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Abstract

We present an existence theorem for a nonlinear quadratic integral equations of fractional orders,
arising in the queuing theory and biology, in the Banach space of real functions defined and continu-
ous on a bounded and closed interval. The concept of measure of noncompactness and a fixed point
theorem due to Darbo are the main tool in carrying out our proof.
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1. Introduction

Quadratic integral equations are often applicable in the theory of radiative transfer, ki-
netic theory of gases, in the theory of neutron transport and in the traffic theory. Especially,
the so-called quadratic integral equation of Chandrasekher type can be very often encoun-
tered in many applications (cf. [1,3,5,9]). On the other hand, the first serious attempt to
give a logical definition of a fractional derivative is due to Liouville, see [8] and references
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therein. Now, the fractional calculus topic is enjoying growing interest among scientists
and engineers, see [8,10,11].

Some problems in the queuing theory and biology lead to the following nonlinear inte-
gral equation (cf. [6]):

v [ u(ey(@))

=10+ | e
0

dr, tel0,T]. (1.1)

This equation creates an example of the so-called quadratic integral equation [5].
Throughout we have:[0,T] x R — R and f:[0, T] — R are functions satisfies spe-
cial assumptions, see Section 3.

Definition 1. Let g € L1(a,b), 0< a < b < o0, and leta > 0 be a real number. The
(Riemann—Liouville) fractional integral of orderis defined by (see [10,11])

g(s)

"s0=To | a—pre
0

Rewrite Eg. (1.1) in the form

y(t) = f@O)+yOI%u(t, y(1)), t€[0,T], (1.2)

where ¥ is the standard Riemann-Liouville fractional integral.

Using the technigue associated with measures of noncompactness, we show that
Eg. (1.2) has solutions belong €4[0, T']) and is nondecreasing on the interf@lT'].

In fact, our results in this paper are motivated by the extensions of the work o6Bana
and Martinon [1] based on the a measure of noncompactness and fixed point theorem due
to Darbo.

2. Auxiliary factsand results

This section is devoted to collect some definitions and results which will be needed
further on. AssumgE, | - ||) is an infinitely dimensional Banach space with zero elerient
Let B(x, r) denotes the closed ball centered:and with radius-. The symbolB, stands
for the ballB(@, r).

If X is a subset of E, thek and ConvX denote the closure and convex closurexof
respectively. Moreover, we denote W the family of all nonempty and bounded subsets
of E andA\E its subfamily consisting of all relatively compact subsets.

Next we give the concept of a measure of honcompactness [4]:

Definition 2. A mappingu : Mg — [0, +00) is said to be a measure of noncompactness
in E if it satisfies the following conditions:

(1) The family Kemu = {X € Mg: u(X) = 0} is nonempty and Kex C NVg.
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(2 XY= uX) < pu().

(3) n(X)=pn(Convx) = u(X).

@) pAX+A=1Y) <ApX)+ A=) for0<A <1,

B) f X, e Mg, X, =Xy, Xps1 C Xy forn=1,2,3,... and lim,— o n(X,) =0, then
My Xa # 6.

In what follows we will work in the Banach spacg@; 7] consisting of all real functions
defined and continuous @0, T']. The space @O0, T']) is equipped with the standard norm
x|l = max{|x(®)|: ¢ > 0}.

Now, we recollect the construction of the measure of honcompactness which will be
used in the next section (see [1,2]).

Let us fix a nonempty and bounded sub¥eif C([0, T']). Forx € X ande > 0 denoted
by w(x, ¢), the modulus of continuity of the function i.e.,

w(x, &) =sup{|x(t) —x(s)|: 1,5 €[0, T, |t —s| <e}.

Further, let us put
w(X,e)=supfo(x,e): xe X},  wo(X)= lim o (X &).

Define
d(x) =Sup”x(s) —x(t)| — [x(s) —x(t)]: t,s€[0,T], t < s},
d(X)=supld(x): x € X},
i(x) =sup{|x(®) —x(s)| = [x(1) —x(s)]: 1,5 € [0, T], 1 <5},
i(X)=supli(x): x € X}.

