
J. Math. Anal. Appl. 326 (2007) 1161–1173

www.elsevier.com/locate/jmaa

On the existence of periodic solutions
for a kind of high-order neutral functional

differential equation ✩

Kai Wang ∗, Shiping Lu

Department of Mathematics, Anhui Normal University, Wuhu 241000, PR China

Received 2 January 2006

Available online 2 May 2006

Submitted by J.S.W. Wong

Abstract

By using the coincidence degree theory of Mawhin, we study a kind of high-order neutral functional
differential equation with distributed delay as follows:

(
x(t) − cx(t − σ)

)(n) + f
(
x(t)

)
x′(t) + g

( 0∫
−r

x(t + s) dα(s)

)
= p(t).

Some new results on the existence of periodic solutions are obtained.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Periodic solution; High-order; Neutral functional differential equation; Coincidence degree theory

1. Introduction

There are many results on the existence of periodic solutions for second-order ordinary dif-
ferential equations. In recent years, by applying the coincidence degree theory of Mawhin, some
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people have studied second-order delay functional differential equations, see papers [1–7]. These
papers were devoted mainly to studying the following several types of equations:

x′′(t) + g
(
x(t − τ)

) = p(t),

x′′(t) + ax′(t) + bx(t) + g
(
x(t − τ)

) = p(t),

d2

dt2

(
u(t) − ku(t − τ)

) = f
(
u(t)

)
u′(t) + α(t)g

(
u(t)

) +
n∑

j=1

βj (t)g
(
u(t) − γj (t)

) + p(t),

and

d2

dt2

(
u(t) −

n∑
j=1

cju(t − rj )

)

= f
(
u(t)

)
u′(t) + α(t)g

(
u(t)

) +
n∑

j=1

βj (t)g
(
u(t) − γj (t)

) + p(t).

The delays of these equations are discrete. It is well known that distributed delay has played
a very important role in the circle of biologies in nature. But the work to get the existence of
periodic solutions of neutral distributed delay functional differential equations—especially high-
order neutral distributed functional differential equations—rarely appeared.

In this paper, we discuss the existence of periodic solutions to a kind of high-order neutral
functional differential equation with distributed delay as follows:

(
x(t) − cx(t − σ)

)(n) + f
(
x(t)

)
x′(t) + g

( 0∫
−r

x(t + s) dα(s)

)
= p(t), (1.1)

where f,g :R → R are continuous functions, p is a continuous periodic function defined on R

with period T > 0, r > 0, n is a positive integer, |c| �= 1, σ ∈ R, α : [−r,0] → R is a bounded
variation function.

By employing the coincidence degree theory of Mawhin, we obtain some new results on the
existence of periodic solutions of Eq. (1.1). The significance is that we generalize the results of
papers [1–7]. Even if for n = 2, the conditions imposed on function g(x) are weaker than the
corresponding ones of papers [6,7].

2. Main lemmas

We set the following notations:
∨0

−r (α) = 1, where
∨0

−r (α) is the total variation of α(s) over

[−r,0]. Z+ is a set of positive integers, p̄ = 1
T

∫ T

0 p(t) dt . X = {x: x ∈ C(R,R), x(t + T ) ≡
x(t)}, with the norm |x|0 = maxt∈[0,T ] |x(t)|. Y = {x: x ∈ C1(R,R), x(t + T ) ≡ x(t)}, with the
norm ‖x‖ = max{|x|0, |x′|0}. Clearly, X and Y are two Banach spaces. We also define operators
A and L in the following form:

A :X → X, (Ax)(t) = x(t) − cx(t − σ);
L : Dom(L) ⊂ Y → X, [Lx] = (Ax)(n),

where Dom(L) = {x ∈ Cn(R,R): x(t + T ) ≡ x(t)}.
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Lemma 2.1. [7] If |c| �= 1, then A has continuous bounded inverse on X, and

[H1] ‖A−1x‖ � ‖x‖
||c|−1| , ∀x ∈ X;

[H2]
∫ T

0 |(A−1f )(t)|dt � 1
|1−|c||

∫ T

0 |f (s)|ds, ∀f ∈ X.

