss]Turkel
radiation condition on the circle. Furthermore, since circular geometry has
a constant curvature, a more accurate condition can be obtained by first

Žwriting the OSRC in the form of a symmetric operator relative to the
2Ž ..scalar product of L G incorporating the derivative of the curvature

before formally writing it on an arbitrarily shaped obstacle.
It has been known for a long time that incorporating curvature terms

Ž w x . w xgives more accurate radiation conditions see 11 , for instance . Jones 13
w xand, more recently, Stupfel 22 have constructed absorbing conditions

depending on the derivatives of the curvature but which do not lead to a
w xsymmetric operator. However, we have observed in 3 that Jones’s condi-

tions result in a degeneracy of the quality of the approximation when
applied to problems involving polygonal scatterers through the OSRC
technique.
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The above heuristic derivation of the OSRC from the radiation condi-
tion of Bayliss and Turkel may also be questionable. Is it really the most
accurate OSRC of the second order that can be designed? Since the
curvature operator is scalar for an arbitrarily shaped boundary in the
two-dimensional case, the heuristic transposition of the Bayliss]Turkel
radiation condition can be made in a straightforward way. But what about
such a transposition for three-dimensional problems where this operator is
scalar only for spherical geometries? An attempt to answer these questions

Žcan be made by using the formalist background of microlocal analysis the
.calculus of pseudo-differential operators . Such an approach has been

w xinitiated by Engquist and Majda 9 . In this paper, we develop a clear and
precise handling of the construction process that explains why the above
modified Bayliss]Turkel condition is the most accurate and results in a
condition of the same accuracy in three dimensions. Let us briefly describe

w xthis approach. Using Nirenberg’s decomposition theorem 21 and symbolic
calculus, one easily derives an asymptotic expansion of the operator L in
the form

L ; L , 3Ž .Ý yj
y1FjF`

where the sign ; has the following meaning: for every nonnegative
integer m, the operator L y Ý L is a pseudo-differential opera-y1 F jF m yj

Ž . Ž .tor of order at most y m q 1 . In this way, the expansion 3 gives an
explicit expression of the operator L, since the symbol of L can beyj
obtained from an explicit recursive formula. Apparently two steps are
necessary for the construction of a differential operator approximating L.
First, an ‘‘approximation’’ of the operator L by a finite sum Ý Ly1 F jF m yj
has to be made. Strictly speaking, this process results in an approximation
of the operator L such that the remaining correction is a regularizing

Ž .operator producing m q 1 supplemental orders of derivations every time
it is applied to a function. The question is: How many terms in this
expansion have to be retained for a fixed accuracy? Second, the explicit
operators L have themselves to be approximated by a differentialyj
operator. How can this approximation be made without discarding any
nonnegligible term? The following property gives the precise criterion for
the construction. Essentially every operator L has a symbol l thatyj yj
behaves like kyj for large k. The symbol of Ý L is expanded by ay1 F jF 2 yj
Taylor expansion in powers of frequency up to the term 1rk 2. The
resulting expression differs only by terms in 1rk 3 with the symbol relative
to the accurate condition, heuristically designed in the two-dimensional

w xcase 3 . Clearly, the same procedure can be used in dimension 3 to design
an extension of the Bayliss]Turkel boundary condition for an arbitrarily
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shaped surface. Furthermore, we shall see that this approach gives a
common framework from which almost all radiation conditions of order
less than or equal to 2 can be recovered.

Here we choose not to complicate the exposition by considering a
general frame for a space of dimension N equal to either 2 or 3. We
concentrate on the three-dimensional case since the heuristic procedure
cannot be used there to design the most accurate second-order condition.
The radiation condition for N s 2 can then be obtained as a special form
of the three-dimensional one.

This paper is organized as follows. We begin in Section 2 by reviewing
the description of a coordinate system that is well adapted to the descrip-
tion of a thin layer in the vicinity of a surface. Then we give the expression
of the Laplace operator in this coordinate system. The coordinate change
reduces the study to the case where the problem is set in a half-plane but
involves a variable coefficient wave equation. In Section 3, we define the
Dirichlet-to-Neumann nonlocal pseudo-differential operator L as the out-
going part of the solution to the wave equation. Several properties of this
operator that are crucial to the method are briefly noted, as is the
application of the Nirenberg factorization theorem, which yields a formula

� 4that permits recursive determination of the entire sequence l .yj y1F jF`

Moreover, we prove that the leading term of a symbol l associated withyj
an operator L behaves like kyj as k tends to infinity. In Section 4, weyj
introduce a precise criterion based upon the combination of a symbolical
truncation and a Taylor’s expansion in 1rk of symbols, providing a
hierarchy of surface radiation conditions of different orders. We then show
how most of the well-known radiation conditions can be recovered. Finally,
we design a second-order Bayliss]Turkel-like radiation condition for an
arbitrarily shaped surface.

2. REVIEW OF DIFFERENTIAL GEOMETRY

In this section we intend to write the Laplace operator in a system of
local coordinates defined in a so-called tubular neighborhood of the
surface G. For d ) 0, this type of neighborhood UU is defined byd

UU s x g R3 ; d x - d ,� 4Ž .d

where the function d stands for the distance from x to G. When d is
< < Ž .chosen small enough, there exists a unique p in G such that x y p s d x

Ž w x.for any x in UU see, for instance, 8 . The vector p is the orthogonald

projection of x onto G. The unit normal vector to G is pointing into V ,q
that is, defining

n p s "=d x if x g V ,Ž . Ž . "
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we get an extension of the field n to all of UU . Therefore UU admits ad d

natural parametrization by

UU s x s p q rn p ; yd - r - d , p g G .� 4Ž .d

More precisely, for sufficiently small d ) 0, the mapping

p , r ¬ x s p q rn p 4Ž . Ž . Ž .
` Ž .is a CC -diffeomorphism of manifolds between G = yd , d and UU . Ford

yd - r - d , the surface G parallel to G can be defined byr

G s x g R3 ; x s p q rn p . 5� 4Ž . Ž .r

The unit normal to G at a point x is then given by the previous extensionr
Ž . Ž .of the unit normal n x . According to 5 , G is simply the surface G .0

Ž . 2Now consider a coordinate patch VV , C of G where C: VV ; R ª G.
Ž . Ž .Each point p of C VV ; G is then given by p s C s , and the normal

vector to G can be defined by the following rule. The coordinate patch
Ž . Ž .gives rise to a basis t , t of the tangent plane T G :1 2 p

t s ­ C , i s 1, 2,i s i

where s and s are the coordinates of s. We assume that this coordinate1 2
patch is compatible with the orientation of the unit normal n, that is,

t = t1 2
n p s ,Ž .

