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Abstract

A Stieltjes class is a one-parameter family of moment-equivalent distribution functions constructed by
modulation of a given indeterminate distribution function F , called the center of the class. Members of
a Stieltjes class are mutually absolutely continuous, and conversely, any pair of moment-equivalent and
mutually absolutely continuous distribution functions can be joined by a Stieltjes class. The center of a
Stieltjes class is an equally weighted mixture of its extreme members, and this places restrictions on which
distributions can belong to a Stieltjes class with a given center. The lognormal law provides interesting
illustrations of the general ideas. In particular, it is possible for two moment equivalent infinitely divisible
distributions to be joined by a Stieltjes class, and random scaling can be used to construct new Stieltjes
classes from a given Stieltjes class.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Stoyanov [21] formalized a construction first used by Stieltjes [20, §56] to exhibit some prob-
ability distributions which are moment equivalent (denoted M-equivalent), meaning that they
possess the same moment sequence. Specifically, let F(x) be a distribution function with support
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supp(F ) ⊂ [0,∞) and for a given measurable function h(x) let S(F,h) := {Fε : −1 � ε � 1}
where

dFε(x) = (
1 + εh(x)

)
dF(x). (1.1)

We assume throughout that F has finite moments of all orders, mn = ∫
xn dF (x) for n =

1,2, . . . , where
∫
(·) dF (x) denotes integration over supp(F ). If h(x) satisfies −1 � h(x) � 1

and
∫

xnh(x) dF (x) ≡ 0, then each member of S(F,h) is a distribution function having the
same moments as F . We then say that S(F,h) is a Stieltjes class with center F and extreme
elements F±1, and that the distinct elements are joined by the Stieltjes class. If F is uniquely
determined by its moments then S(F,h) is a Stieltjes class iff h(x) ≡ 0, a trivial situation we
will normally exclude.

Stoyanov’s [21] definition is for the case of absolutely continuous F . He defines a dissimilarity
index for a Stieltjes class as the total variation distance between F−1 and F1, and values are
given for some known Stieltjes classes centered on the lognormal law and powers of normal and
exponential laws. The latter are explored more fully by Stoyanov and Tolmatz [23], and powers
of inverse Gaussian distributions are treated by Ostrovska and Stoyanov [16]. Shifting, dilation
and linear combination of functions can be used to construct new Stieltjes classes from old,
a theme pursued by Stoyanov and Tolmatz [22] in connection with the lognormal distribution,
and powers of the logistic and inverse Gaussian. These papers exhibit some new Stieltjes classes.

The present paper enlarges on themes mentioned by Stoyanov [21]. In Section 2 we explore
simple consequences of the definition (1.1). We will see that members of a Stieltjes class are mu-
tually absolutely continuous, and an example shows that there exist many pairs of M-equivalent
density functions which cannot be joined by a Stieltjes class. Any pair of M-equivalent and
mutually absolutely distribution functions can be the extreme members of a Stieltjes class, but
boundedness relations between members impose constraints on distribution functions which can
be joined to a putative center; see Theorem 2.1 and Corollaries 2.1–2.3. A distribution function is
a center if it is not an extreme point of the convex set of M-equivalent distribution functions; see
Theorem 2.2. Further examples are explored in Section 3 for the lognormal law. A well-known
distributional identity for this law extends to certain Stieltjes classes; see Theorem 3.1. A general
construction discussed by Pakes [17] provides a vehicle for examples and counter-examples. In
particular, an M-equivalent family due to Berg [5] is exhibited and discussed further in Section 4
as an infinitely divisible (abbreviated to infdiv) example which, subject to parameter constraints,
can be joined to the lognormal acting as a center. The topic of Section 5 is showing that new
Stieltjes classes can be constructed from a given Stieltjes class by random scaling, and we illus-
trate this using a connection between the lognormal and the q-gamma laws.

2. Structural consequences

Let F be indeterminate (i.e., not determined by its moments) and M(F ) comprise the convex
set of all distribution functions which are M-equivalent to F . A Stieltjes class is a one-parameter
subset of M(F ), and hence it can be regarded as a kind of fiber element in the cushion M(F ).
This comment is made precise in Theorems 2.1 and 2.2. Our first result shows that it need not be
the case that any two points in M(F ) are joined by a Stieltjes class. If F and G are distribution
functions, write F � G if F is absolutely continuous with respect to G, and F � G if F � G

and G � F .
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Theorem 2.1. If A and B are elements of the Stieltjes class S(F,h) then A � B , and hence
supp(A) = supp(B). Conversely, if A and B are M-equivalent and A � B then there is a Stieltjes
class S(F,h) with A = F−1 and B = F1 which is specified by

F(x) = 1

2

(
A(x) + B(x)

)
and h(x) = 1 − λ(x)

1 + λ(x)
,

where λ(x) = dA(x)/dB(x).

Proof. The direct assertion is obvious from (1.1). The converse follows by expressing the
M-equivalent distribution functions Kp(x) = pA(x) + (1 − p)B(x) (0 � p � 1) in terms of
the class index ε = 1 − 2p and Fε(x) = Kp(x),

dFε(x) = 1

2

(
dA(x) + dB(x)

) + (ε/2)
(
dB(x) − dA(x)

)
and F(x) = K0(x). �

The following example builds on one due to Simon [19, p. 87], and it demonstrates the exis-
tence of many mutually singular but M-equivalent density functions.

Example 2.1. Let b(u) be a non-trivial C∞([0,1]) function, and

b̂(x) = (2π)−1/2

∞∫
0

eixub(u)du

be its Fourier transform. Differentiating the inverse transform yields

∞∫
−∞

xnb̂(x) dx = √
2π(−i)nb(n)(0).

Choose b such that b(n)(0+) = 0 for all n, for example, b(u) = exp(−u−1). Next, let

g1(x) = K1
(�b̂(x)

)+ and g2(x) = K2
(�b̂(x)

)−
,

where Ki (i = 1,2) is a normalization constant. Then g1 and g2 are density functions whose
supports have disjoint interiors and which share the same set of moments. The distributions
corresponding to g1 and g2 are indeterminate in the Hamburger sense. Since �b̂(x) is an even
function, the density functions fi(x) = x−1/2gi(

√
x ) are M-equivalent in the Stieltjes sense, but

not joined by a Stieltjes class.

The following corollaries show that members of a Stieltjes class share some boundedness
properties.

Corollary 2.1. Suppose F and G are M-equivalent, F � G, and dG(x)/dF (x) � 2 for all
x ∈ supp(F ). Then G ∈ S(F,h) where h(x) = (dG(x)/dF (x)) − 1, G = F1 and

1

2
G(x) � F(x) � 1

2

(
1 + G(x)

)
.
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Observe that if the boundedness condition is omitted then F and G determine a one-sided
Stieltjes class defined as at (1.1) but with 0 � ε � 1. This is just the set of mixtures Fε(x) =
(1 − ε)F (x) + εG(x).

It follows from Theorem 2.1 that if F and G are M-equivalent and F � G, then F and G

are the end points of some Stieltjes class, but if the bound condition in Corollary 2.1 is violated,
then it need not be the case that there is a Stieltjes class centered on F and with G = F±1. In
Theorem 2.1, if A and B have density functions (with respect to Lebesgue measure) a(x) and
b(x), respectively, then λ(x) = [b(x) − a(x)]/[b(x) + a(x)], and in the corollary, if f (x) =
F ′(x) and g(x) = G′(x), then the additional requirement is that g(x) � 2f (x), and then h(x) =
(g(x)/f (x)) − 1. The following result adds a little more.

Corollary 2.2. If the center F of S(F,h) has a density function f then the member Fε has a
density function

fε(x) = f (x)
(
1 + εh(x)

)
(−1 � ε � 1).