All functions belonging toX are nondecreasing d, 7] if and only if d(X) = 0.

Similarly, we can characterize the sétwith i (X) = 0.
Now, let us define the functiop on the familyMco,7}) by the formula

w(X) = wo(X) +d(X).
The functionu is a measure of noncompactness in the spage, C1) [2].

Remark 1. In a similar way, we can defined the measure of noncompactness associated
with the seti (X), but we omit the details concerning that measure.

Finally, the fixed point theorem due to Darbo will be recalled [7]:

Theorem 1. Let O be a nonempty, bounded, closed and convex subset of the Bpack
let

H:Q0— Q0
be a continuous transformation which is a contraction with respect to the measure of non-
compactnesg, i.e., there exists a constadt< k£ < 1 such thatu(H X) < ku(X) for any

nonempty subsef of Q.
ThenH has a fixed point in the s&d.
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3. Main theorem

In this section, we will study Eq. (1.2) assuming that the following assumptions are
satisfied:

(a1) f:[0,T]— R is a continuous, nondecreasing and nonnegative functigf,dn.

(a2) u:[0,T] x R — R is a continuous function such that [0, 7] x R, — R and for
arbitraryy € R, the functionr — u(z, y) is nondecreasing o, 7'].

(a3) There exists a nondecreasing functipnR . — R, such that

ut, | < o(1y1)

forallz € [0, T] andy € R.
(ag) The inequality

Fa+DIfIl+rT () <rl(e+1)
has a positive solutiory such thatT'“¢ (rg) < I' (@ + 1).

Now, we are in a position to state and prove our main result in papers.

Theorem 2. Let || f|| # 0. Let the assumption@1)—(as) be satisfied. Then EqL.2) has
at least one solutiory € C([0, T']) being nondecreasing on the interal 7].

Proof. Denote byU the operator associated with the right-hand side of Eq. (1.2), i.e.,
Eq. (1.2) takes the form

y=Uy, (3.1)
where
U@ = f@)+yOI1%u(t, y(1)), te[0,T]. (3.2)

Solving Eq. (1.2) is equivalent to finding a fixed point of the operatodefined on the
space O, T]).

First, observe that for a givepe C([0, T']), we haveUy € C([0, T']), thanks(a1) and
(a2), i.e., the operatot/ maps [0, T']) into itself. Moreover, in virtue ofa1)—(a3) we
have

(U< | fO)]+ |y<r)||l°‘ (r y(®))]

<+ s Iy ||/(t"’(”y)ﬂ)a

1
S+ m—= Tt D Iyl (lyl) T

Hence

NI <IflIl+ == ! Iyle(lyl)Te
BAIRS Fa+1) y y
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which means that the operatd’ transforms the ballB,, into itself, whererg =
Ta+DfI

I'a+D)-T(ro) . . . .
Further, let us consider the operatéron the subse® of B,, defined in the following
way:
0={yeB, y)=0, fort [0, T]}.
Then the se is nonempty, bounded, closed and convex {fi0CT]). In view of these
facts and assumptiora1) and(a2) we conclude that/ maps the sep into itself.
We claim that the operatol/ is continuous. To establish this claim, let usdix 0 and
take arbitraryx, y € Q such that|y — x| < ¢. Then, forz € [0, T'], we have
|(Uy)(t) - (UX)(t)|
< |yO1u(r, y@) = x (1% u(t, x(1))]
< |yO1u (e, y@) —xO1%u(t, yO) | + |xO1u(t, y(0)) — x(O1%u(t, x (1))
< ]y(t) —xO|[1%u(t, y®))| + |x(t)H|°‘ (t. y(t)) —1%u(r, x(0))|

”/ ¢ lylD Ix ”/ _ Bro(e)
(t =)t F( ) (t — )t

F( Jrl)¢>(o) F( +1)T Bro(€),

where
Bro(e) = Sup{|u(t, y) —u(t,x)|: t € [0, T], x,y €[0,r], Iy — x| <&}

By uniform continuity of the functior on the sef0, T'] x [0, ro], it is easy to see that
Bry(e) — 0 ase — 0. From the above estimate, we have