< <t = t1 2

where = stands for the usual vector product.
Ž . Ž .Now consider a function ¨ depending on x and define ¨ s, r s ¨ x . To˜

Ž .write the Laplacian in the coordinates s, r , we first use the two following
relations given by the chain rule:

3

­ ¨ s, r s ­ ¨ ­ x s =¨ ? ­ x ,Ž . Ýs x s i sj i j j
is1

3

­ ¨ s, r s ­ ¨ ­ x s =¨ ? ­ x , j s 1, 2.Ž .˜ Ýr x r i ri
is1

w ? w denotes the usual scalar product of two vectors w and w with1 2 1 2
Ž . Ž . Ž Ž ..three possibly complex components. Thus, since x s C s q rn C s ,

we get

­ x s n C s , ­ x s t q r­ n, j s 1, 2.Ž .Ž .r s j sj j
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The derivatives

­ n s RRt , j s 1, 2s jj

can be expressed using a self-adjoint operator RR of the tangent plane,
Ž . Ž w x.thereby giving the curvature of G at the point p s C s cf., e.g., 8 .

If we denote by I the identity of the tangent plane, we then get

­ x s I q r RR t , j s 1, 2.Ž .s jj

Since RR is self-adjoint, the relation =¨ ? RRt s RRP =¨ ? t yieldsj j

­ ¨ s, r s I q r RR =¨ ? t s I q r RR P =¨ ? t , j s 1, 2,Ž . Ž . Ž . Ž .˜s j jj

where P is the projection onto the tangent plane. The above equation can
be written intrinsically as

y1
P =¨ s I q r RR = ¨ ,Ž . ˜G

Ž .where = is the surface gradient of the partial mapping p g G ª ¨ p, r .˜G

Ž .For the sake of brevity, we do not distinguish in the sequel between ¨ s, r˜
Ž .and the function obtained from ¨ by the variable change 4 . For a regular

function w compactly supported in UU , we can writed

=¨ ? =w dUU s P =¨ ? P =w q =¨ ? n =w ? n dUU .� 4Ž . Ž . Ž . Ž .H Hd d
UU UUd d

Thus, since the volume element on UU is given byd

dUU s det I q r RR dG dr ,Ž .d

we get

y2
=¨ ? =w dUU s I q r RR = ¨ ? = w q ­ ¨ ­ wŽ . ˜ ˜ ˜ ˜Ž .H Hd G G r r

Ž .UU G= yd , dd

= det I q r RR dG dr .Ž .

Integrating by parts, we obtain

y2
=¨ ? =w dx s ydiv I q r RR det I q r RR = ¨Ž . Ž . ˜Ž .H H ž G G

Ž .V G= yd , d

y­ det I q r RR ­ ¨ w dG dr , 6Ž . Ž .Ž .˜ ˜/r r
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where div is the surface divergence of a tangent vector field on G. ForG

any function w compactly supported in UU , the following Green formula:d

y D¨ w dx s =¨ ? =w dx ,H H
UU UUd d

Ž .according to 6 , directly yields the expression of the Laplacian in variables
s and r :

y1 y2
D¨ s det I q r RR div det I q r RR I q r RR = ¨Ž . Ž . Ž . ˜Ž .ž G G

q­ det I q r RR ­ ¨ .Ž .Ž .˜ /r r

Now to get a more tractable form for this expression, we make a particular
choice for the coordinate patch. In fact we can choose a particular

Ž .coordinate patch so that the coordinate system s, r may be an orthonor-
Ž Ž . .mal system i.e., t , t is an orthonormal basis of the tangent plane and,1 2

furthermore, such that t is an eigenvector of RR. Such a basis is called thej
Ž .principal basis of T G , whereas the vectors t and t are known as thep 1 2

principal curvature directions of G and satisfy

RRt s CC t ,j j j

where CC and CC are the principal curvatures of G. The Gauss curvature1 2
and the mean curvature can now be respectively defined by KK s CC CC and1 2

Ž .HH s CC q CC r2. Defining1 2

h s 1 q r CC , j s 1, 2,j j

we can write

det I q r RR s h h and I q r RR t s h t , j s 1, 2.Ž . Ž .1 2 j j j

Hence, in the orthonormal coordinates system, the Laplace operator takes
the following expression:

­ h h 1 h hŽ .r 1 2 2 12D¨ s ­ ¨ q ­ ¨ q ­ ­ ¨ q ­ ­ ¨ .˜ ˜ ˜ ˜r r s s s s1 1 2 2ž / ž /ž /h h h h h h1 2 1 2 1 2

Hereafter, we denote by HH the mean curvature of the parallel surface Gr r
given by

1 ­ h hŽ .r 1 2
HH s ,r 2 h h1 2

˜and we drop the symbol to simplify the notation.
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3. APPROXIMATION OF THE
DIRICHLET-TO-NEUMANN OPERATOR

3.1. The Dirichlet-to-Neumann Operator

To keep the convention on the time variation and use the formalism of
pseudo-differential operators, we write the Helmholtz equation as a wave
equation, hence depending explicitly on the time t:

Lu s Du y ­ 2 u s 0,t

Ž . Ž . Ž .where u x, t s ¨ x exp yikt . Consequently, we do not consider the
multiplication by k 2 as a zero-order operator. In the local coordinate
system, the above equation can be rewritten as

1 h h2 12 2Lu s ­ u q 2 HH ­ u q ­ ­ u q ­ ­ u y ­ u s 0.r r r s s s s t1 1 2 2ž / ž /ž /h h h h1 2 1 2

7Ž .