In addition, if f is bounded then fε is bounded for each ε. Conversely, if f is unbounded, then
fε is unbounded for each ε with one possible exception.

Proof. If f is unbounded there exists a sequence of positive numbers xn → x∞ such that
f (xn) → ∞. If there exists ε̄ �= 0 such that limn→∞ fε̄(xn) < ∞ then h(xn) → −1/ε̄, and hence
fε(xn) → ∞ for all ε �= ε̄. �

The following result supplements Corollary 2.1.

Corollary 2.3. If b = supx>0 dG(x)/dF (x) < ∞ then S(F,hb) is a Stieltjes class where

hb(x) = dG(x)/dF (x) − 1

1 ∨ (b − 1)
,

and if b > 2, then

F1(x) = (b − 2)F (x) + G(x)

b − 1
, F−1(x) = bF(x) − G(x)

b − 1
,

and

G(x)/b � F(x) � 1 − b−1 + b−1G(x).

If b = ∞ then there is no Stieltjes class S(F,h) containing G.

Which members of M(F ) can be centers of a Stieltjes class? A theorem of Naimark asserts
that G is an extreme point of M(F ) iff the polynomials are dense in L1(G). The functional
analytic proof given in Akhiezer [1, p. 47] is due to Gelfand, and Berg [7] mentions that it is
equivalent to the following assertion which we prove by elementary means.

Theorem 2.2. Suppose F is indeterminate. Then G ∈ M(F ) is the center of a Stieltjes class iff
it is not an extreme point of M(F ). In particular, no N-extremal member of M(F ) is the center
of a Stieltjes class.

Proof. Theorem 2.1 implies that if G ∈ M(F ) is a center then it is not an extreme point. Con-
versely, if it is not an extreme point then there exist distribution functions Gi ∈M(F ) (i = 1,2)
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and a number 0 < α < 1 such that G = αG1 + (1 − α)G2. Clearly supp(Gi) ⊂ supp(G) =
supp(G1)∪ supp(G2). Hence the distribution functions A = (1 − (1 −α)2)G1 + (1 −α)2G2 and
B = α2G1 + (1 − α)2G2 satisfy the conditions of the converse part of Theorem 2.1, and hence
G = 1

2 (A + B) is a center. �
Theorem 2.1 shows that the center of a Stieltjes class is an equally weighted mixture of its

extreme elements, F±1. Is this the only such representation of the center? We generalize with
reference to (1.1) by defining ε̃ = inf{−1 � ε � 0: Fε is a distribution function}. Thus ε̃ = −1
for a Stieltjes class, ε̃ = 0 for the one-sided version, and if b > 2 in Corollary 2.3 then ε̃ = −2/b.
Since Fε(0) � 0 for any ε, it is clear by choosing a sequence εn ↓ ε̃ that Fε̃ is a distribution func-
tion. Let S̄(F,h) = {Fε : ε̃ � ε � 1}. The following theorem, proved by simple manipulation,
exhibits the mixture closure properties of a Stieltjes class.

Theorem 2.3. The center F of S̄(F,h) is a mixture of two other distinct members iff ε̃ < 0. More
generally, if −1 � ε̃ � ε′ < ε′′ � 1, then

Fε = (ε′′ − ε)Fε′ + (ε − ε′)Fε′′

ε′′ − ε′
is a two-component mixture iff ε′ < ε < ε′′.

Suppose X is a random variable having the distribution function F . The following result
gives two transformations which map a Stieltjes class into a second one. We need the following
notation for weighted distribution functions. Let w(x) � 0 (x � 0) be a weight function satisfying
mw := E[w(X)] < ∞, and let X̂w denote a random variable having the weighted distribution
function F̂w(x) = m−1

w

∫ x

0 w(y)dF (y). Recall that mn = E(Xn).

Theorem 2.4. Suppose S(F,h) is a Stieltjes class. (a) Let w(x) be a weight function which, for
all x � 0, has a power series expansion w(x) = ∑

j�0 ajx
j such that

∑
j�0 |aj |mj+n < ∞ for

n = 0,1, . . . . Then S(F̂w,h) is a Stieltjes class.
(b) Suppose that τ(x) is a strictly increasing polynomial with inverse η(y). Then S(G,γ ) is

a Stieltjes class, where G(y) = F(η(y)) and γ (y) = h(η(y)).

Proof. (a) Since members of S(F̂w,h) have the form dF̂w,ε(x) = (1 + εh(x))w(x)dF (x), it
suffices to observe that∫

xnh(x)w(x)dF (x) =
∑
j�0

aj

∫
xj+nh(x) dF (x) ≡ 0.

Interchanging summation and integration is justified by the summability assumption and Fubini’s
theorem.

(b) The distribution function of Y = τ(X) is G(y) = F(η(y)) and a change of variable yields∫
ynh

(
η(y)

)
dG(y) =

∫
τn(x)h(x) dF (x), (2.1)

and since τn(x) is a polynomial it follows from the hypothesis that the right-hand side is zero for
all n = 0,1, . . . . �

The assumptions for (a) are satisfied if w(x) is a polynomial, thus covering almost any ex-
ample of size biasing. Part (b) is a little unexpected in view of Stoyanov’s [21] counter-example
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based on the lognormal law that there exist transformations Y = τ(X) having a determinate law
even though F is indeterminate, in which case S(G,γ ) is not a Stieltjes class. The assertion (b)
is valid under the weaker condition that τ(x) is increasing and can be extended as an entire func-
tion and that the integral on the right-hand side of (2.1) can be evaluated term by term from the
power series expansion of τn. Stoyanov’s discussion is based on the transformation τ(x) = logx

which does not have a MacLaurin series expansion.

3. The lognormal law

The lognormal law is a fruitful source of interesting examples. The general lognormal law
LN(μ,σ 2) has the density function

fL(x;μ,σ) = 1

x
φ

(
logx − μ

σ

)
(x > 0), (3.1)

where φ is the standard normal density function. The standard lognormal law is defined by μ = 0
and σ = 1. The moment function of X ∼ LN(μ,σ 2) is

ML(t) := E
(
Xt

) = eμt+ 1
2 σ 2t2

.

Stieltjes’ [20] oft-mentioned example of laws which are M-equivalent to the lognormal is
based on the function x− logx which is proportional to fL(x;− 1

2 , 1
2 ). He remarked that equiv-

alent laws are obtained by taking h(x) = ω(logx) where ω is an odd and periodic function
satisfying −1 � ω(z) � 1 and ω(z + 1

2 ) = ±ω(z). His specific example is ω(z) = sin(2πz),
and this was later exhibited by Heyde [13] in a statistical context, and for an even more general
parametrization than we will use.

Following Stieltjes, let h(x) = ω(logx −μ) where ω is odd with |ω(z)| � 1 and ω(z+σ 2) =
±ω(z), and let Z have a standard normal law. Then

E
[
Xth(X)

] = E
[
e(μ+σZ)tω(σZ)

] = (2π)−
1
2 eμt+ 1

2 σ 2t2
∫

e− 1
2 (z−σ t)2

ω(σz)dz

= ML(t)E
[
ω

(
σZ + tσ 2)].

If n = 0,1, . . . then E[ω(σZ + nσ 2)] = ±Eω(σZ) = 0. It follows that fL(x;μ,σ) and

fε(x) = fL(x;μ,σ)
(
1 + εh(x)

)
are M-equivalent. A more analytical derivation of this conclusion is given by White [24], but
our simple argument is easier than that usually associated with the sinusoidal case simply be-
cause in this general context there is no temptation to explicit evaluation of the final expectation.
This construction generalizes in a minor way by recognizing that center densities can be cre-
ated by mutiplying φ((z − μ)/σ) by a function ρ(z − μ) where ρ(v) is even and non-negative,
ρ(z + σ 2) ≡ ρ(z), and

∫
ρ(σz)φ(z)eθz dz < ∞ for all real θ , a condition which is satisfied if

ρ(v) is bounded. The special features making this proof work do not seem to be available for
other common examples of indeterminate laws.