By Hale’s terminology [8], a solution x(t) of Eq. (1.1) is that x(t) ∈ C1(R,R) such that
Ax ∈ Cn(R,R) and Eq. (1.1) is satisfied on R. In general, x(t) does not belong to Cn(R,R).
But under the condition |c| �= 1, we can see easily from Lemma 2.1 that (Ax)′(t) = Ax′(t),
(Ax)′′(t) = Ax′′(t), . . . , (Ax)(n)(t) = Ax(n)(t). So a solution x(t) of Eq. (1.1) must belong to
C(n)(R,R). According to the first part of Lemma 2.1, we can easily obtain that kerL = R,
ImL = {x: x ∈ X,

∫ T

0 x(s) ds = 0}. So L is a Fredholm operator with index zero. Let project
operators P and Q as follows:

P :Y → kerL, Px = (Ax)(0); Q :X → X/ ImL, Qy = 1

T

T∫
0

y(s) ds.

Then ImP = kerL, kerQ = ImL. Set Lp = L|DomL∩kerP : DomL ∩ kerP → ImL and let
L−1

p : ImL → DomL ∩ kerP denote the inverse of Lp , then

[
L−1

p y
]
(t) = A−1

(
n−1∑
i=1

1

i! (Ax)(i)(0)t i + 1

(n − 1)!
t∫

0

(t − s)n−1y(s) ds

)
, (2.1)

where (Ax)(i)(0) (i = 1,2, . . . , n − 1) are defined by the equation

AX = B,

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
c1 1 0 · · · 0 0
c2 c1 1 · · · 0 0
...

...
...

. . .
...

...

cn−3 cn−4 cn−5 · · · 1 0
cn−2 cn−3 cn−4 · · · c1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(n−1)×(n−1)

X′ = (
(Ax)(n−1)(0), . . . , (Ax)′′(0), (Ax)′(0)

)
,

B ′ = (b1, b2, . . . , bn−1),

bi = − 1

i!T
T∫

0

(T − s)iy(s) ds,

and

cj = T j

(j + 1)! , j = 1,2, . . . , n − 2.

Lemma 2.2. [9] Let X and Y be two Banach spaces, L : Dom(L) ⊂ X → Y be a Fredholm
operator with index zero, Ω ⊂ X be an open bounded set, and N : Ω̄ → Y be L-compact on Ω̄ .
If all the following conditions hold:
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[A1] Lx �= λNx, ∀x ∈ ∂Ω ∩ Dom(L), ∀λ ∈ (0,1);
[A2] Nx /∈ ImL, ∀x ∈ ∂Ω ∩ KerL;
[A3] deg{JQN,Ω ∩ KerL,0} �= 0, where J : ImQ → kerL is an isomorphism,

then equation Lx = Nx has at least one solution on Ω̄ ∩ Dom(L).

3. Main results

Theorem 3.1. Suppose n is an even integer and |c| < 1, if there exist constants a � 0 and M > 0
such that

[B1] x(g(x) − p̄) > 0, |x| > M ; or x(g(x) − p̄) < 0, |x| > M ;

[B2] limx→+∞ sup |g(x)−p̄|
|x| � a,

then Eq. (1.1) has at least one T -periodic solution, if 2aT n

1−|c| < 1.

Proof. It is easy to see that Eq. (1.1) has a T -periodic solution if and only if the following
operator equation

Lx = Nx, (3.1)

has a T -periodic solution, where

N :Y → X, (Nx)(t) = −f
(
x(t)

)
x′(t) − g

( 0∫
−r

x(t + s) dα(s)

)
+ p(t).