The symbol LL of L, with respect to the variables s and t and their
respective dual variables s and v, depends smoothly on the variable r,
which will hereafter play the role of a parameter. Thanks to the expression

Ž .of 7 for the Helmholtz operator L in the variables s and r, this symbol
has the following explicit expression:

LL s ­ 2 q 2 HH ­ y hy2s 2 y hy2s 2
r r r 1 1 2 2

i h i h2 1 2q ­ s q ­ s q v .s 1 s 21 2ž / ž /h h h h h h1 2 1 1 2 2

The selection of waves propagating in the normal direction is based on the
following decomposition resulting from Nirenberg’s factorization theorem
w x21 :

There exist two classical pseudo-differential operators Ly and Lq of order
q1, depending smoothly on r, such that

Lu s ­ q iLy ­ q iLq u. 8Ž .Ž . Ž .r r

In addition, the uniqueness of the decomposition is ensured by the
following characterization. Let lq and ly be the respective symbols of
Lq and Ly. From the definition of pseudo-differential operators of order

q y 1 Žq1, the symbols l and l belong to the symbol class S cf., e.g.,1, 0
w x .Chazarain and Piriou 6 for the definition of this class of symbols . By

classical pseudo-differential operators, we mean that the symbols l"
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admit the following asymptotic expansion:

q`
" "l ; l , 9Ž .Ý yj

jsy1

" Ž .where l are homogeneous functions of degree yj in s , v . Theyj
expansion holds in the following sense:

m
" " yŽmq1.;m G y1, l y l g S .Ý yj

jsy1

w x mHereafter, as in 23 , we more concisely denote by S the symbol class
Sm . Hence the corresponding classical pseudo-differential operators Ly

1, 0
q 1 w xand L are in OPS . According to 17 we define the cone of propagation

Ž . Ž 2 y2 2 y2 2 .as the set of dual variables s , v satisfying v y h s y h s ) 0.1 1 2 2
The decomposition is then made unique by requiring that lq be positive1
in the cone of propagation. The waves propagating along the normal

Ž .direction the so-called physical outgoing waves satisfy the equation

­ q iLq u s 0,Ž .r

Ž w x.in the microlocal sense cf. Taylor 23 . Therefore, we explicitly obtain the
˜qDirichlet-to-Neumann operator as the nonlocal operator L such that

˜q qL s L . The exact radiation condition on G is given by< rs0

q ˜q­ q iL u s ­ q iL u s 0.Ž . Ž .r < rs0 n

Thus, the problem is to determine Lq. To this end, we first need to
Ž .develop the right-hand side of 8 :

Lu s ­ 2 u q iLy ­ u q i ­ Lq u q LyLqu s 0. 10Ž .r r r

On the basic of the integral representation of pseudo-differential opera-
Ž w x.tors from their symbol cf., e.g., 6, 23 , an immediate calculation gives

­ Lqu r , s, t s ­ eiŽv tqs ?s.lq r , s, t , s , v u r , s , v dv dsŽ . Ž . Ž .ˆHr r

s eiŽv tqs ?s. ­ lq u q lq ­ u dv ds .ˆ ˆŽ .H r r

� 4Then we introduce the following convenient notation. m is the pseudo-
differential operator with the symbol m, and we get the following expres-
sion:

­ Lqu r , s, t s ­ lq u q Lq ­ u.� 4Ž .r r r
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Ž .Thus relation 10 can be equivalently written as

Lu s ­ 2 u q i Lyq Lq ­ u q i ­ lq u y LyLqu . 11� 4Ž . Ž .r r r

Ž . Ž .Identifying in 7 and 11 the coefficients of the derivatives with respect
to r, we obtain the system

Lyq Lqs y2 i HH ,¡ r

~ 1 h h 12Ž .2 1y q q 2L L y i ­ l s ­ y ­ ­ q ­ ­ .� 4r t s s s s1 1 2 2¢ ž / ž /ž /h h h h1 2 1 2

Thanks to the integral representation formula of pseudo-differential oper-
ators, the operators Ly and lq are explicitly known from the determina-
tion of their symbols. Using the calculus of pseudo-differential operators
Ž w x. Ž .see 23 , system 12 can be written at the symbol level:

lyq lqs y2 i HH¡ r

< <aq` yiŽ .
a y a q q­ l ­ l y i ­ lÝ s s r< <a !as0~ 13Ž .

2 y2 2 y2 2s y v y h s y h sŽ .1 1 2 2

i h i h2 1y ­ s y ­ s .s 1 s 21 2¢ ž / ž /h h h h h h1 2 1 1 2 2

To determine the symbols ly and lq, we then use asymptotic expansion
Ž . Ž .9 . The first equation of system 13 yields

ly q lq s 0 if j / 0 and ly q lq s y2 i HH . 14Ž .yj yj 0 0 r

q Ž .Since we only need to compute symbol l , relations 14 will be used for
the elimination of ly. Thus, the combination of the second equation of
Ž . Ž . q13 and 14 completely determines the operator L . Finally, the Dirich-

˜q q ˜qlet-to-Neumann operator L is obtained from the relation L s L .< rs0
Obviously, the computation of all of the symbols lq is not practicable.yj

Furthermore, our aim is to construct local boundary conditions, whereas
˜qL is a nonlocal operator. Fortunately, as will be shown, only the first few
symbols lq , y1 F j F 2, are needed for the derivation of radiationyj
conditions of order F 2.

