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1. Introduction

In this paper we define a new class of generalized convex functions called the functions with pseudoconvex sublevel
set. This class includes quasiconvex functions and each continuous function, which admits pseudoconvex sublevel sets with
respect to the pseudotangent cone, is quasiconvex. We obtain a complete characterization of the functions with pseudo-
convex sublevel sets. Further, we derive necessary and sufficient optimality conditions of Fritz John type for isolated and
local minimums of the nonsmooth problem with a set constraint, inequality constraints, and equality constraints in terms
of the lower Hadamard directional derivative and the Bouligand tangent cone. In particular, we obtain sufficient conditions
for a strict global minimum of a problem whose objective function and constraints admit pseudoconvex sublevel sets. It is
a generalization of Theorem 3.1 in Bector, Chandra and Bector [3].

Optimality conditions play important role in optimization. Various sufficient conditions of Karush–Kuhn–Tucker type
and Fritz John one were obtained for generalized convex functions which ensure that a given point is a global minimizer
(see Arrow and Enthoven [2], Mangasarian [15, Theorem 10.1.2], Hanson [10, Theorem 2.1], Skarpness and Sposito [18],
Bector, Chandra and Bector [3, Theorem 3.1], Giorgi [8, Theorem 2.2] and so on for the first-order case, Ginchev and Ivanov
[7, Theorems 1, 3, 4] for the second-order one).

We cite the following papers where optimality conditions are given in terms of the lower Hadamard derivative or the
respective subdifferential. Primal necessary conditions for efficiency of a multiobjective problem with inequality constraints,
equality constraints and a set constraint were derived in Luu and Nguyen [14, Theorem 4.1]. Their dual conditions need
Gâteaux differentiability. Necessary conditions for weak Pareto minimum of a vector problem with inequality constraints,
equality constraints and a set constraint where the objective function is Hadamard differentiable with convex derivative, the
inequality constraints are Dini differentiable with convex derivative, and the equality constraints are Dini differentiable with
linear derivative were obtained in Jimenez and Novo [13, Theorems 4.1, 4.8]. Sufficient conditions for the problem with a set
constraint can be found in Penot [17, Proposition 5.7(a)] and Ivanov [12, Theorem 7(a)]. We refer to Ioffe [11, Proposition 6]
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where “fuzzy” Lagrange multiplier rule are given in terms of the lower Hadamard subdifferential under the name Dini
subdifferential. Necessary optimality conditions were derived in Glover and Craven [9, Theorem 2.1] using the approximate
subdifferential which is constructed with the help of the lower Hadamard derivative. Necessary and sufficient conditions
for a local isolated minimum of the problem with a set constraint were obtained in Studniarski [19, Theorems 2.1, 2.2].
The reader can find sufficient conditions for a local isolated minimum of the problem with inequality constraints and a
set constraint in Ward [20, Theorem 4.1]. Another Hadamard directional derivative is used in optimality conditions for
set-valued optimization and vector one, which is constructed with the help of the limits of sets in the sense of Painlevé–
Kuratowski. This derivative differs from the usual lower Hadamard derivative in the single-valued scalar case.

We introduce the basic definitions and notations.
Let S be a set in the Euclidean space Rn . In the sequel we use the following notations: := for “for equal by definition,”

cl S for the closed hull of the set S , conv S for the convex hull of S , 〈μ,b〉 := ∑p
i=1 μibi for the scalar product in Rp

between the vectors μ = (μ1, . . . ,μp) and b = (b1, . . . ,bp), B for the closed unit ball {x ∈ Rn | ‖x‖ = 1} in Rn , t → +0 for t
approaches 0 with positive real values, K ∗ for the negative polar cone of the cone K defined by

K ∗ := {
v ∈ Rn

∣∣ 〈v, u〉 � 0 for all u ∈ K
}
.

Denote by K ∗∗ the negative polar cone of the polar cone K ∗ . It is well known that the following relation holds for every
nonempty cone K with a vertex at the origin 0: K ∗∗ = cl(co K ).

Besides the usual algebraic operations with infinities, we accept that

(±∞) · 0 = 0 · (±∞) = 0.