From (2.1), we see that N is L-compact on Ω̄ , where Ω is any open and bounded subset of Y .
Take

Ω1 = {
x: x ∈ Dom(L), Lx = λNx, λ ∈ (0,1)

}
∀x ∈ Ω1, then x must satisfy

(
x(t) − cx(t − σ)

)(n) + λf
(
x(t)

)
x′(t) + λg

( 0∫
−r

x(t + s) dα(s)

)
= λp(t). (3.2)

Without loss of generality, we may assume that x(g(x)− p̄) > 0, ∀t ∈ R, |x| > M . By integrating
the two sides of Eq. (3.2) over [0, T ], we have

T∫
0

(
g

( 0∫
−r

x(t + s) dα(s)

)
− p̄

)
dt = 0. (3.3)

By integral mean value theorem, there is a constant ξ ∈ (0, T ) such that g(
∫ 0
−r

x(ξ + s) dα(s))−
p̄ = 0. So from assumption [B1] we get | ∫ 0

−r
x(ξ + s) dα(s)| � M . By the properties of

Riemann–Stieltjes integral, there is a constant ζ ∈ (−r,0) such that |x(ξ + ζ )| � M . Be-
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cause ξ + ζ ∈ R, there must exist an integer k0 such that ξ + ζ = k0T + t∗, t∗ ∈ [0, T ), then
|x(t∗)| � M . Hence we have

∣∣x(t)
∣∣ � M +

t∫
t∗

∣∣x′(s)
∣∣ds � M +

T∫
0

∣∣x′(s)
∣∣ds, ∀t ∈ [0, T ],

i.e.,

|x|0 � M +
T∫

0

∣∣x′(t)
∣∣dt, ∀t ∈ [0, T ]. (3.4)

On the other hand, because n is even, there is an integer k such that n = 2k, k ∈ Z+, then
multiplying the two sides of Eq. (3.2) by x(t) and integrating them over [0, T ], we get

(−1)k

T∫
0

∣∣x(k)(t)
∣∣2

dt = (−1)kc

T∫
0

x(k)(t − σ)x(k)(t) dt

− λ

T∫
0

x(t)

(
g

( 0∫
−r

x(t + s) dα(s)

)
− p̄

)
dt.

By Hölder inequality, we have

T∫
0

∣∣x(k)(t)
∣∣2

dt � |c|
( T∫

0

∣∣x(k)(t)
∣∣2

dt

)1/2( T∫
0

∣∣x(k)(t − σ)
∣∣2

dt

)1/2

+
T∫

0

∣∣x(t)
∣∣∣∣∣∣∣g

( 0∫
−r

x(t + s) dα(s)

)
− p̄

∣∣∣∣∣dt

= |c|
( T∫

0

∣∣x(k)(t)
∣∣2

dt

)1/2( T −σ∫
−σ

∣∣x(k)(t)
∣∣2

dt

)1/2

+
T∫

0

∣∣x(t)
∣∣∣∣∣∣∣g

( 0∫
−r

x(t + s) dα(s)

)
− p̄

∣∣∣∣∣dt

� 1

1 − |c| |x|0
T∫

0

∣∣∣∣∣g
( 0∫

−r

x(t + s) dα(s)

)
− p̄

∣∣∣∣∣dt. (3.5)

In view of 2aT n

1−|c| < 1, so there exists a constant ε > 0 such that 2(a+ε)T n

1−|c| < 1. From condition
[B2], and by the properties of bounded variation function, we get that there exists a constant
ρ > M such that∣∣∣∣∣g

( 0∫
x(t + s) dα(s)

)
− p̄

∣∣∣∣∣ � (a + ε)

∣∣∣∣∣
0∫
x(t + s) dα(s)

∣∣∣∣∣ � (a + ε)|x|0,

−r −r
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∀t ∈ R,

0∫
−r

x(t + s) dα(s) > ρ. (3.6)

Let X(t) = ∫ 0
−r

x(t + s) dα(s), we set

E1 = {
t ∈ [0, T ]: X(t) > ρ

}
, E2 = {

t ∈ [0, T ]: |X(t)| � ρ
}
,

E3 = {
t ∈ [0, T ]: X(t) < −ρ

}
.