An interesting corollary of Stieltjes’ construction relates to the fact that if X ∼ LN(μ,σ 2)

then X−1 L= e2μX. Does this extend to other laws in a Stieltjes class? We show now that this
property is a special case of a more general relation.
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Theorem 3.1. Suppose L(Xε) comprises a Stieltjes class centered on the LN(μ,σ 2) law with
h(x) = ω(logx − μ) where ω(z) is odd and periodic with period σ 2. Then

X−1
ε

L= e2μX−ε (−1 � ε � 1).

Proof. Observe that h(1/x) = ω(− logx − μ) = −ω(logx + μ) = −h(xe2μ). So if fε(x) is the
density function of Xε , then X−1

ε has the density function

x−2fε

(
x−1) = x−2fL

(
x−1;μ,σ

)(
1 + εh

(
x−1)) = e2μfL

(
xe2μ;μ,σ

)(
1 − εh

(
xe2μ

))
= e2μf−ε

(
xe2μ

)
,

which is the density function of e2μX−ε . �
Suppose X has the standard lognormal law, ω(z) = sin(2πz), and Zε = logXε . Then Z0 ∼

N(0,1) is moment-determinate and hence the law of Zε is moment-determinate for all ε. Stoy-
anov [21] observes that the density of Zε is

φε(z) = φ(z)
(
1 + ε sin(2πz)

)
,

where φ(z) is the standard normal density. He observes too that if Mε(t) = E(Zt
ε), then the

even order moments are independent of ε, Mε(2n) = E(Z2n), and that the odd order moments
Mε(2n + 1) are not all zero if ε �= 0. This constancy in ε holds more generally. If the pdf of X is
fL(x;μ,σ) and that of Xε is fL(x)(1 + εh(x)), where h(x) = ω(logx − μ) and ω is odd, then
it is easily checked that

E
[
(logXε − μ)2n

] = σ 2nE
(
Zn

)
.

The corresponding odd-order moments are εσ 2n+1E[Z2n+1ω(σZ)]. This could in principle be
evaluated if ω can be expressed as a Fourier sine series. Indeed, in Stoyanov’s case we have

Mε(2n + 1) = εE
[
Z2n+1 sin(2πZ)

] = i−1εE
[
Z2n+1e2πiZ

]
= i−1εE

[
Z2n+1eiθZ

]∣∣
θ=2π

= i−2n−2ε
d2n+1

dθ2n+1
E

[
eiθZ

]∣∣
θ=2π

= (−1)−n−1ε
d2n+1

dθ2n+1
e− 1

2 θ2 ∣∣
θ=2π

= (−1)nεe−2π2
2−n−1/2H2n+1(

√
2π) (n = 0,1, . . .),

where Hn is a Hermite polynomial and we have used Rodrigues’ formula in the form

dn

dθn
e− 1

2 θ2 = (−1)ne− 1
2 θ2

Hn(θ/
√

2).

(See Willink [25] for a similar approach to moment calculations for normal laws.) These mo-
ments are proportional to ε, and the first order moment Mε(1)/ε = 2πe−2π2 = 1.680933×10−8.
In addition∣∣Mε(2n + 1)

∣∣ ∼ ε
√

2/e · e−π2
(n/e)n+1/2Sn and Mε(2n) ∼ √

e/2 · 2n(n/e)n+1/2,

where Sn = | sin[√8n + 6π]|. Thus the even-order moments increase much faster than the odd-
order moments, in fact, |Mε(2n + 1)| = O(2−nMε(2n)).
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We now extend discussion of a general construction methodology [17] for laws which are
M-equivalent to the lognormal. The moment function ML(t) solves the functional equation

M(t + 1) = m�tM(t), (3.2)

where m = ML(1) = eμ+ 1
2 σ 2

and � = eσ 2
> 1. For any non-negative random variable X with

distribution function F(x) and E(Xr) < ∞ for some r > 0 , we define its order-r length-biased
version to be X̂(r) := X̂w in the case that w(x) = xr , and its distribution function is denoted
by F̂r (x). The argument r is omitted in the case r = 1. So if X ∼ LN(μ,σ 2) and q = �−1, then
(3.2) can be expressed as

X
L= qX̂, (3.3)

i.e., the law of X is recovered be rescaling the stochastically larger X̂. We call this the length-bias
scaling property, abbreviated to LBS-property. The right-hand side represents an operator T act-
ing on distributions, and hence (3.3) asserts that distribution functions having the LBS-property
are fixed points of T . Christiansen [11, §3] obtains interesting results about T in relation to
N -extremal and canonical solutions of the lognormal moment problem.

On the other hand, (3.2) has uncountably many moment function solutions and the corre-
sponding laws satisfy (3.3). It is easily seen that all such solutions are M-equivalent to the
LN(μ,σ 2) law. In addition, the quotient function M(t)/ML(t) is periodic with unit period; see
Pakes [17] for the explicit construction of these solutions. Almost all known explicit examples
of laws equivalent to LN(μ,σ 2) are particular cases of this construction. Indeed, solutions are
in 1-1 correspondence with the set of finite measures on (q,1], and it follows that solution laws
can be absolutely or singular continuous with respect to Lebesgue measure, be discrete, or be
a mixture of any of these. On the other hand, although the solution set of (3.3) is convex, its
extreme points are not N -extremal solutions of the lognormal moment problem [17, p. 836] and
hence this construction gives only a proper subset of the full set of M-equivalent laws.

Denote the distribution function of X̂ by F̂ (x). The distribution function version of (3.3) is

dF̂ (x) = (x/m)dF(x) = dF(qx). (3.4)

If S(F,h) is a Stieltjes class, then Theorem 2.4(a) says that S(F̂ , h) also is a Stieltjes class, and
we may ask whether Fε(x) has the LBS-property. The following result gives an answer.

Theorem 3.2. Let F(x) have the LBS-property and let S(F,h) be a Stieltjes class. If h(x) =
±h(qx) and the conditions of Theorem 2.4(a) hold, then members of S(F̂w,h) have the form

F̂w,ε(x) = m−1
w

∑
n�0

anmnF(±1)nε

(
qnx

)
. (3.5)

Proof. Observe first that iterating (3.3) yields X̂(n)
L= q−nX, whence F̂n(x) = F(qnx). Since

F̂w(x) = m−1
w

∑
n�0 anmnF̂n(x), the distribution function of X̂w,ε is

dF̂w,ε(x) = m−1
w

(
1 + εh(x)

)
dF̂w(x)

= m−1
w

∑
n�0

anmn

(
1 + εh(x)

)
dF̂n(x)

= m−1
w

∑
n�0

anmn

(
1 + (±1)nεh

(
qnx

))
dF

(
qnx

)
,

and this is the right-hand side of (3.5). �
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If X(n) (n = 1,2, . . .) are independent copies of X then a random variable version of (3.5) can
be expressed as

X̂w,ε
L= m−1

w

∞∑
n=0

anmnq
−nX

(n)
(±1)nε . (3.6)

In particular, if an = δ1n then

qX̂ε
L= X±ε,

where the sign corresponds to h(x) = ±h(qx). Almost all explicit Stieltjes class solutions of
the lognormal moment problem have center satisfying the LBS-property and a perturbation
function satisfying h(x) = h(qx), in which case all members of the Stieltjes class have the
LBS-property. Christiansen [11, (2.9)] exhibits a Stieltjes class of discrete laws M-equivalent

to the LN( 1
2σ 2, σ 2) law. Its center allocates mass proportional to q(n+1

2 ) to the point qn and
h(qn) = (−1)n, where n = 0,±1,±2, . . . , and hence members with ε �= 0 do not have the LBS-
property. However, taking an = δ2n in (3.6) gives the following corollary of Theorem 3.2, noted
by Christiansen [11] in relation to his Stieltjes class.