Let S be a convex set. A function f : S → R is called quasiconvex on S if

x, x̄ ∈ S, f (x) � f (x̄) imply f
(
x̄ + t(x − x̄)

)
� f (x̄), ∀t ∈ [0,1].

The following definition about quasiconvexity for differentiable functions is used in the sufficient conditions for a global
minimum: Let S be open and f differentiable at x̄ ∈ S . Then f is said to be quasiconvex at x̄ with respect to S if

x ∈ S, f (x) � f (x̄) imply ∇ f (x̄)(x − x̄) � 0. (1)

A differentiable function f is called quasiconvex on S if implication (1) holds for all x̄ ∈ S . If S is open and convex, and
f differentiable on S , then both definitions are equivalent [15, Theorem 9.1.4].

A differentiable function f is called strictly pseudoconvex at x̄ ∈ S on S if

x ∈ S, f (x) � f (x̄), x �= x̄ imply ∇ f (x̄)(x − x̄) < 0.

Let K (S, x) be a tangent cone to S at the point x ∈ cl S . Recall that S is said to be pseudoconvex with respect to the cone
K (S, x) at the point x if S ⊂ x + K (S, x).

We consider the following cones. The Bouligand tangent cone (or the contingent cone) of the set S at the point x ∈ cl S
is defined as follows:

T (S, x) := {
u ∈ Rn

∣∣ ∃{tk}, tk → +0, ∃{uk} ⊂ Rn, uk → u such that x + tkuk ∈ S for all positive integers k
}
.

The pseudotangent cone is the closed convex hull of the Bouligand tangent cone:

P T (S, x) := cl
(
conv T (S, x)

)
.

It is obvious that each convex set S is pseudoconvex with respect to the Bouligand tangent cone and the pseudotangent
one at each point x ∈ S .

Denote the sublevel set of the function f , defined on the set S , at x ∈ S by

L( f ; x; S) := {
y ∈ S

∣∣ f (y) � f (x)
}
.

Consider the normal cone of the sublevel set L( f ; x; S) of the function f at x ∈ cl S:

N(x) := {
ξ ∈ Rn

∣∣ 〈ξ, y − x〉 � 0 for all y ∈ L( f ; x; S)
}
.

The lower Hadamard directional derivative of the function f : Rn → R at the point x ∈ Rn in direction u ∈ Rn is defined
as follows:

f ↓
H (x; u) := lim inf

(t,u′)→(+0,u)
t−1( f (x + tu′) − f (x)

)
.

Somewhere it is called the contingent derivative, or the lower Dini–Hadamard derivative, or the lower epiderivative. If there
exists the limit
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f ′
H (x; u) := lim

(t,u′)→(+0,u)
t−1( f (x + tu′) − f (x)

)
,

then the function is called Hadamard directionally differentiable and f ′
H (x; u) its Hadamard derivative at x ∈ Rn in direction

u ∈ Rn (see, for instance, [5]).
The lower Hadamard conditional derivative (see Demyanov, Di Pillo and Facchinei [4]) of f with respect to the set S at

the point x ∈ S in direction u ∈ Rn is defined as follows:

f ↓
H (x; u; S) := lim inf

(t,u′)→(+0,u), x+tu′∈S
t−1( f (x + tu′) − f (x)

)
.

By definition f ↓
H (x; u; S) = +∞ if u /∈ T (S, x).

Let X ⊂ Rn be a set and

f : Rn → R, gi : Rn → R, i = 1,2, . . . ,m, h j : Rn → R, j = 1,2, . . . , l,

given functions, defined on Rn . Consider the nonlinear programming problem:

Minimize f (x) subject to x ∈ S , (P)

where S = {x ∈ X | gi(x) � 0, i = 1,2, . . . ,m, h j(x) = 0, j = 1,2, . . . , l} is the set of feasible points. If x̄ is a feasible point
of (P), we denote the set of active constraints by

I(x̄) := {
i ∈ {1,2, . . . ,m} ∣∣ gi(x̄) = 0

}
.