By (3.3) it is easy to see that( ∫
E1

+
∫
E2

+
∫
E3

)(
g

( 0∫
−r

x(t + s) dα(s)

)
− p̄

)
dt = 0. (3.7)

Hence∫
E3

∣∣∣∣∣g
( 0∫

−r

x(t + s) dα(s)

)
− p̄

∣∣∣∣∣dt = −
∫
E3

(
g

( 0∫
−r

x(t + s) dα(s)

)
− p̄

)
dt

=
( ∫

E1

+
∫
E2

)(
g

( 0∫
−r

x(t + s) dα(s)

)
− p̄

)
dt

�
( ∫

E1

+
∫
E2

)∣∣∣∣∣g
( 0∫

−r

x(t + s) dα(s)

)
− p̄

∣∣∣∣∣dt

� (a + ε)T |x|0 + g̃ρT . (3.8)

Therefore by (3.6) and (3.8), we get

T∫
0

∣∣∣∣∣g
( 0∫

−r

x(t + s) dα(s)

)
− p̄

∣∣∣∣∣dt =
( ∫

E1

+
∫
E2

+
∫
E3

)∣∣∣∣∣g
( 0∫

−r

x(t + s) dα(s)

)
− p̄

∣∣∣∣∣dt

� 2

( ∫
E1

+
∫
E2

)∣∣∣∣∣g
( 0∫

−r

x(t + s) dα(s)

)
− p̄

∣∣∣∣∣dt

� 2(a + ε)T |x|0 + 2g̃ρT , (3.9)

where g̃ρ = maxt∈E2 |g(
∫ 0
−r

x(t + s) dα(s)) − p̄|. From (3.5), (3.6) and (3.9), we have

T∫
0

∣∣x(k)(t)
∣∣2

dt � 2T (a + ε)

1 − |c| |x|20 + 2T

1 − |c| g̃ρ |x|0. (3.10)

From x(0) = x(T ), x′(0) = x′(T ), . . . , x(n−1)(0) = x(n−1)(T ), we know that there exist ξi ∈
(0, T ), i = 1,2, . . . , n, such that x′(ξ1) = x′′(ξ2) = · · · = x(n)(ξn) = 0. Hence we get

T∫ ∣∣x′(t)
∣∣dt � T

T∫ ∣∣x′′(t)
∣∣dt � T 2

T∫ ∣∣x′′′(t)
∣∣dt � · · · � T n−1

T∫ ∣∣x(n)(t)
∣∣dt. (3.11)
0 0 0 0
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Following (3.4) and (3.11), we have

|x|0 � M +
T∫

0

∣∣x′(t)
∣∣dt � M + T k−1

T∫
0

∣∣x(k)(t)
∣∣dt (3.12)

and

|x′|0 �
T∫

0

∣∣x′′(t)
∣∣dt � T

T∫
0

∣∣x′′′(t)
∣∣dt � · · · � T k−2

T∫
0

∣∣x(k)(t)
∣∣dt. (3.13)

So it follows from (3.10) and (3.12), we have the following inequality:

T∫
0

∣∣x(k)(t)
∣∣2

dt � 2T (a + ε)

1 − |c| |x|20 + 2T

1 − |c| g̃ρ |x|0

� 2T (a + ε)

1 − |c|

(
M + T k−1

T∫
0

∣∣x(k)(t)
∣∣dt

)2

+ 2T

1 − |c| g̃ρ

(
M + T k−1

T∫
0

∣∣x(k)(t)
∣∣dt

)

� 2T 2k−1(a + ε)

1 − |c|

( T∫
0

∣∣x(k)(t)
∣∣dt

)2

+ d1

T∫
0

∣∣x(k)(t)
∣∣dt + d2

� 2T n(a + ε)

1 − |c|
T∫

0

∣∣x(k)(t)
∣∣2

dt + d1

T∫
0

∣∣x(k)(t)
∣∣dt + d2, (3.14)

where d1 = 2T k

1−|c| (2(a+ε)+ g̃ρ), d2 = 2T M
1−|c| ((a+ε)M + g̃ρ). As 2(a+ε)T n

1−|c| < 1, there is a constant
M2 > 0 such that

T∫
0

∣∣x(k)(t)
∣∣2

dt < M2. (3.15)

From (3.12), (3.13) and (3.15), there exist two constants M0 and M1 independent of λ and x

such that

|x|0 < M0, |x′|0 < M1.

Let M̃ = max{M0,M1}, Ω = {x: ‖x‖ � M̃} and Ω2 = {x ∈ ∂Ω: x ∈ kerL}, then

QNx = − 1

T

T∫
0

(
g

( 0∫
−r

x(t + s) dα(s)

)
− p̄

)
dt.