Corollary 3.1. Any member of a Stieltjes class constructed as in Theorem 3.2 with w(x) = x is
a fixed point of T 2.

Let f (x) be the density function of a law L(X) with E(X) = m and satisfying (3.3). The
expression of this relation in terms of f is

mf (x) = �2xf (�x), equivalently, xf (x) = mqf (qx). (3.7)

The second relation yields

mn =
∞∫

0

xnf (x) dx = mq−(n−1)mn−1 = mnq− 1
2 n(n−1) (n � 1).

Moreover, if f (x) > 0 for q < x � 1 then f (x) > 0 for all x > 0. If f (x) is such a solution and
g(x) is another density satisfying (3.7) then

g(x/q)

f (x/q)
= g(x)

f (x)
(x > 0). (3.8)

The function h(x) := (g(x)/f (x)) − 1 is defined in (0,∞) and h(x) ≡ h(x/q) ≡ h(qx), i.e.,
ω(z) := h(ez) has period σ 2. Since

∫ ∞
0 xnf (x)h(x) dx = ∫ ∞

0 xng(x) dx − ∫ ∞
0 xnf (x) dx = 0,

(n = 0,1, . . .), and since h(x) � −1, we conclude that

fε(x) = f (x)
(
1 + εh(x)

)
(0 � ε � 1) (3.9)

specifies a one-sided Stieltjes class which is moment equivalent to the LN(μ,σ 2) law. In partic-
ular fL(x;μ,σ) is joined to any other solution of (3.7) in this way. A one-sided Stieltjes class
can be extended to ε ∈ [−1,0) iff h(x) � 1, a condition which needs to be checked only in the
base interval (q,1]. This boundedness condition can be satisfied by choosing g(x) to be a small
perturbation of f (x). On the other hand, g can be chosen unbounded in (q,1], and hence un-
bounded in (�n−1, �n] for all integers n. In particular, if f is bounded and g is unbounded then
so is h, and hence the one-sided Stieltjes class (3.9) cannot be extended to negative values of ε.
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Summarizing, there are uncountably many absolutely continuous laws joined to the LN(μ,σ 2)

law as center of a Stieltjes class, and uncountably many M-equivalent absolutely continuous laws
which cannot be so joined to LN(μ,σ 2).

The following result exhibits solutions of (3.7).

Theorem 3.3. If f (x) � 0 (q < x � 1) is specified and satisfies 0 <
∫ 1
q

f (x) dx < ∞, then
defining

f
(
�nx

) = q
1
2 (n2+3n)(m/x)nf (x) (q < x � 1; n = 0,±1,±2, . . .),

equivalently,

f (x) = �
1
2 (n2−3n)(m/x)nf

(
qnx

) (
�n−1 < x � �n; n = 0,±1,±2, . . .

)
, (3.10)

yields a solution of (3.7). If ν(t) := ∫ 1
q

xtf (x) dx then

Mf (t) :=
∞∫

0

xtf (x) dx =
∞∑

n=−∞
m−nq

1
2 (n2−n)+nt ν(t + n). (3.11)

In particular, the normalized function f (x)/Mf (0) is a density function solution of (3.7).

Proof. The integral defining Mf (t) is evaluated by writing it as a sum of integrals∫ �n

�n−1 xtf (x) dx, substituting (3.10), evaluating and then changing the sign of n. �
If f (x) is continuous in (q,1] then it is continuous everywhere except perhaps where x = �n,

and at these points (3.10) implies that it is continuous from the left. Letting x ↓ 1 in the second
member of (3.7) yields f (1+) = mqf (q+). It follows that f (x) is continuous at x = 1 iff

mqf (q+) = f (1). (3.12)

Lemma 3.1. The condition (3.12) is necessary and sufficient for continuity of f (x) in (0,∞).

Obviously lognormal density functions satisfy this condition. Another example is the scaled
version of density functions described by Berg [5]. Let eμ = m

√
q and define the continuous

density functions

fB(x; c,μ) = xc−1

N (c,μ)L(xe−μq−c)
(x > 0), (3.13)

where

L(x) =
∞∑

n=−∞
xnq

1
2 n2

,

c is real, and N (c,μ) is the normalization constant. Berg has μ = 0, and he notes that L(x) =√
qxL(qx). This identity implies that fB(x; c,μ) satisfies (3.7).
The Jacobi triple product formula yields the symmetric identification

L(x) = (−√
qx;q)(−√

q/x;q)(q;q), (3.14)

where we write (a;q) = ∏
n�0(1 − aqn), slightly abbreviating the conventional notation for this

product. If X has the density (3.13) and X0 has the density f (x; c,0) then X and eμX0 have
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the same distribution whence, as in Berg [5], f (x; c + 1,μ) = f (x; c,μ), so we can restrict c to
[0,1]. It follows too that N (c,μ) = eμN (c,0).

Calculations about X are facilitated by observing that the density function of XA =
q−c+1/2X0 has the simpler form introduced by Askey [4, p. 315]. For example, Askey’s nor-
malization constant leads to the evaluation: If 0 < c < 1 then

N (c,μ) = π

sin(πc)

[
eμqc−1/2]c (qc;q)(q1−c;q)

(q;q)2
. (3.15)

Observe that as c → 0+ we have (qc;q) ∼ (1 − e−cσ 2
)(q;q) ∼ cσ 2(q;q), and hence

N (0,μ) = σ 2. In addition, the evaluation of the moment function of XA in [17] (which follows
immediately from the known evaluation of the q-beta integral (4.12) in [4]) yields: If 0 < c < 1
then

MB(t; c,μ) = mtqct sin(πc)

sin(π(c + t))
· (qc+t ;q)(q1−c−t ;q)

(qc;q)(q1−c;q)
(3.16)

and

MB(t;0,μ) = mt π

σ 2 sin(πt)
· (qt ;q)(q1−t ;q)

(q;q)2
.

Berg’s [5, Remark 2.3] independent evaluation of the normalization constant for c �= 0 also starts
from Askey’s integral.

Continuous solutions of (3.7) probably are the exception. We exhibit a discontinuous solution
of (3.7) as follows. Rewrite (3.10) as

f (x) = C(x)f
(
qnx

) (
�n−1 < x � �n; n = 0,±1,±2, . . .

)
,

where C(0) = 0 and

C(x) = mnq− 1
2 (n2−3n)x−n

(
�n−1 < x � �n; n = 0,±1,±2, . . .

)
.

It is easy to check that

C
(
�n+) = mn+1q

1
2 (n2+3n+2) = mqC

(
�n

)
,

and hence C(x) is continuous in (0,∞) iff mq = 1, i.e., μ = 1
2σ 2. This explains the condi-

tion (3.12) for continuity of f (x).
The graph of C(x) comprises left-continuous convex increasing arcs proportional to xn in

(qn+1, qn] (n � 1), C(x) ≡ 1 if q < x � 1, and concavely decreasing arcs proportional to x−n

in (�n−1, �n] (n � 1). Also, C(x) → 0 as x → 0 and x → ∞. Discontinuities at �n (all n) are
upward (respectively downward) jumps if mq > 1 (respectively mq < 1). So if mq > 1 then the
graph of C(x) is strictly increasing in (0, q] and it has local maxima in [1,∞) at x = �n. This
pattern is reversed in an obvious way if mq < 1. The quotient

C
(
�n

)
/C

(
�n−1) = mqn+1 (n = 0,±1,±2, . . .),

can exceed unity for small positive n if mq > 1, but clearly it tends to 0 as n → ∞, and it tends
to ∞ as n → −∞. Thus relative values of C(x) at successive discontinuities are very large near
the origin, and very small in the neighborhood of ∞.