3.2. Recursï e Determination of the Asymptotic Expansion of the Symbol of
the Dirichlet-to-Neumann Operator

Based upon an identification of symbols with the same degree of
homogeneity, a recursive formula permits us to express all of the symbols
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q q Ž .l from the first one, l . More precisely, we remark that Eq. 14yj 1
y q Ž .enables us to readily express l from l and then to solve system 13yj yj

relative to the symbols lq .yj
The computation is done in three steps. In the first two, lq and lq are1 0

obtained by a straightforward calculation. The last step is devoted to the
derivation of a recursive formula that expresses lq , for m G 0, inym y1
terms of previously determined symbols as well as their derivatives.

Starting with an identification of homogeneous symbols of the highest
degree, we get

lylq s y v 2 y hy2s 2 y hy2s 2 .Ž .1 1 1 1 2 2

Ž . qFrom 14 and the condition l ) 0, we directly obtain1

1r2q 2 y2 2 y2 2l s v y h s y h s .Ž .1 1 1 2 2

Going further with an identification of the homogeneous symbols of the
next higher degree, we find a relation between the unknowns ly and lq :0 0

lylq q lylq y i ­ ly ­ lq y i ­ ly ­ lq y i ­ lq
1 0 0 1 s 1 s 1 s 1 s 1 r 11 1 2 2

s yihy1 hy1 ­ hy1 h s q ­ hy1 h s .Ž . Ž .Ž .1 2 s 2 1 1 s 1 2 21 2

Eliminating ly and ly , we get1 0

i
q q q q q ql s y2 HH l q ­ l ­ l q ­ l ­ lž0 r 1 s 1 s 1 s 1 s 1q 1 1 2 22l1

y­ lq q hy1 hy1 ­ h hy1 s q ­ h hy1 s .Ž . Ž .Ž . /r 1 1 2 s 2 1 1 s 1 2 21 2

The recursive formula derived from similar relations for lower degrees of
Ž .homogeneity. At first, the left-hand side of the second equation in 13 can

be rewritten as

< <aq` q` q` q`yiŽ .
a y a q q­ l ­ l y i ­ l . 15Ž .Ý Ý Ý Ýs yj s yk r yl< <a !< < jsy1 ksy1 lsy1a s0

Ž w x.Next, we make use of the following properties see 23 :

­ aly g Syjy < a < , ­ alq g Syk .s yj s yk

This, in turn, gives

­ aly ­ alq g SyŽ jqkq < a <. .s yj s yk



ANTOINE, BARUCQ, AND BENDALI196

Ž .Thus, in 15 for any nonnegative integer m, the homogeneous part of
degree ym is

< <amq2 yiŽ .
a y a q q­ l ­ l y i ­ l .Ý Ý s yj s yk r ym< <a !< < < <a s0 jqksmy a

jGy1, kGy1

Since there is no homogeneous symbol of degree ym on the right-hand
Ž .side of the second equation of system 13 , an identification of symbols of

the same homogeneity leads to the equation

< <amq2 yiŽ .
a y a q q­ l ­ l y i ­ l s 0, for m G 0.Ý Ý s yj s yk r ym< <a !< < < <a s0 jqksmy a

jGy1, kGy1

Moreover, we have ly s ylq . Hence, the previous equation,ym y1 ymy1
symbol lq , m G 0, can be recursively expressed from homogeneousym y1
symbols of higher order by

1
q y ql s l lÝym y1 yj ykq2l1 � jqksm

jG0, kG0

< <amq2 yiŽ .
a y a q qq ­ l ­ l y i ­ l , 16Ž .Ý Ý s yj s yk r ym< <a ! 0< < < <a s1 jqksmy a

jGy1, kGy1

Now we intend to establish that the design of radiation conditions up to
the second order needs the explicit computation of only the first few

� q 4symbols l . This property will be obtained basically from theyj y1F jF 2
following result.

LEMMA 3.1. Each homogeneous symbol of order m, for m F 1, has the
following form:

mq ql s l P s, r ; X , 17Ž . Ž .Ž .m 1

q Ž .where X s srl and P s, r ; X is a polynomial in ¨ariable X with smooth1
Ž . Ž .functions of s, r as coefficients. More precisely, polynomial P s, r ; X is of

the form

P s, r ; X s a s, r X a . 18Ž . Ž . Ž .Ý a
< <a Fd
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Ž . Ž . ŽProof. Let P s, r ; X and Q s, r ; X designate various functions not
. Ž .the same in all instances of the form 18 . The chain rule gives directly

that

­ lq s P s, r ; X , ­ lq s lqP s, r ; X , ­ lq s lqP s, r ; X .Ž . Ž . Ž .s 1 s 1 1 r 1 1j j

Then an inductive argument on the order of derivation easily shows that
Ž q.Ã Ž .the derivatives of a function of the type l P s, r ; X have the same

form given by

Ã < <Ãy aa q q¡­ l P s, r ; X s l Q s, r ; X ,Ž . Ž .Ž . Ž .s 1 1

Ã Ãa q q~­ l P s, r ; X s l Q s, r ; X ,Ž . Ž .Ž . Ž .s 1 1

Ã Ãq q¢­ l P s, r ; X s l Q s, r ; X .Ž . Ž .Ž . Ž .r 1 1

The end of the proof is then easily obtained by an inductive argument due
Ž . q yto the fact that relation 14 implies that l and l , are both of the formm m

Ž .17 whenever it holds for one of them.

We can then link up the approximation of the symbol lq of the
q Ž .operator L through its asymptotic expansion 9 in a precise manner.

THEOREM 3.2. Let m be an integer G y1. Any symbol gï en by

lq 19Ž .Ý yj
y1FjFp

for p ) m differs from Ý lq by a term at most of order vyŽ mq1..y1 F jF m yj

Proof. Immediate from the above lemma.