If x = M̃ or −M̃ , then |x| > M , we know g(
∫ 0
−r

x(t + s) dα(s)) − p̄ > 0, we have QNx �= 0,
which yields a contradiction, i.e., ∀x ∈ Ω , x /∈ ImL. So conditions [A1] and [A2] of Lemma 2.2
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are both satisfied. Next we show that condition [A3] of Lemma 2.2 is also satisfied. Define the
isomorphism J : ImQ → kerL as follows: J (x) = −x.

Let

H(x,μ) = μx + 1 − μ

T
JQNx, (x,μ) ∈ Ω × [0,1].

Then we have

H(x,μ) = μx + 1 − μ

T

(
1

T

T∫
0

(
g

( 0∫
−r

x(t + s) dα(s)

)
− p̄

)
dt

)
,

∀(x,μ) ∈ (∂Ω ∩ kerL) × [0,1].
Similar to the above proof we can see that H(x,μ) �= 0. Hence

deg{JQN,Ω ∩ kerL,0}
= deg

{
H(x,0),Ω ∩ kerL,0

} = deg
{
H(x,1),Ω ∩ kerL,0

} �= 0.

So condition [A3] of Lemma 2.2 is satisfied. By applying Lemma 2.2, we conclude that Eq. (3.1)
has at least one solution x(t) on Ω̄ ∩ D(L), i.e., Eq. (1.1) has at least one T -periodic solu-
tion x(t). �
Corollary. Suppose n is an even integer and |c| < 1. If there exist constants a � 0 and M > 0
such that

[B1] x(g(x) − p̄) > 0, |x| > M ; or x(g(x) − p̄) < 0, |x| > M ;

[B2] limx→−∞ sup |g(x)−p̄|
|x| � a,

then Eq. (1.1) has at least one T -periodic solution, if 2aT n

1−|c| < 1.

Theorem 3.2. Suppose n is an odd integer and |c| < 1. If there exist constants a � 0 and M > 0
such that

[B1] x(g(x) − p̄) > 0, |x| > M ; or x(g(x) − p̄) < 0, |x| > M ;

[B2] limx→+∞ sup |g(x)−p̄|
|x| � a;

[B3] f (y) � 0, ∀y ∈ R,

then Eq. (1.1) has at least one T -periodic solution, if 2aT n

1−|c| < 1.

Proof. Without loss of generality, we assume that x(g(x) − p̄) > 0, ∀t ∈ R, |x| > M, and x(t)

is an arbitrary T -periodic solution of Eq. (3.2). Notice that n is an odd number, so there is a
constant k such that n = 2k − 1, k ∈ Z+, multiplying the two sides of Eq. (3.2) by x′(t) and
integrating them on the interval [0, T ], we have

(−1)k−1

T∫ ∣∣x(k)(t)
∣∣2

dt = (−1)k−1c

T∫
x(k)(t − σ)x(k)(t) dt − λ

T∫
f

(
x(t)

)[
x′(t)

]2
dt
0 0 0
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− λ

T∫
0

x′(t)
(

g

( 0∫
−r

x(t + s) dα(s)

)
− p̄

)
dt

� (−1)k−1c

T∫
0

x(k)(t − σ)x(k)(t) dt

− λ

T∫
0

x′(t)
(

g

( 0∫
−r

x(t + s) dα(s)

)
− p̄

)
dt. (3.16)

In view of |x|0 � M + ∫ T

0 |x′(t)|dt � M + T |x′|0, by Hölder inequality, we have

T∫
0

∣∣x(k)(t)
∣∣2

dt � |c|
( T∫

0

∣∣x(k)(t)
∣∣2

dt

)1/2( T −σ∫
−σ

∣∣x(k)(t)
∣∣2

dt

)1/2

+
T∫

0

∣∣x′(t)
∣∣∣∣∣∣∣g

( 0∫
−r

x(t + s) dα(s)

)
− p̄

∣∣∣∣∣dt

� 1

1 − |c| |x
′|0

T∫
0

∣∣∣∣∣g
( 0∫

−r

x(t + s) dα(s)

)
− p̄

∣∣∣∣∣dt

� 2T (a + ε)

1 − |c| |x|0|x′|0 + 2T

1 − |c| g̃ρ |x|0

� 2T 2(a + ε)

1 − |c| |x′|20 + 2T

1 − |c|
(
M(a + ε) + T g̃ρ

)|x′|0 + 2T

1 − |c| g̃ρM.