Suppose that I(x̄) = {1,2, . . . , p} where p � m.
Consider the vector functions g = (g1, . . . , gm), h = (h1, . . . .,hl). We can rewrite the problem (P) in the following form:

Minimize f (x) s.t. x ∈ X, g(x) � 0, h(x) = 0,

accepting that g(x) � 0 and h(x) = 0 means that the coordinates satisfy this inequality. If x̄ is a point and u a direction we
put

(gI(x̄))
↓
H (x̄; u) := (

(g1)
↓
H (x̄; u), . . . , (gp)

↓
H (x̄; u)

)
,

h′
H (x̄; u) := (

(h1)
′
H (x̄; u), . . . , (hl)

′
H (x̄; u)

)
,

S I(x̄) := {
x ∈ X

∣∣ gi(x) � 0, i ∈ I(x̄), h(x) = 0
}
,

C(x̄) := {
u ∈ T (X, x̄)

∣∣ (gI(x̄))
↓
H (x̄; u) � 0, h′

H (x̄; u) = 0
}
.

A feasible point x̄ ∈ S is called an isolated local minimizer of (P) if there exist a positive real A and a neighborhood N � x̄
such that f (x) � f (x̄) + A‖x − x̄‖ for all feasible points x with x ∈ N . If the inequality f (x) � f (x̄) ( f (x) > f (x̄)) holds for
all feasible x ∈ N , then x̄ is called a (strict) local minimizer. In the case when the same inequality is fulfilled for all feasible
points x ∈ S , then x̄ is said to be a strict global minimizer.

The paper is organized as follows. In Section 2 we define the functions with pseudoconvex sublevel sets and some
of their properties are derived. In Section 3 we obtain the optimality conditions with strict inequalities. In Section 4 we
consider the optimality conditions with nonstrict inequalities.

2. Characterizations of the functions with pseudoconvex sublevel sets

For short, in this section we denote the sublevel set L( f ; x; S) by L(x). We introduce the following notion.

Definition 1. We call the finite-valued real function f , defined on the set S , a function with pseudoconvex sublevel sets
with respect to the tangent cone K if its sublevel sets are pseudoconvex with respect to K at every point x ∈ S , that is

L(x) ⊂ x + K
(
L(x), x

)
for all x ∈ S. (2)

Denote the set of functions, defined on S , which admit pseudoconvex sublevel sets with respect to the Bouligand tangent
(pseudotangent) cone by PCLS(T ) (or PCLS(P T ) respectively).

It is well known that the normal cone of a convex set is the negative polar cone of the tangent cone. Therefore if f is
quasiconvex, then (T (L(x), x))∗ = N(x) for all x ∈ S , because the sublevel sets of a quasiconvex function are convex. We
extend this claim to the functions with pseudoconvex sublevel sets, and we show that this equality provides us with a
complete characterization of the functions with pseudoconvex sublevel sets.

Theorem 1. Let the function f be defined on the set S. Then f ∈ PCLS(P T ) if and only if(
T
(
L(x), x

))∗ = N(x) for all x ∈ S. (3)
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Proof. Necessity. Suppose that f ∈ PCLS(P T ). We prove that Eq. (3) holds. L(x) �= ∅ because at least x belongs to this set.
If x ∈ S is a strict global minimizer of f on S , then the claim is obvious, since the sets from both sides of (3) coincide

with the whole space.
Let x be not a strict global minimizer. We prove that (T (L(x), x))∗ ⊂ N(x). We have 0 ∈ K ∗ for every cone K . Hence

(T (L(x), x))∗ �= ∅. Suppose that ξ ∈ (T (L(x), x))∗ and y ∈ L(x). By f ∈ PCLS(P T ) we have y − x ∈ cl(co T (L(x), x)). Since for
every cone K it holds K ∗ = (cl(co K ))∗ , then 〈ξ, y − x〉 � 0, i.e. ξ ∈ N(x).