Finally, if �n−1 < x � �n then n = σ−2 logx + r(x) where 0 < r(x) � 1. Substituting and
simplifying yields C(x) = fL(x;μ,σ)R(x) where

R(x) =
√

2πσ 2 exp

[
μ2/2σ 2 + (

μ − σ 2)r(x) + 1
σ 2r2(x)

]
.

2
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Dividing C(x) by
∫ ∞

0 C(v)dv yields a density function M-equivalent to LN(μ,σ 2) and whose
graph has the multimodal properties described above.

This construction obviously generalizes by setting f (x) ∝ xa (q < x � 1), where a is real,
giving via (3.10) a density function equivalent to LN(μ,σ 2). Its moment function is given
by (3.11) as

M(t;a) = K−1
a

∞∑
n=−∞

m−nq(n
2)+nt 1 − qn+a+t+1

n + a + t + 1
,

provided a + t is non-integral. Writing (n+A)−1 = ∫ ∞
0 e−(n+A)y dy and using the triple product

formula, we find for real but non-integral A that

∞∑
n=−∞

q(n
2)

xn

n + A
= (q;q)

∞∫
0

e−Ay
(−xe−y;q)(−qx−1ey;q)

dy = (q;q)β(x;A),

where

β(x;A) =
1∫

0

vA−1(−xv;q)(−q/xv;q)dv.

It follows that

M(t;a) = β(m−1qt ;a + t + 1) − qa+t+1β(m−1q1+t ;a + t + 1)

β(m−1;a + 1) − qa+1β(m−1q;a + 1)
.

In particular

∞∫
0

xtC(x)dx = (q;q)
[
β
(
m−1qt ; t + 1

) − qt+1β
(
m−1qt+1; t + 1

)]
,

and setting t = 0 gives the normalization constant required to produce a density function
from C(x).

Chihara [10] and Leipnik [14] independently constructed discrete laws M-equivalent to the
LN(− 1

2σ 2, σ 2) law. By virtue of Theorem 2.1, discrete laws M-equivalent to LN(μ,σ 2) do not
belong to any Stieltjes class centered on this lognormal law. However, Theorem 2.1 shows that M-
equivalent discrete laws can be joined if they have a common support. To see this more explicitly,
let Ωi (i = 0,1) be discrete measures having the same countable support in (q,1], and define
distribution functions

Fi(x) = Ki

∞∑
n=−∞

c(n)m−n

�nx∫
0

vn Ωi(dv),

where c(n) = q
1
2 n(n−1) and Ki is a normalization constant. Then Fi(x) is M-equivalent to the

LN(μ,σ 2) law [17]. If x ∈ (q,1] is a support point of Ωi , then xn = qnx (n = 0,±1,±2, . . .) is
a support point of Fi(x). The proof of Theorem 3.1 in [17] implies the identity

F1({xn}) = Ω0({x})/K0
.

F0({xn}) Ω1({x})/K1
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It follows that if the right-hand side lies in [0,2] for all supporting x ∈ (q,1] then F1 and F0 are
joined in the Stieltjes class S(F0, h), where 1 + h(x) is taken as the right-hand side of the above
identity. The boundedness condition can be achieved if, for example, the generating measures
have a finite support at the atoms of which they attribute almost equal masses.

4. Infinite divisibility

In this section we consider whether two M-equivalent and infinitely divisible (infdiv) laws
can belong to the same Stieltjes class. This question was raised by Stoyanov [21]. A density
function g(x) belongs to the class of hyperbolically completely monotone (HCM) densities if,
for all u > 0, the function g(uv)g(u/v) is a completely monotone function of w = v + v−1. Any
HJM density is self-decomposable, and hence infdiv. See Bondesson [8] for a thorough account
of this concept.

In this section we concentrate on the LN(μ,σ 2) law which is known to be HJM from the
following argument due in essence to Bondesson [8, p. 59]. It is easily checked that

fL(uv;μ,σ)fL(u/v;μ,σ) = χ(u) exp
(−(logv)2/2σ 2),

where χ(u) is functionally independent of v. The representation

logv =
∞∫

0

(
1

1 + y
− 1

y + v

)
dy

and the identity 2 logv = logv − logv−1 combine to yield

d

dw
(logv)2 = 2 logv

v

dv

dw
= 2 logv

v

(
1 − v−2)−1 =

∞∫
0

dy

y2 + yw + 1
,

which is completely monotone in w. Hence exp(−(logv)2/2σ 2) is completely monotone. See [9]
for numerical investigation of the Lévy measure (and the Thorin measure) of the LN(0,1) law.

It follows from (3.14) that if a > 0 is a constant, then

L(auv)L(au/v)

=
∏
n�0

[
1 + auwqn+1/2 + a2u2q2n+1][1 + (w/au)qn+1/2 + q2n+1/a2u2],

and the reciprocal of this expression is completely monotone in w. Hence fB(x; c,μ) at (3.13) is
an infdiv density function. This has been observed by Berg [6]; see the proof of his Theorem 2.7.

The class of HJM density functions coincides with the Bondesson class B whose members
have, by definition, a representation

g(x) = Kxβ−1h1(x)h2
(
x−1) (x > 0),

where β is a real constant,

hj (x) = exp

[
−bjx +

∞∫
0

log
y + 1

y + x
Γj (dy)

]
(j = 1,2),

with bj � 0, and Γj is a measure on (0,∞) satisfying
∫ ∞

0 (1 + y)−1 Γj (dy) < ∞. The bj and
the Γj are not unique, but can be made so by requiring that Γ1 and Γ2 are concentrated in
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(1,∞) and [1,∞), respectively. Bondesson [8] calls the result of this convention the canonical
representation, but he remarks that it is not always the neatest one. He shows [8, p. 74] that
β = μ/σ 2, bj = 0, and Γj (dy) = σ−2y−1 dy (y > 1) gives the canonical representation for the
LN(μ,σ 2) law.

A B-class non-canonical representation of fB(x; c,μ) emanates from the identity

1 + γ

1 + γ x
= exp

∫
log

y + 1

y + x
δγ −1(dy),

where γ > 0 and δa(dy) assigns unit mass to y = a. It is easy to check that

h(x;b) := (−b;q)/(−bx;q) = exp

∞∫
0

log
y + 1

y + x
Γ (dy;b),

where b > 0 and Γ (dy;b) = ∑
n�0 δ�n/b(dy). Setting β = c, bj = 0 and h1(x) = h(x;m−1q−c),

h2(x) = h(x;mq1+c) and K = N (c,μ)L(e−μq−c) gives a representation. Because both the log-
normal law and the Berg laws are infdiv, it follows that their Lévy measures are indeterminate
and that there are infinitely many other infdiv laws having the same moment sequence; see [6].

These results show that the infdiv laws LN(μ,σ 2) and any Berg law comprise the ex-
treme members of a one-sided Stieltjes class. For investigating the two-sided case we can as-
sume without loss of generality that μ = 0 and 0 � c < 1, and seek conditions ensuring that
fB(x; c,0)/fL(x;0, σ ) � 2 for q � x � 1. Manipulation with (3.1), (3.13), (3.14) and (3.15)
represents this condition as

λ1(x;σ) + λ2(x;σ) +
(

c − 1

2

)
cσ 2 − logσ + log

(
q1+c;q)

+ log
(
q1−c;q) − log(q;q) + δ(c, σ ) � −1

2
log(2π), (4.1)

where

λ1(x;σ) =
∑
n�0

log
(
1 + xqn+1/2−c

) +
∑
n�0

log
(
1 + x−1qn+1/2+c

)
, (4.2)

λ2(x;σ) = −c logx − (
2σ 2)−1

(logx)2 = [
c − (

logx−1)/2σ 2] logx−1, (4.3)

and

δ(c, σ ) =
{− log sin(πc) + log(1 − qc), if 0 < c < 1,

2 logσ − logπ, if c = 0.