(3.17)

So from (3.13) and (3.17), we get

T∫
0

∣∣x(k)(t)
∣∣2

dt � 2T 2k−2(a + ε)

1 − |c|

( T∫
0

∣∣x(k)(t)
∣∣dt

)2

+ d3

T∫
0

∣∣x(k)(t)
∣∣dt + d4

� 2T n(a + ε)

1 − |c|
T∫

0

∣∣x(k)(t)
∣∣2

dt + d3

T∫
0

∣∣x(k)(t)
∣∣dt + d4, (3.18)

where d3 = 2T k−1

1−|c| (M(a + ε) + T g̃ρ), d4 = 2T
1−|c| g̃ρM . From assumption 2aT n

1−|c| < 1, there exists a

constant ε such that 2(a+ε)T n

1−|c| < 1. Hence from (3.18), there is a constant M2 independent of λ

and x such that
T∫

0

∣∣x(k)(t)
∣∣2

dt � M2. (3.19)

The remainder can be proved in the same way as that in Theorem 3.1. �
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Corollary. Suppose n is an odd integer and |c| < 1. If there exist constants a � 0 and M > 0
such that

[B1] x(g(x) − p̄) > 0, |x| > M ; or x(g(x) − p̄) < 0, |x| > M ;

[B2] limx→−∞ sup |g(x)−p̄|
|x| � a;

[B3] f (y) � 0, ∀y ∈ R,

then Eq. (1.1) has at least one T -periodic solution, if 2aT n

1−|c| < 1.

Theorem 3.3. If there exist constants a � 0, b > 0 and M > 0 such that

[B1] x(g(x) − p̄) > 0, |x| > M ; or x(g(x) − p̄) < 0, |x| > M ;

[B2] limx→+∞ sup |g(x)−p̄|
|x| � a;

[B3] |f (y)| � b, ∀y ∈ R,

then Eq. (1.1) has at least one T -periodic solution, if T n−1(b+2aT )
|1−|c|| < 1.

Proof. Without loss of generality, we assume that x(g(x) − p̄) > 0, ∀t ∈ R, |x| > M, and x(t)

is an arbitrary T -periodic solution of Eq. (3.2). So we get

∣∣Ax(n)(t)
∣∣ � λ

∣∣f (
x(t)

)
x′(t)

∣∣ + λ

∣∣∣∣∣g
( 0∫

−r

x(t + s) dα(s)

)∣∣∣∣∣ + λ
∣∣p(t)

∣∣. (3.20)

Integrating both sides of (3.20) on the interval [0, T ], then

T∫
0

∣∣Ax(n)(t)
∣∣dt � λ

T∫
0

∣∣f (
x(t)

)
x′(t)

∣∣dt + λ

T∫
0

∣∣∣∣∣g
( 0∫

−r

x(t + s) dα(s)

)
− p̄

∣∣∣∣∣dt

+ λ

T∫
0

∣∣p(t)
∣∣dt + λ

T∫
0

|p̄|dt

� T
(
b|x′|0 + 2(a + ε)|x|0 + 2g̃ρ + |p|0 + |p̄|), (3.21)

where |p|0 = maxt∈[0,T ] |p(t)|. From (3.21) and the second part of Lemma 2.1, we have

T∫
0

∣∣x(n)(t)
∣∣dt =

T∫
0

∣∣A−1Ax(n)(t)
∣∣dt

� 1

|1 − |c||
T∫

0

∣∣Ax(n)(t)
∣∣dt

� T

|1 − |c||
(
b|x′|0 + 2(a + ε)|x|0 + 2g̃ρ + |p|0 + |p̄|). (3.22)

Hence from (3.13) and (3.22), we get
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|x′|0 � T n−2