IIUy—UXII\F( le)¢>(ro) r* mT“ﬁro(@

which implies the continuity of the operatdr on the seiQ.
Now, let us take a nonempty s& C Q. Fix arbitrarily a numbeg > 0 and choose
y € X ands, r € [0, T] such thats — t] < e. Then, in view of our assumptions, we obtain
(U () = UND| <[ Fs) = FO]+ [y %u(s, () = yO1¥u(, y(0))]
So(f.e)+|y1%u(s, y(s)) — yOI1*u(s, y(s))|
+ [yO1u(s, y(s)) = yOI*u(t, y@0))|
<oy, )+ |y(s) — yO|[1%u(s, y(s))|

@I [ u@y@) ey
T — 7&1‘5
'@l (s—1)t« (s —7)l~«
0 0
[y ()] ( u(z, y(r)) t u(z, y(r)) d ‘
— | ——=—dr
TF)!|/] (s—1)t@ (t — 1)@
0 0
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<o, 8)+w(y,8)/(s¢(llyll)

I'(o) — 1)l

Iyl [ luc, Yyl ,
F(Ot) (s =)™

k) /|< C o= = o Y fu(e, y(0)) | de

F( )

. 008
o(f, 8)+F( +1)¢( 0T F( Jrl)¢>(ro)ls—tl
+m¢( ro){ls — t1* + (s* — %)}

<o(fi)+ = ((y fi) $(ro)T”
+F( +1)¢)(ro){2|s—t| + (s* —19)}.

Then we have
woUX) < 2701, x) (3.3)
ST+ ' '

In what follows, fix arbitraryx € X andt, s € [0, T] such that > ¢. Then we have

[(Uy)(s) = U)(®)| = [Uy)(s) — Up)(®)]
=|£ @)+ y©I%u(s, y(s)) — £) — yOI%u(t, y(0))]
— [ (&) +yOI%u(s, y()) — £ @) = yOI*u(r, y©))]
<{If &) = F@|=[F ) = FO} + |y %u(s, y(s)) — yO1%u(z, y@))|
— [y u(s, y(£)) = yOI%u(t, y(1))]
< y1%u(s, y()) — yO1%u(s, y())| + [yO1u(s, y(s)) — yO1*u(z, y())]
— [y@1%u(s, y(s)) — yOI“u(s, y()) | = [yO1u(s, y(5)) = yOl¥u(t, y@))]
<[y —yO1%uls, y©)| + [yO [ [1u(s, y()) = 1%u(z, y(0))]
— [ = y®O1%u(s, y(s)) — yO[1*u(s, y(s)) = 1%u(t, y(@))]
<Aly) —y®] = [ys) = yO}1uls, y)|

t N t
ly(®)] u(z, y(t)) dr + u(z, y(r)) dr— u(z, y(r)) de
I' (@) (s —7)l-e (s — 1)l (t—1)l«

0 t 0

v [ e y@) Fu(t,y(0)) ; ]
T

Tw|) 6o tmot
-0 0
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d

{|y(s) Y] = [y = y®)] /%

lfzit))| {/‘( 1= Mu(r, y(v) dr
- /”(T’y(t))dr i) S u(z, y(r)) dt —/M(r,y(r))dr
(s — )l I () (s — )i« (i

0 0
¢(ro) 4 B ~ B
<Farp th©-0-bo -0l

|y(r)|[ fuy@)dr | [uy@)dr ’u(ny(r))dr]

I'(a) (s —7)l-e (s —7)l-e (e
t 0

y() [ [ u(r.y(0)dt _j u(r,y(f))dr}

I'(a) (s — )i« (r— 1)t
¢(ro) o B B B
\mT {ly) —y@®| = [y —y®»]}
(o) g
= Tarn! 2O
Hence
¢(ro) 4
dUy) < mT d(y)
and consequently
¢@ro) 4
d(UX) < mT d(X). (3.4)

Finally, from (3.3) and (3.4) and the definition of the measure of noncompaginess
obtain

d(ro)
—T X).
Ia+1) o
Now, the above obtained inequality together with the fact THat (rg) < I' (« + 1) enable
us to apply Theorem 1. This complete the proofi

uUy) <
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