We have used the identity (qc;q) = (1 − qc)(q1+c;q) to obtain this form of δ(c, σ ) and clearly
it is continuous at c = 0 for any positive σ .

The inequality (4.1) is difficult to check in general, but we can gain some understanding of it
by looking at two extreme cases. For the first of these we consider the case of large σ .

Theorem 4.1. If 1/2 < c < 1 then there exists σ(c) > 0 such that the density functions

fε(x) = (1 − ε)fL(x;0, σ ) + εfB(x; c,0) (−1 � ε � 1),

comprises a Stieltjes class for all σ � σ(c). This is not true if 0 � c � 1/2; if −1 � ε < 0 there
exists x > 0 and σ(c) such that fε(x) < 0 if σ � σ(c).
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Proof. Observe that as σ → ∞, the base interval Bq := (q,1] ↑ (0,1] and if a > 0 then terms of

the form log(qa;q) tend to zero. In addition, if x ∈ B̄q we can write x = qζ where 0 � ζ � 1, and
then λ2(x) = (c − 1

2ζ )ζσ 2. So if c > 1/2 then infx∈B̄q
λ(x) � 0 and (c − 1/2)cσ 2 − logσ → ∞.

The first assertion follows.
Let c = 1/2 and α � x � 1 where 0 < α < 1 is fixed. Then [α,1] ⊂ Bq if σ 2 is large enough,

and the left-hand side of (4.1) equals λ(x) − logσ + o(1) → −∞ as σ 2 → ∞. Hence (4.1)
eventually fails for such x.

Now let 0 � c < 1/2. Then, uniformly in Bq , the first sum at (4.2) is bounded above by
q1/2−c/(1 − q) → 0 and the second sum taken over n � 1 is similarly bounded by q1/2+c/

(1 − q) → 0. It follows that λ1(x) = log(1 + x−1q1/2+c) + λ̄(x) where 0 < supx∈Bq
λ̄(x) → 0

as σ → 0, and hence the significant portion on the left-hand side of (4.1) is

T (x,σ ) := log
(
1 + q1/2+c−ζ

) + Q1(ζ, c)σ 2 − logσ + δ(c, σ ),

where

Q1(ζ, c) =
(

c − 1

2
ζ

)
ζ +

(
c − 1

2

)
c.

Suppose that c > 0. If ζ < c + 1/2 then log(1 + q1/2+c−ζ ) is negligible. Algebra will show that
Q1(0, c) < 0 and that Q1(ζ, c) = 0 iff 1/3 � c < 1/2 and

ζ = ζu(c) := c +
√

3c2 − c or ζ = ζl(c) := c −
√

3c2 − c.

Observe that ζu(1/3) = ζl(1/3) = 1/3. The graph of ζu(c) increases to unity in [1/3,1/2] and it
lies beneath the line ζ = c + 1/2. The graph of ζl(c) decreases to zero in this interval. Hence, as
σ → ∞, T (x,σ ) → ∞ if 1/3 < c < 1/2 and ζl(c) < ζ < ζu(c), and T (x, ζ ) → −∞ if ζ > ζu(c)

or ζ < ζl(c), or if c < 1/3. If c + 1/2 < ζ � 1 then T (x,σ ) ∼ Q2(ζ, c)σ 2 where

Q2(ζ, c) = ζ − c − 1

2
+ Q1(ζ, c) = −1

2
(1 − ζ )2 − (3/2 − ζ − c) < 0.

We conclude that T (x, ζ ) → −∞ for all x ∈ Bq if 0 < c < 1/3.
Finally, if c = 0, then taking account of δ(0, σ ) shows the dominant part of the left-hand side

of (4.1) now is λ(x) + logσ → ∞ if 0 < α � x � 1. But if 0 < ζ < 1 then Q2(ζ,0) + logσ =
− 1

2 (1 − ζ )2σ 2 + logσ → −∞.
These cases show that if 0 � c � 1/2 then (4.1) is violated for some values of x in Bq and

sufficiently large σ . �
We now suppose that σ → 0, in which case q → 1 and for any a > 0 the product terms

(±qa;q) → 0 or → ∞, respectively. We can derive an asymptotic estimate of log(±qa;q) by
using Euler’s summation formula. If f (x) is positive and differentiable in [0,∞), and decreasing
to zero then the usual expression of the summation formula gives

∞∑
n=0

f (n) =
∞∫

f (x)dx + 1

2
f (0) +

∞∫
P(x)f ′(x) dx,
0 0



A.G. Pakes / J. Math. Anal. Appl. 326 (2007) 1268–1290 1283
where P(x) = x − [x] − 1/2, and we assume that the left-hand side is finite. We will need the
slight rearrangement obtained by observing that

∫ 1
0 P(x)f ′(x) dx = f (0)+ 1

2f (1)−∫ 1
0 f (x)dx,

giving

∞∑
n=0

f (n) =
∞∫

1

f (x)dx + f (0) + 1

2
f (1) + R, (4.4)

where

R =
∞∫

1

P(x)f ′(x) dx =
∑
n�1

1/2∫
0

u

[
f ′

(
n + 1

2
+ u

)
− f ′

(
n + 1

2
− u

)]
du. (4.5)

The following lemmas have interest in their own right.

Lemma 4.1. If a > 0 and q = e−V then, as V → 0+,

− log
(
qa;q) = π2

6V
+

(
a − 1

2

)
logV + L(a) + Z(a) + o(1),

where

L(a) =
(

a + 1

2

)
log(1 + a) − loga − 1 − a,

Z(a) = 1

2

∞∑
j=2

(−1)j
j − 1

j (j + 1)
ζ(j, a + 1) (4.6)

and, for A > 0 and s > 1, ζ(s,A) = ∑
n�0(A + n)−s is the Hurwitz zeta function.

Proof. Let f (x) = − log(1 − qa+x) in (4.4). Setting A = 1 + a, the first integral is

I (V, a) =
∞∑

j=1

(
qaj /j

) ∞∫
1

e−Vjx dx = V −1

[ ∞∑
j=1

j−2 −
∞∑

j=1

(
1 − j−2qAj

)]
. (4.7)

The first sum equals ζ(2) = π2/6. Since j−2 = ∫ ∞
0 ze−jz dz, the second sum reduces to

(
1 − qA

) ∞∫
0

ze−z

(1 − e−z)(1 − qAe−z)
dz

= (
1 − qA

)[ ∞∫
0

ze−z

(1 − qAe−z)
dz +

1∫
0

−u−1 log(1 − u) − 1

1 − qA(1 − u)
du

]
,

where we have used the substitution u = 1 − e−z for the second integral. The first integral equals
−qA log(1 − qA). Letting q → 1 and expanding the log term as a power series will show that the
second integral equals

∑
j�1 j−1

∫ 1
0 uj−2 du + o(1) = 1 + o(1). Hence the second sum at (4.7)

equals

−(
eAV − 1

)
log

(
1 − e−AV

) + (
1 − e−AV

) + o(V ) = AV [− logV − logA + 1] + o(V ).
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We thus have the expansion

I (V, a) = π2

6V
+ A logV + A logA − A + o(1).