4. SURFACE RADIATION BOUNDARY CONDITIONS

4.1. The Approximation Criterion

We are now in a position to give a precise criterion allowing the
derivation of various radiation conditions and to compare their respective
accuracy. We limit ourselves to radiation conditions that can be built
through the following process. Let ll be a positive integer and m be the

� 4 Ž .symbol of a pseudo-differential operator m defined on G = yd , d such
q Ž . lly1that Ý l y m is of order 1rv for all sufficiently large p.y1 F jF p yj

Denoting by m the symbol defined on G by m [ m , we write out the˜ ˜ < rs0
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radiation condition

� 4­ u q i u u s 0 on G ,˜n

which we call a complete radiation condition of order llr2. Such a condition
is considered to agree with standard definitions of the order of classical

Ž w x.radiation conditions cf., for instance, 12 .
Hence, in view of Theorem 3.2, the definition of a complete radiation

condition is consistent, and the most straightforward one of order llr2 is
obtained as

&
q­ u q i l u s 0 on G.Ýn j½ 5

y1FjFlly2

Unfortunately, the approximate operator has the undesirable property
of being nonlocal, just like the exact one. To obtain local radiation

Ž .conditions i.e., expressed through a local operator , we have to consider
some approximation process of the symbols lq . With this end in view, weyj
follow an approach that is similar although slightly different from that

w xconsidered by Engquist and Majda 9 . From the retained definition of a
complete radiation condition, it is quite obvious to approximate each lq

yj

Ž . lly2by its Taylor expansion in powers of 1rv up to the term 1rv
Ž q.denoted l . A complete radiation condition of order llr2 can then bej lly2

obtained as well by

&
q­ u q i l u s 0 on G.Ý ž /n j½ 5lly2

y1FjFlly2

Surprisingly enough, as seen below, this construction always leads to a
Ž .local radiation condition for ll F 4 i.e., for conditions of order F 2 .

Actually, these conditions involve operators with a symbol polynomial in
s , v, and 1rv, with coefficients smoothly depending on s and r. Since the
symbol 1rv corresponds to an integration in t, from the assumed time
dependence of the solution, this symbol only corresponds to the multiplica-
tion by y1rk.

Engquist and Majda have considered the same kind of approximation
Ž . < <Taylor expansion but have used the ‘‘angle of incidence’’ s rv rather
than the ‘‘wavelength’’ 1rv as a small parameter. The same standpoint

w x Ž y2 2has been adopted by Hanouzet and Sesques 11 , who have kept h s q` 1 1
y2 2 .1r2h s rv as a small parameter for the expansion. The approach that2 2

has been retained here can mainly be seen as a high-frequency approxima-
tion, as opposed to that of Engquist and Majda.
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Incomplete radiation conditions can also be created by making a Taylor
expansion at a given order ll y 2 but by retaining fewer terms in the

q Ž .asymptotic expansion of the symbol l 19 , i.e.,
m &

q­ u q i l u s 0 on G ,Ý ž /n yj½ 5lly2
jsy1

with m - ll y 2. In this way, we will be able to recover almost all known
radiation conditions ‘‘of order F 2.’’ Finally, approximating the symbol of
the complete radiation condition of order 2 in a suitable manner, we
derive another one that coincides with the Bayliss]Turkel second-order
radiation condition when G is a sphere.

4.2. Computation of Symbols

Since we are planning to deal with radiation conditions of order F 2,
from the above discussion we see that we have to calculate lq only foryj
y1 F j F 2 and to expand them in powers of 1rv until the term 1rv 2.

For symbol lq , we get1

hy2s 2 q hy2s 2 11 1 2 2ql s v 1 y q terms in .1 2 3ž /2v v

Hence, the approximate symbol involved in the construction of radiation
conditions up to the order 2 is given by

s 2 q s 2& 1 2ql s v y . 20Ž .Ž .1 2 2v
& &

q qŽ .Note that lower-order approximations l of l with l - 2 are ob-1 l 1 &
i qŽ .tained simply by dropping terms in 1rv with l - i F 2 from l .1 2

The second function is determined recursively from the first and has the
following expression:

­ CC y ­ CC ­ CC y ­ CCir s 2 s 1 s 1 s 21 1 2 2ql s yi HH q s q s0 r 1 2q 2 2ž /2h h l h h1 2 1 1 2

i
y3 2 y3 2y CC h s q CC h sŽ .1 1 1 2 2 22q2 lŽ .1

irs1 y3 2 y3 2y ­ CC h s q ­ CC h sŽ .s 1 1 1 s 2 2 23 1 12 q2h lŽ .1 1

irs2 y3 2 y3 2y ­ CC h s q ­ CC h s .Ž .s 1 1 1 s 2 2 23 2 22 q2h lŽ .2 1



ANTOINE, BARUCQ, AND BENDALI200

Making use of the previous expansion of lq , we get1

­ CC y ­ CC ­ CC y ­ CCir Ž . Ž .s 2 s 1 s 1 s 21 2 2 1ql s yi HH q s q s0 r 1 22 2ž /2v h h h h1 2 1 2

ir
y2 y3 2 y3 2y h s ­ CC h s q ­ CC h sŽ . Ž .ž 1 1 s 1 1 1 s 2 2 23 1 12v

q hy2s ­ CC hy3s 2 q ­ CC hy3s 2Ž . Ž . /2 2 s 1 1 1 s 2 2 22 2

i 1
y3 2 y3 2y CC h s q CC h s q terms inŽ .1 1 1 2 2 22 32v v

and then deduce the approximate symbol of index zero,

i CC s 2 q CC s 2& Ž .1 1 2 2ql s yi HH y .Ž .0 22 2v

For the third function, we remark that since all of the terms of order
yj Ž q.yj yjv are dropped when j ) 2 and l behaves like v , only terms of1

Ž q.yj qorder l with 0 F j F 2, occur in the expression of l . Hence we1 y1
write lq in the following form:y1

2 ­ CC y ­ CC s ­ CC y ­ CC sHH ­ HH Ž . Ž .s 2 s 1 1 s 1 s 2 2r r r 1 1 2 2ql s y y q qy1 q q 2 2q 3 q 32l 2l 4 l h h 4 l h hŽ . Ž .1 1 1 1 2 1 1 2