Suppose that x ∈ S is not a strict global minimizer. We prove the inclusion N(x) ⊂ (T (L(x), x))∗. Assume that there exists
ξ ∈ N(x) \ (T (L(x), x))∗ . Hence, there is u ∈ T (L(x), x) such that ξ T u > 0. Since u ∈ T (L(x), x) there exist sequences {tk},
tk → +0, and {uk} ⊂ Rn , uk → u such that yk = x + tkuk ∈ L(x). Thus ξ T (yk − x) > 0 for all sufficiently large k. On the other
hand, by ξ ∈ N(x), we have 〈ξ, yk − x〉 � 0 which is a contradiction.

Sufficiency. For the converse claim assume that x ∈ S is arbitrary fixed and Eq. (3) is satisfied. We have

N(x) = (
T
(
L(x), x

))∗ �= ∅.

Let y ∈ L(x). Therefore 〈ξ, y − x〉 � 0 for all ξ ∈ N(x). Since K ∗∗ = cl(co K ) for every nonempty cone K and 0 ∈ T (L(x), x) for
all x ∈ S , then

y − x ∈ (
N(x)

)∗ = (
T
(
L(x), x

))∗∗ = cl
(
co T

(
L(x), x

)) = P T
(
L(x), x

)
.

Thus we obtain that f ∈ PCLS(P T ). �
Each quasiconvex function is a function with pseudoconvex sublevel sets with respect to the pseudotangent or contingent

cone since the sublevel sets of a quasiconvex function are convex. The converse does not hold as the following example
shows.

Example 1. Consider the function f : R2 → R defined by

f (x1, x2) =
{

x2
1 + x2

2 if (x1, x2) /∈ {( 1
n ,0) | n is positive integer};

1 if (x1, x2) ∈ {( 1
n ,0) | n is positive integer}.

Here S = R2, (x1, x2) = (0,0) is a global minimizer, f ∈ PCLS(T ), f ∈ PCLS(P T ), but f is not quasiconvex on every convex
neighborhood of the origin.

Theorem 2. Let the function f be defined and continuous on the convex set S. Then f ∈ PCLS(P T ) if and only if f is quasiconvex on S.

Proof. 10) We prove the sufficiency. Suppose that f is quasiconvex. The sublevel sets of f are convex. Each convex set is
pseudoconvex with respect to the pseudotangent cone. Then every quasiconvex function is a function with pseudoconvex
sublevel sets.

20) We prove the necessity. Let f be a function with pseudoconvex sublevel sets. Assume the contrary that f is not
quasiconvex. Since the quasiconvex functions are the functions with convex sublevel sets, then there exist x, y ∈ S with
f (y) � f (x) such that [x, y] �⊂ L(x). Therefore there exists z0 ∈ (x, y] such that z0 /∈ L(x). Owing to the continuity of f the
set L(x) is closed, and there exists δ > 0 with L(x) ∩ (z0 + δB) = ∅. Denote zt = z0 + t(x − z0), t ∈ [0,1], and

s = sup
{

t ∈ (0,1] ∣∣ L(x) ∩ (zt + δB) = ∅}
.

It follows from x ∈ L(x) and L(x) ∩ (z0 + δB) = ∅ that 0 < s < 1. Denote z = z0 + s(x − z0) and let p be arbitrary point from
the set L(x) ∩ (z + δB). According to the continuity of f we have f (p) = f (x). We prove that

〈y − z, p − z〉 � 0. (4)

Assume the contrary. Consider the quadratic function ϕ : R → R defined as follows

ϕ(t) = ∥∥z + t(y − z) − p
∥∥2

.

Since the global minimum of ϕ is attained at the point

t = tmin = 〈y − z, p − z〉
‖y − z‖2

> 0,

then ϕ is monotone decreasing when t ∈ [0, tmin] which contradicts the choice of z.
30) Since 〈y − z, p − z〉 = 〈y − p, p − z〉 + ‖p − z‖2 > 〈y − p, p − z〉, then it follows from (4) that

〈y − p, p − z〉 < 0. (5)
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40) We prove that y /∈ (P T (L(x), p)+ p). Let u be an arbitrary point from T (L(x), p). Therefore there exist a sequence {tk},
tk → +0, and a sequence {uk} ⊂ Rn, uk → u such that p + tkuk ∈ L(x) for all positive integer k. Hence ‖z − p‖2 � ‖z − p −
tkuk‖2. We obtain from here that 2〈uk, z − p〉 � tk‖uk‖2. Taking the limits as k → +∞ we obtain that 〈u, z − p〉 � 0.
Therefore 〈u, p − z〉 � 0 for all u ∈ T (L(x), p). It follows from here that

〈u, p − z〉 � 0 for all u ∈ cl
(
conv T

(
L(x), p

))
.