Some algebra yields f (0) + 1
2f (1) = −(3/2) logV − loga − 1

2 logA + o(1). Next, we eval-
uate the remainder R as follows. Differentiation yields f ′(n + 1/2 + u) − f ′(n + 1/2 − u) =
2V qa sinh(V u)T (n,u) where, as V → 0,

T (n,u) := qn+1/2

(1 − qa+n+1/2+u)(1 − qa+n+1/2−u)
∼ 2u

(a + n + 1/2 + u)(a + n + 1/2 − u)
.

In particular we can interchange integration and summation in R. If 0 < B,C < 1 and 0 �
y � 1 then the function g(y) = y/(1 − By)(1 − Cy) is increasing in y. It follows that T (n,u)

is decreasing in n and hence the terms of the series in R (after interchanging) can be bounded
above by the corresponding integral plus a constant term. It can be shown that the dominated
convergence theorem is applicable to this bound and hence, using Pratt’s lemma [18, p. 232], we
conclude that the remainder

R =
∑
n�1

1/2∫
0

2u2

(a + n + 1/2 + u)(a + n + 1/2 − u)
du + o(1)

=
∑
n�1

[(
a + n + 1

2

)
log

a + n + 1

a + n
− 1

]
+ o(1).

The form given in the assertion arises by expanding the log term in inverse powers of a + n. �
Lemma 4.2. If a > 0 and q = e−V then as V → 0,

log
(−qa;q) = π2

12V
−

(
a − 1

2

)
log 2 + o(1).

Proof. The identity (1 + qa)(1 − qa) = 1 − q2a implies that

log
(−qa;q) = − log

(
qa;q) + log

(
q2a;q2)

and the assertion follows directly from Lemma 4.1 because the expansion of the second term on
the right follows from the mere replacement of V with 2V . �

Our final result shows that the lognormal law and Berg’s laws determine a Stieltjes class if σ

is small.

Theorem 4.2. If 0 � c < 1 there exists σ(c) > 0 such that (4.1) is satisfied for x ∈ Bq if 0 < σ �
σ(c).

Proof. Let V := σ 2. Observe that if x = qζ then λ2(x) = (c − 1
2ζ )ζσ 2 → 0 uniformly for

x ∈ Bq . In addition, by combining corresponding summands in (4.2) we see that λ1(x) is an
increasing function of xq−c + x−1qc, and this takes its least value of 2 at x = qc. Hence
λ1(x) � 2 log(−q1/2;q). Applying Lemma 4.2 to this bound and applying Lemma 1 to the three
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(qa, q) terms at (4.1) will show that the contributions from terms in the asymptotic expansions
proportional to V −1 cancel. Similarly, observing that

δ(c, σ ) = logV + log(c/ sinπc) + o(1),

the terms proportional to logV also vanish. Thus the left-hand side of (4.1) is bounded below by
B1(c) + B2(c) + o(1) where

B1(c) = −L(1 + c) − L(1 − c) + L(1) + log
(
c/ sin(πc)

)
= −(3/2 + c) log(2 + c) − (3/2 − c) log(2 − c) + log

(
1 − c2)

+ 2 + (3/2) log 2 + log
(
c/ sin(πc)

)
,

B2(c) = −Z(1 + c) − Z(1 − c) + Z(1),

and the o(1) term holds uniformly for x ∈ Bq .
Careful numerical computation shows that B1(c) decreases from −0.18445 at c = 0

to −0.15839 at c = 1. This last value is B1(1−), obtained using the limit relation log(1 − c2) +
log(c/ sin(πc)) → log 2 − logπ as c ↑ 1.

The representation (4.6) exhibits Z(a) as an alternating series whose unsigned terms decrease
as j increases. Consequently Z(a) is bounded above and below by successive partial sums. It
follows that

B2(c) > − 1

12

[
ζ(2,2 + c) + ζ(2,2 − c) − ζ(2,2) + ζ(3,2)

]
> − 1

12

[
ζ(2,3) + ζ(2,1) − ζ(2,1) + ζ(3,2)

]
,

since ζ(s,2 + c) + ζ(s,2 − c) is increasing in c. But ζ(s,1) = ζ(s), the Riemann zeta function,
and ζ(s, i) = ζ(s) − 1 − · · · − (i − 1)−s , so we find for all 0 � c � 1 that

B2(c) > − 1

12

[
ζ(2) + ζ(3) − 1 − 1/4

] = −0.13310.

We conclude that if 0 � c < 1 then the left-hand side of (4.1) is uniformly bounded below by
−0.1845−0.1331+o(1) which exceeds the right-hand side, −0.91894, if σ is small enough. �
5. Construction by random scaling

Let V be a random variable with distribution function K(x) and finite moments νn, and which
is independent of X. If Y = V X then E(Yn) = νnmn, and its distribution function G(x) is in-
determinate if F(x) is so. This simple construction by random scaling allows endless examples
of M-equivalent laws to be constructed from a single pair of M-equivalent laws. Our next result
shows this possibility extends to Stieltjes classes. In this section the factors in any product of
random variables are assumed to be independent.

Let Xε have the distribution function Fε(x) at (1.1), assumed to comprise a Stieltjes class.
The distribution function of Yε := V Xε is

Gε(x) =
∫

Fε(x/v)dK(v), (5.1)

so G0(x) = G(x).
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Theorem 5.1. If S(F,h) is a Stieltjes class, then so is S(G,κ) = {Gε(x): −1 � ε � 1} where
κ(x) is given implicitly by

x∫
0

κ(y) dG(y) =
∞∫

0

x/v∫
0

h(z) dF (z) dK(v). (5.2)

If b1 < b2 are real constants such that b1 � h(x) � b2 for almost every x with respect to F(x)

then b1 � κ(x) � b2 for almost every x with respect to G(x).
Suppose P(V > 0) = 1 and F(x) has a density function f (x). Then G(x) has a density

function

g(x) =
∫

v−1f (x/v)dK(v) (5.3)

and

κ(x)g(x) =
∫

v−1h(x/v)f (x/v)dK(v). (5.4)

Proof. Substituting (1.1) into (5.1) yields

Gε(x) = G(x) + ε

x∫
0

κ(y) dG(y),

where κ(x) satisfies (5.2), and it can be calculated by inverting the Mellin transform∫
xtκ(x) dG(x) =

∫
vt

(∫
xth(x) dF (x)

)
dK(v).

The right-hand side vanishes for t = 0,1, . . . . If h(x) satisfies the asserted boundedness condition

then for all 0 � x′ < x′′, b1(G(x′′) − G(x′)) �
∫ x′′
x′ κ(y) dG(y) � b2(G(x′′) − G(x′)), and this

implies the boundedness assertion for κ(x). By choosing b1 = −1 and b2 = 1, it follows that
S(G,κ) is a Stieltjes class. Finally, if F(x) is absolutely continuous and V > 0 then G(x) is
absolutely continuous with a density function (5.3), and (5.4) follows from (5.2). �

The following example may be seen as an alternative rendition of portions of Sections 2
and 3 in [5]. We need a little notation from [2, Chapter 10]. Denote the q-factorials by n!q :=
(1 − q)−1(q;q)n where (a;q)n = (1 − a) × · · · × (1 − aqn−1) (n � 1), and (a;q)0 = 1. One
version of a q-exponential function is

eq(x) =
∑
n�0

xn/n!q = 1/
(
(1 − q)x;q)

,

where the second equality is an identity of Euler. For any fixed a > 0 [3, §4] defines a weight
function which, after normalization, is the density function of a random variable Cq(a),

fA(x;a) = xa−1eq(−x)/Aq(a) (x > 0), (5.5)

where

Aq(a) = Γ (a)Γ (1 − a)

Γ (1 − a)
and Γq(a) := (1 − q)1−a (q;q)

(qa;q)
;

q
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see [17, (6.21)]. This density function defines a continuous q-gamma distribution in the sense
that fA(x;a) → xa−1e−x/Γ (a) as q ↑ 1. This limit distribution is determinate, but each of those
defined by (5.5) is indeterminate. Its moment sequence is given by

MA(n) = (1 − q)−n
(
qa;q)

n
q−an−(n

2), (5.6)

and Askey [3, (4.4) and (4.6)] exhibits a discrete distribution having the same moments. Berg [6]
calls this the q-Laguerre moment problem because (5.5) is an orthogonality measure for q-
Laguerre polynomials; see [15].