­ HH s ­ HH s 1s r 1 s r 21 2y y q terms in .2 2 3q q q2 l h h 2 l h h lŽ . Ž . Ž .1 1 2 1 1 2 1

We then deduce that

2 ­ CC y ­ CC s ­ CC y ­ CC sHH ­ HH Ž . Ž .s 2 s 1 1 s 1 s 2 2r r r 1 1 2 2ql s y y q yy1 2 3 2 32v 2v 4v h h 4v h h1 2 1 2

hy2 ­ HH s hy2 ­ HH s 1Ž . Ž .1 s r 1 2 s r 21 2y y q terms in ,2 2 32v 2v v

Ž .which leads, once more taking 20 into account, to the following symbol
approximation:

1 1&
q 2l s y KK y HH y ­ CC s q ­ CC s .Ž . Ž .Ž .y1 s 1 1 s 2 222 1 22v 2v



BAYLISS]TURKEL-LIKE RADIATION CONDITIONS 201

Following the same approach again, we finally write symbol lq in they2
form

ihy2 ­ 2HH ihy2 ­ 2 HH 2i HH ­ HH i ­ HHŽ .Ž . Ž .1 s r 2 s r r r r r r1 2ql s q q qy2 2 2 2 2q q q q4 l 4 l 2 l 4 lŽ . Ž . Ž . Ž .1 1 1 1

1
q terms in .3qlŽ .1

&
qŽ .The approximate symbol l is then given byy2

i i&
q 2 2 2l s ­ HH q ­ HH y HH KK y HH .Ž .Ž . Ž .y2 s s2 22 1 24v v

4.3. Sommerfeld Radiation Condition

The first approximation consists only of keeping terms of order v. We
then consider the complete radiation condition of order 1r2 given by& &

q q�Ž . 4 �Ž . 4­ u q i l u s 0. Making the operator l explicit and returning ton 1 1 1 1
a function u with a time dependence in eyi k t yields the condition

­ u y iku s 0 on G.n

This well-known condition, called the Sommerfeld radiation condition,
only specifies that wave u is outgoing to infinity and may be seen as the
crudest radiation condition that can be designated.

4.4. First-Order Radiation Condition

Going further with the same procedure, we derive a complete radiation
condition of order 1. Dropping any term of order 1rv j with j ) 0, we are&

0 q� Ž . 4led to ­ u q i Ý l u s 0, and then ton jsy1 yj 0

­ u y iku q HHu s 0. 21Ž .n

This is again a classical condition that has already been obtained by many
w xauthors 5, 11, 13, 22 following very different paths.

4.5. Radiation Condition of Order 3r2

Now keeping the terms of order 1rv j with j F 1, i.e.,

1 &
q­ u q i l u s 0,Ý ž /n yj y1½ 5

jsy1
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we obtain the complete radiation condition of order 3r2:

i 1
2­ u y iku q HHu q KK y HH u q D u s 0, 22Ž . Ž .n G2k 2 ik

where D stands for the Laplace]Beltrami operator on G. It is the same asG

Jones’s first-order condition, which has been obtained in a different way.
Note that this complete condition of order 3r2 does not correspond to

w x Žanother condition designed by Jones in 14 from an approach based upon
.successive approximations :

1
­ u y iku q HHu q D u s 0.n G2 ik

Nonetheless, from our point of view, the latter condition can be con-&
0 q� Ž . 4structed from the approximation ­ u q i Ý l u s 0 and can ben jsy1 yj y1

seen as an incomplete condition of order 3r2. Note that incomplete
conditions coincide with complete conditions for a flat boundary.

4.6. Radiation Conditions of Order 2

The most accurate radiation condition that can be considered in the&
2 q� Ž . 4above framework is given as ­ u q i Ý l u s 0. Proceeding asn jsy1 yj y2

for the previous conditions, we get the following result.

THEOREM 4.1. A complete radiation condition of order 2 is gï en by

i 2 HH D HHG2­ u y iku q HHu q 1 y i KK y HH u y uŽ .n 2ž /2k k 4k

1 i RR
q div I y = u s 0. 23Ž .G Gž /ž /2 ik k

The above complete second-order condition is different from the condi-
tion established by Engquist and Majda, who have used the following&

0 q� Ž . 4approximation, corresponding in our notation to ­ u q i Ý l un jsy1 yj y2
s 0. Making the above relation explicit, one obtains the incomplete
condition of order 2:

1 i RR
­ u y iku q HHu q I y D u s 0, 24Ž .n Gž /2 ik k

&
2 qwhere terms of order 1rv coming from l , with j s q1 or q2, are notyj

Ž .considered. It is worth noting that condition 24 , except in the case in
which G is a sphere, does not lead to symmetric variational formulations
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when it is used either to terminate a finite element formulation or as an
OSRC condition, although it is an important advantage with condition
Ž .23 .

Remark. Following the same path, we can construct an incomplete& & &
q q qcondition by retaining only l , l , and l in the asymptotic development1 0 y1

and making a Taylor approximation up to the terms of order 1rv 2 of the
involved symbols. We get another incomplete second-order radiation con-
dition,

i 1 i RR
2­ u y iku q HHu q KK y HH u q div I y = u s 0,Ž .n G Gž /ž /2k 2 ik k

& & &
q q q�Ž . 4which is derived from the approximation ­ u q i l q l q l un 1 0 y1 y2

s 0.
Ž .At first sight, condition 23 seems to be different from Jones’s second-

order condition. In fact, it is exactly the same. But it is necessary to write
out some canceling terms explicitly to see that the two expressions corre-
spond exactly. Indeed, in our notation, Jones’s second-order condition is
defined on the parallel surface G byr

1
2­ u y ik y HH u q HH y KK u q div = uŽ . Ž .Ž .n r r r G G2 ik

1 1 1
2q HH HH y KK u q HH div = u q div = HH uŽ .Ž .r r r r G G G G r2 ž /4 4k

1 h2y ­ CC y CC ­ uŽ .s 2 1 s1 1ž /4h h h1 2 1

1 h1y ­ CC y CC ­ u s 0.Ž .s 1 2 s2 2ž /4h h h1 2 2

Ž .To find condition 23 on the surface G again, it is sufficient to develop the
expressions involving derivatives of u and HH and to remark thatr

­ h hy1 s ­ h hy1 s 0, for j s 1, 2.Ž . Ž .< <s 1 2 s 2 1rs0 rs0j j

4.7. Second-Order Bayliss]Turkel-like Radiation Conditions

Now we come to one of the main motivations of this work. As we said
before, it consists of the justification of our heuristic derivation of an
accurate second-order radiation condition from the Bayliss]Turkel condi-

w xtion in the two-dimensional case 3 and its extension to a surface of
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arbitrary shape in dimension 3. The result is embodied in the following
theorem.