Taking into account inequality (5) we obtain that y − p /∈ P T (L(x), p).
50) On the other hand it follows from the pseudoconvexity of L(x) and f (x) = f (p) that L(x) ⊂ (P T (L(x), p) + p).

Therefore y ∈ (P T (L(x), p) + p) which is a contradiction. �
Corollary 1. Let the function f be defined and continuous on the convex set S. Then f ∈ PCLS(T ) if and only if f is quasiconvex on S.

Conditions for a lower semicontinuous function to be quasiconvex are obtained in Diewert [6, Theorem 4], Yang and Liu
[21, Theorem 2.1]. See also Mukherjee and Reddy [16, Theorem 3.2].

In the case when K is the Bouligand cone the functions with pseudoconvex sublevel sets can be defined in terms of the
lower Hadamard conditional derivative.

Theorem 3. Let K be the Bouligand tangent cone. Then condition (2) is equivalent to the following one:

x ∈ S, y ∈ L(x) imply f ↓
H

(
x; y − x; L(x)

)
� 0.

Proof. We prove that for all x ∈ S the inclusion y ∈ x + T (L(x), x) is equivalent to the inequality f ↓
H (x; y − x; L(x)) � 0.

Let y ∈ x+ T (L(x), x). By the definition of the contingent cone there exist sequences {tk}, tk > 0, tk → 0, and {uk}, uk ∈ Rn ,
uk → (y − x) such that x + tkuk ∈ L(x). We have

f ↓
H

(
x; y − x; L(x)

) = lim inf
(t,u′)→(+0,y−x), x+tu′∈L(x)

t−1( f (x + tu′) − f (x)
)

� lim inf
k→∞

t−1
k

(
f (x + tkuk) − f (x)

)
� 0.

Let f ↓
H (x; y − x; L(x)) � 0. The claim follows directly from the definition of the Hadamard conditional derivative because

f ↓
H (x; y − x; L(x)) < +∞ and therefore y − x ∈ T (L(x), x). �

It follows from Theorem 3 that Corollary 1 is a generalization of the following result due to Arrow and Enthoven [2].

Theorem 4. Let S be an open convex set in the finite-dimensional space Rn. Suppose that the differentiable function f is defined on S.
Then f is quasiconvex on S if and only if the following implication is satisfied for all x, y ∈ S,

x, y ∈ S, f (y) � f (x) imply ∇ f (x)(y − x) � 0.

3. Optimality conditions with strict inequalities

In this section we derive necessary and sufficient conditions for an isolated minimum and global one of the problem (P).

Lemma 1. The following two conditions are equivalent:

(a,b, c) /∈ [−∞,0] × [−∞,0]p × {0}l (6)

and

∃(λ,μ,ν) ∈ [0,+∞) × [0,+∞)p × (−∞,+∞)l \ {
(0,0,0)

}
:

λa + 〈μ,b〉 + 〈ν, c〉 > 0, λ = 0 if a = −∞, μi = 0 if bi = −∞. (7)

Proof. Let (6) holds. We prove condition (7). Assume the contrary that

λa + 〈μ,b〉 + 〈ν, c〉 � 0

for all (λ,μ,ν) ∈ [0,+∞) × [0,+∞)p × (−∞,+∞)l \ {(0,0,0)}. Take μ = 0 and ν = 0. Then we have λa � 0 for all λ > 0.
Therefore a � 0. Using similar arguments we obtain that bi � 0 for all i = 1,2, . . . , p. At last, we take λ = 0, μ = 0 and
ν j = 0, j �= s. Therefore νscs � 0 for all νs �= 0 which implies that cs = 0. Applying these reasonings for s = 1,2, . . . , l we get
a contradiction with condition (6).
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The claim is trivially satisfied if among a, bi (i = 1,2, . . . , p), c j ( j = 1,2, . . . , l) there are infinities. For all a, bi equal to
−∞ we put the respective multipliers equal to 0. Then we remove all these ones equal to −∞ and apply the reasonings
given above.