The factor q−an−(n
2) is the moment sequence of laws M-equivalent to the LN(μ(a), σ 2) law,

where μ(a) := (a − 1/2)σ 2. The factor (1 − q)−n(qa;q)n are the moments of the discrete
q-gamma random variable γq(a),

P
(
γq(a) = (1 − q)−1qj

) = (
qa;q)

qaj /(q;q)j (j = 0,1, . . .); (5.7)

see [17, §5]. This name is appropriate because the moment function for (5.7),

Mdg(t;a) := E
(
γ t
q(a)

) = Γq(a + t)

Γq(a)
, (5.8)

converges as q ↑ 1 to Γ (a + t)/Γ (a), the moment function of the gamma law.
It is clear that solutions to the q-Laguerre moment problem can be obtained as the distribution

of Y = γq(a)X where X has the moments of the LN(μ(a), σ 2) law. For example, if 0 < c < 1
then the moment function (3.16) can be expressed in terms of gamma functions as

MB(t; c,μ) = mtqct Γq(c)Γq(1 − c)

Γ (c)Γ (1 − c)
· Γ (c + t)Γ (1 − c − t)

Γq(c + t)Γq(1 − c − t)
. (5.9)

If B(c,μ) is a random variable having this moment function, then that of the product γq(a)×
B(a,μ(a)) is

MB

(
t;a,μ(a)

)
Mdg(t;a) = Γq(1 − a)

Γ (a)Γ (1 − a)
· Γ (a + t)Γ (1 − a − t)

Γq(1 − a − t)
,

which is the moment function of Cq(a). This multiplicative representation of Cq(a) contradicts
one of our results; see Theorem 6.2(a) in [17]. In fact, the log-convexity assertion is not correct.
This false assertion is mentioned in [17, §7], but it is not relevant to the discussion there.

To make this assertion correct, let Λ(a) have the LN(μ(a), σ 2) law. Then the moment function
of Wa = γq(a)Λ(a) is qat+(t

2)Mdg(t;a). Its density function is a special case of the following
lemma.

Lemma 5.1. If X has the LN(μ,σ 2) law then the density function of γq(a)X is

g(x;a,μ,σ ) = (
qa;q)(−(1 − q)−1x−1qa+1/2eμ;q)

fL

(
(1 − q)x;μ,σ

)
.

Proof. Evaluation of (5.3) gives

g(x;a,μ,σ )

= E
[
γ −1
q (a)fL

(
x/γq(a);μ,σ

)]
= (qa;q)√

2πσ 2

∞∑ qaj

(q;q)j
exp

[−(
2σ 2)−1(logx − μ + jσ 2 + log(1 − q)

)2]

j=0
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= (
qa;q)

fL

(
x;μ − log(1 − q), σ

) ∞∑
j=0

[
(1 − q)−1x−1qa+1/2eμ

]j
q(j

2)
/
(q;q)j .

Another Euler identity asserts that the sum equals the q-product factor in the assertion. �
Remark. Observe that qa+1/2eμ(a) = q , and g(x;a,μ(a), σ ) has the same moments as Cq(a).

Since the moments of B(c,μ(a)) do not depend on c, the product Y(a, c) := γq(a)B(c,μ(a))

has the same moments as Cq(a). It follows from Theorem 5.1 that the density function of Y(a, c)

can be joined in a Stieltjes class to the density function of Cq(a) as center under the stipulations
of Theorems 4.1 and 4.2. The density function of Y(a, c) can be evaluated in two ways.

The first evaluation begins as for Lemma 5.1 but putting the sum into hypergeometric form
using the identities 1/(−zqj ;q) = (−z;q)j /(−z;q) and

1/
(−zq−j ;q) = z−j q

1
2 j (j+1)/(−z;q)(q/z;q)j .

This gives the density function

b(x;a, c) = (1 − q)cxc−1

(−β;q)(−q/β;q)N (c,μ(a))
1φ1

(−β;β;q,−q/(1 − q)x
)
,

where β = qc−a+1/(1 − q)x and 1φ1 is a basic hypergeometric function [2, §10.9].
The second evaluation is based on a limiting form of the Askey–Roy q-beta integral [2, p. 514]

which yields

K(b, c) :=
∞∫

0

yc−1 (−qb+1/y;q)

(−y;q)(−q/y;q)
dy = Γ (c)Γ (1 − c)

Γq(c)Γq(1 − c)
Γq(b + c)(1 − q)b+c,

valid for b > −c and 0 < c < 1, and a limit is taken when c = 0. Denoting the integrand by
ψ(y;b, c), we see that fY (y) := ψ(y;a − c, c)/K(a − c, c) is the density function of Y , say, and
its moment function is

∞∫
0

ytfY (y) dy = K(a − c, c + t)

K(a − c, c)
.

Multiplication by (1 − q)−t q(c−a)t gives the product MB(t; c,μ(a))Mdg(t;a) (see (5.8) and
(5.9)), i.e., the moment function of Y(a, c). It follows that the density function of Y(a, c) is

b(x;a, c) = (1 − q)qa−cfY

(
(1 − q)qa−cx

)
= (1 − q)c−aq(a−c)c

N (a, c)
· xc−1(−q/(1 − q)x;q)

(−(1 − q)qa−cx;q)(−qc−a+1/(1 − q)x;q)
.

The distribution of Y(a, c) is a two-parameter continuous q-gamma law in the sense that
its moment function converges to Γ (a + t)/Γ (a). The two expressions of b(x;a, c) give an
evaluation of the above q-hypergeometric function. Formulae for the case c = 0 can be derived
from the above results by taking a limit.

The above solutions of the q-Laguerre moment problem satisfy a weight-scaling relation dual

to (3.7). Theorem 5.1 in [17] asserts that V γ̂q(a)
L= γq(a) where P(V = qj ) = (1 − qa)qaj for
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j = 0,1, . . . . Let X satisfy (3.3) and Y = γq(a)X. Then since Ŷ
L= γ̂q (a)X̂, we obtain V Ŷ

L=
q−1Y . So, if N(t) = E(Y t ), then it follows from the relation E(V t ) = (1 − qa)/(1 − qa+t ) that

1 − qa

1 − qa+t
· N(t + 1)

N(1)
= q−tN(t),

and N(1) = (1 − qa)m/(1 − q). A rearrangement of this functional equation yields

qaN(t) + (
1 − qa

)N(t + 1)

N(1)
= q−tN(t),

which is expressed in terms of the distribution function G(x) of Y as[
qa + (

1 − qa
)
x/N(1)

]
dG(x) = dG(qx). (5.10)

The steps leading to this identity can be reversed, thus establishing a one-to-one correspondence
between solutions of (3.7) and (5.10). Christiansen [12] explores implications of (5.10) in the
case μ = q−a , for which the coefficient of dG(x) simplifies to qa(1 + x). This correspondence
shows that N -extremal solutions of the lognormal and the q-Laguerre moment problems are not
related through multiplication by γq(a), a proposition which follows also from the fact that the
support of the distribution of such a product has zero as a limit point.
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