THEOREM 4.2. A complete second-order radiation condition is gï en by

y1i 2 HH D HHG2­ u y iku q HHu q 1 q i KK y HH u y uŽ .n 2ž /2k k 4k
y11 i RR

q div I q = u s 0. 25Ž .G Gž /ž /2 ik k

� 3 < < 4When G is the sphere S [ x g R ; x s r , this condition coincides withr
the corresponding Bayliss]Turkel second-order radiation condition.

Proof. At first, we recall a suitable form for the Bayliss]Turkel
second-order radiation condition, which is really due in the present case to

w xBayliss et al. 5 . In its basic form, this condition is written in spherical
Ž .coordinates r, u , w as

3 1
­ y ik q ­ y ik q u s 0 on S .r r rž / ž /r r

Ž .Using the Helmholtz equation expressed in the coordinates r, u , w to
eliminate ­ 2, we can write the above equation in an equivalent form asr

u 1 1
2­ u y iku q q ­ sin u ­ u q ­ u s 0.Ž .Ž .r u u w2r 2 ik 1 q irkr r sin uŽ .

26Ž .

Now, observing that

y1iCC iCC 1ll ll
1 q s 1 y q terms in ,3ž / ž /v v v

y1iCC 1ll
­ iCC rv s ­ 1 y q terms in ,Ž .s ll s 3ll ll ž /v v

y12 HH 2 HH 1
1 q i s 1 y i q terms in ,3ž / ž /v v v
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&
2 qŽ .the above expression of Ý l may be rewritten asjsy1 yj y2

y12 1 2 i HH i&
q 2l s v y i HH y 1 y KK y HH q D HHŽ .Ý ž /yj G2ž /y2 2v v 4vjsy1

2 21 s 1lly y ­ isŽ .Ý s llllž /2v 1 y iCC rv 1 y iCC rvŽ . Ž .ll lllls1

1
q terms in .3v

Dropping the terms in 1rv 3 and reusing the previous procedure, the
Ž .above relation establishes that condition 25 is another complete radiation

condition of order 2 on a general surface G. Since for G s S the operatorr
Ž .y1 Ž .y1 Ž .y1I q i RRrk is scalar and is given by I q i RRrk s 1 q irkr I and

2Ž . Ž . Ž .KK y HH s 0, conditions 25 and 26 are clearly identical.

Remark. Using a suitable notation that permits us to particularize the
above formula to the two-dimensional case, we readily obtain the following
complete second-order radiation condition:

CC iCC 2 ­ 2 CCs
­ u y iku q u y u y un 22 8k 1 q iCCrk 8kŽ .

1
q ­ ­ u s 0. 27Ž .s sž /2 ik 1 q iCCrkŽ .

In the above formula, G is a curve of the plane, CC is its curvature, and s is
its curvilinear abscissa increasing in the counterclockwise direction.

The latter formula exactly coincides with the following form of the usual
Bayliss]Turkel radiation condition of order 2 in the two-dimensional case:

1 1 1 1
2­ u y iku q u q q ­ u s 0r u22 r 8 ikr 1 q irkr 2 ikr 1 q irkr rŽ . Ž .

< <for x s r . 28Ž .

Ž .Note that condition 25 contains the two special forms of the Bayliss]
Ž . Ž .Turkel radiation conditions 26 and 28 ; this feature is not obvious from

Ž .condition 26 only.
In fact, the two-dimensional case has already been considered in a

w xprevious work 4 . Radiation conditions were derived there, following the
same approach as in this paper. An Engquist]Majda-like condition can be



ANTOINE, BARUCQ, AND BENDALI206

obtained as an incomplete second-order condition given by

CC iCC 2 1 iCC
­ u y iku q u y u q ­ 1 y ­ u s 0.n s sž /ž /2 8k 2 ik k

Ž w xNumerical experiments have shown see 3 and the following numerical
.examples that this condition, considered as an on-surface radiation condi-

Ž .tion, is less accurate than 27 . Therefore, from this point of view, the
theoretical study of this paper finds one of its main justifications.

Remark. A high degree of smoothness of the surface is needed for the
derivation of such conditions by the pseudo-differential analysis. However,
some geometrical singularities can be considered as limiting cases of more

w xregular geometries using a suitable scheme 1, 2 . This is, for example, the
case for the treatment of the two-dimensional scattering problem by a
polygonal convex obstacle in the OSRC context.

To conclude, we design another complete radiation condition of order 2
w xthat is close to a condition recently obtained by Stupfel 22 , yet with the

advantage of leading to symmetric variational formulations. The result is
summarized in the following theorem.