T∫
0

∣∣x(n)(t)
∣∣dt

� T n−1

|1 − |c||
(
b|x′|0 + 2(a + ε)|x|0 + 2g̃ρ + |p|0 + |p̄|)

� T n−1

|1 − |c||
((

b + 2(a + ε)T
)|x′|0 + 2(a + ε)M + 2g̃ρ + |p|0 + |p̄|). (3.23)

From assumption T n−1(b+2aT )
|1−|c|| < 1, there exists a small constant ε > 0 such that

T n−1(b+2(a+ε)T )
|1−|c|| < 1. So following (3.23), there must exist a constant M1 independent of λ

and x such that

|x′|0 < M1. (3.24)

The remainder is similar to that in Theorem 3.1. �
Corollary. If there exist constants a � 0, b > 0 and M > 0 such that

[B1] x(g(x) − p̄) > 0, |x| > M ; or x(g(x) − p̄) < 0, |x| > M ;

[B2] limx→−∞ sup |g(x)−p̄|
|x| � a;

[B3] |f (y)| � b, ∀y ∈ R,

then Eq. (1.1) has at least one T -periodic solution, if T n−1(b+2aT )
|1−|c|| < 1.

Remark 3.4. If f (x) = 0, then Eq. (1.1) is a high-order Duffing equation. Furthermore, the
conditions in Theorems 3.1–3.3 are all satisfied. If c = 0, then Eq. (1.1) is a high-order Liénard
equation, and all conditions in the above theorems are still satisfied.

4. Examples

As an application, we list the following examples.

Example 1.(
x(t) − 1

2
x(t − τ)

)(6)

+ 2xe4(x2(t)−1)x′(t)

+
0∫

−π

x(t + s) ds e−(
∫ 0
−π x(t+s) ds)2 = −1

2
cos t. (4.1)

By Theorem 3.1 we let

g(x) = xe−x2
, p(t) = −1

2
cos t, r = −π, T = 2π, n = 6.

Then we get
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c = 1

2
, k = 3, T = 2π, a = lim

x→+∞

∣∣∣∣g(x) − p̄

x

∣∣∣∣ = 0, and

2aT n

1 − |c| = 0 < 1.

So by applying Theorem 3.1, Eq. (4.1) has at least one T -periodic solution.

Example 2.

(
x(t) − 1

2
x(t − τ)

)(5)

+ 2e4(x2(t)−1)x′(t) +
0∫

−π

x(t + s) ds e−(
∫ 0
−π x(t+s) ds)2 = −1

2
sin t.

(4.2)

By Theorem 3.2 we let

f (x) = 2e4(x2(t)−1), g(x) = xe−x2
, p(t) = −1

2
sin t, r = −π,

T = 2π, n = 5.

Then we get

c = 1

2
, k = 3, T = 2π, a = lim

x→+∞

∣∣∣∣g(x) − p̄

x

∣∣∣∣ = 0,

f (x) = 2e4(x2(t)−1) > 0,

and 2aT n

1−|c| = 0 < 1. So by employing Theorem 3.2, Eq. (4.2) has at least one T -periodic solution.

Example 3.(
x(t) − 2x(t − τ)

)(5) + 1

16π3(1 + 2π)
e−4(x2(t)+1)x′(t)

+
0∫

−π

x(t + s) ds e−(
∫ 0
−π x(t+s) ds)2 = cos t. (4.3)

By Theorem 3.3 we let

f (x) = 1

16π3(1 + 2π)
e−4(x2(t)+1), g(x) = xe−x2

, p(t) = cos t,

r = −π, T = 2π.

Then we get

c = 2, n = 5, T = 2π, a = lim
x→+∞

∣∣∣∣g(x) − p̄

x

∣∣∣∣ = 0,

∣∣f (x)
∣∣ = 1

16π3(1 + 2π)
e−4(x2(t)+1) <

1

16π3(1 + 2π)
.

Obviously all conditions of Theorem 3.3 are satisfied, and (2aT +b)T n−1

|1−|c|| = π
2(1+2π)

< 1. So by
using Theorem 3.3, Eq. (4.3) has at least one T -periodic solution.
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