THEOREM 4.3. A complete second-order radiation condition is gï en by
y1i 2 HH D HHG2­ u y iku q HHu q 1 q i KK y HH u y uŽ .n 2ž /2k k 4k

y11 2 HH i
y div 1 q i n = I q RR n = = u s 0. 29Ž . Ž .G Gž / ž /ž /ž /2 ik k k

Proof. The only difference the previous radiation condition lies in
Ž .writing the terms 1 q iCC rv and ­ i CC rv in the following form:ll s ll ll

y1iCC 2 i HH iCC 1ll llq1
1 q s 1 y 1 y q terms in ,3ž / ž / ž /v v v v

y1iCC 2 i HH iCC 1ll llq1
­ ss ­ 1 y 1 y q terms in ,s s 3ll ll ž / ž /ž /v v v v

where ll q 1 stands for 1 when ll s 2. Dropping the terms in 1rv 3, we
first obtain the following expression of the radiation condition:

y1 22 ­ HHi 2 HH s ll2­ u y iku q HHu q 1 q i KK y HH u y uŽ . Ýr 2ž /2k k 4k
lls1

21 y1q ­ 1 q 2 i HHrk 1 q iCC rk ­ u s 0.Ž . Ž .Ý s llq1 sll ll2 ik
lls1
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2 Ž . Ž .Observing now that = u s Ý ­ u t , I q i RRrk t s 1 q iCC rk t ,G lls1 s ll ll ll llll

Ž . llq1 Ž .and n = t s y1 t we readily get 29 .ll llq1

Remark. Following the criterion used in this paper, the radiation
Ž . Ž . Ž .conditions 23 , 25 , and 29 have the same accuracy. Numerical experi-

Ž w x.ments cf. 1, 3 have shown that, even with incomplete conditions, all of
the radiation conditions of order 2 give the same accuracy as long as the
frequency is taken to be sufficiently high and symmetric formulations
involving the derivatives of the curvature are used. This does not remain
true for moderate or low frequencies. Therefore, other criteria have to be
satisfied to distinguish between complete radiation conditions of the same
order. This can be accomplished either by numerical experiments or by
examining particular examples. In our opinion, a theoretical treatment of
this problem is a harder task.

4.8. Surface Radiation Conditions for an Ellipsoidal Scatterer

This part is devoted to the explicit expression of the previous surface
radiation conditions for the special case of an ellipsoid centered at the
origin. We intend to compute the OSRC solution to a scattering problem
with a Neumann boundary condition: ­ u s g on G. To this end, we usen

w x 1Ž .the weak OSRC formulation 1, 2 : find u g H G such that

A = u ? = ¨ q b u¨ dG s g¨ dG. 30Ž .H HG G G
G G

1Ž .The test functions ¨ are defined in the H G space. The operator A is aG

zeroth-order operator of the tangent plane, and b is a complex valued
function of the surface G. They are both fixed by the chosen surface
radiation condition.

The different geometrical parameters involved in such a problem are the
following. The chosen coordinate system is

x w x wC : u , w g 0; 2p = 0; p ª a cos u sin w , b sin w sin u , c cos w g G.Ž . Ž .

Ž .We designate by a, b, and c / 0 , respectively, the semiaxis of the
Ž . Ž . Ž .obstacle along the axes Ox , Ox , and Ox of the Cartesian coordinate1 2 3

Ž .system. We obtain the basis vectors t , t of the tangent plane as1 2

t s ya sin w sin u , b sin w cos u , 0 ,Ž .1
31Ž .

t s a cos w cos u , b cos w sin u , yc sin w .Ž .2
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If the function a is set as

1r22 2 2 2 2 2 2 2 2a s a b cos w q c sin w a sin u q b cos u ,Ž .Ž .

it follows that the mean and Gauss curvatures are easily computed as

abc
2 2 2 2HH s a cos u cos w q sin uŽ .32a

2 2 2 2 2 2qb sin u cos w q cos u q c sin w ,Ž .
a2 b2c2

KK s .4a

Let us introduce GG as the metric tensor operating from the cotangent
plane onto the tangent plane and defined by

E F
GG s t ? t s .Ž .i j ž /F G

Ž .It can be shown from 31 that the first fundamental form coefficients E,
F, and G are given by

E s a2 sin2 u q b2 cos2 u sin2 w , F s b2 y a2 cos w sin w cos u sin u ,Ž . Ž .
G s a2 cos2 u q b2 sin2 u cos2 w q c2 sin2 w .Ž .

Ž 1 2 .Since the vector bases t , t of the cotangent plane are related to
Ž .t , t by1 2

t1 , t 2 s GGy1 t , t ,Ž . Ž .1 2

we obtain

= u s ­ u t1 q ­ u t 2 ,G u w

with

1 1
1 2t s Gt y Ft and t s yFt q Et .Ž . Ž .1 2 1 22 2 2 2a sin w a sin w
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The Laplace]Beltrami operator applied to the mean curvature can be
computed using

a 2 abc
D HH s ­ , ­ GG ­ HH , ­ HH .Ž . Ž .G u w u w2ž /abc a

Ž .Finally, the approximation of the solution to 30 is based upon the use of
w xa surface finite-element method 1, 2 .

4.9. Some Numerical Results

Ž .We present some radar cross section RCS calculations in the OSRC
context. We consider the scattering problem for a Neumann boundary

w xcondition. The problem of the approximation is treated in 1, 2 . The
reference solution is given by a boundary integral equation method. The
first example consists of the two-dimensional scattering problem with an
incident plane wave illuminating an elliptical cylinder. The obstacle is

Ž . Ž .characterized by its semiaxis a and b along the axis 0 x and 0 x . As1 2
can be seen in Fig. 1, the use of the Bayliss]Turkel-like second-order
radiation condition improves the accuracy of the method compared with
the Engquist]Majda-like second-order radiation condition. A second ex-

Ž .ample cf. Fig. 2 is the three-dimensional scattering problem of a plane

FIG. 1. Bistatic RCS of an elliptical cylinder.
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FIG. 2. Bistatic RCS of an ellipsoidal scatterer: complete radiation conditions of order 1,
3r2, and 2.

wave by an ellipsoidal scatterer. If an improvement is obtained by using
Ž .the complete radiation condition of order 3r2 22 compared with the

Ž .first-order condition 23 , we can conclude that the Bayliss]Turkel-like
Ž .radiation condition 25 is the most accurate second-order condition.
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