Let (7) be satisfied. We prove condition (6). Assume the contrary that

(a,b, c) ∈ [−∞,0] × [−∞,0]p × {0}l.

Therefore

λa + 〈μ,b〉 + 〈ν, c〉 � 0 ∀(λ,μ,ν) ∈ [0,+∞) × [0,+∞)p × (−∞,+∞)l

which contradicts (7). �
Lemma 2. Let x̄ be a feasible point of (P) and h be Hadamard differentiable at x̄ in every direction. Then T (S I(x̄), x̄) ⊂ C(x̄).

Proof. Let u ∈ T (S I(x̄), x̄). By the definition of the tangent cone there are sequences tk → +0, uk → u such that x̄ + tkuk ∈
S I(x̄) . Therefore x̄ + tkuk ∈ X , u ∈ T (X, x̄), gi(x̄ + tkuk) � 0 = gi(x̄), i ∈ I(x̄), and h j(x̄ + tkuk) = 0 = h j(x̄), j = 1,2, . . . , l. By the
definition of the Hadamard derivative u ∈ C(x̄). �

Notice that the inverse inclusion does not hold in general. In order to derive necessary conditions for optimality it is
reasonable to introduce the following generalized Abadie constraint qualification C(x̄) = T (S I(x̄), x̄) which coincides with the
Abadie constraint qualification [1] in the case when the problem is differentiable.

Theorem 5 (Necessary condition for an isolated local minimum). Let x̄ be an isolated local minimizer of (P), the functions gi , i /∈ I(x̄)
be continuous at x̄. Suppose that there exist the Hadamard directional derivatives f ′

H (x̄; u) and h′
H (x̄; u) for all directions u ∈ T (X, x̄)

and the constraint qualification C(x̄) = T (S I(x̄), x̄) holds. Then the following conditions are satisfied for every u ∈ T (X, x̄) \ {0}:(
f ′

H (x̄; u), (gI(x̄))
↓
H (x̄; u),h′

H (x̄; u)
)

/∈ [−∞,0] × [−∞,0]p × {0}l (8)

and there exists (λ,μ,ν) ∈ [0,+∞) × [0,+∞)p × (−∞,+∞)l \ {(0,0,0)} such that

λ f ′
H (x̄; u) + 〈

μ, (gI(x̄))
↓
H (x̄; u)

〉 + 〈
ν,h′

H (x̄; u)
〉
> 0 (9)

where I(x̄) = {1,2, . . . , p}. If f ′
H (x̄; u) = −∞, then inequality (9) holds with λ = 0. If (gi)

↓
H (x̄; u) = −∞, i ∈ I(x̄), then μi = 0.

Proof. Conditions (8) and (9) are equivalent according to Lemma 1. We prove (8). Assume the contrary that there exists
u ∈ T (X, x̄), u �= 0 with

f ′
H (x̄; u) � 0, (gi)

↓
H (x̄; u) � 0, i ∈ I(x̄) and h′

H (x̄; u) = 0.

By the generalized Abadie constraint qualification u ∈ T (S I(x̄), x̄). Therefore there are sequences tk → +0, uk → u such that
x̄ + tkuk ∈ S I(x̄) . We have that

gi(x̄ + tkuk) � 0 for all i /∈ I(x̄),

and all sufficiently large integers k due to the assumed continuity. We obtain that the points x̄ + tkuk are feasible for all
sufficiently large k. Using that x̄ is an isolated minimizer, there exist A > 0 with

f (x̄ + tkuk) � f (x̄) + Atk‖uk‖.
It follows from here that f ′

H (x̄; u) � A‖u‖ > 0 which contradicts our assumption. �
Remark 1. It is obvious that condition (9) is equivalent to the following one: for every u ∈ T (X, x̄) there exists

(λ,μ,ν) ∈ [0,+∞) × [0,∞)m × (−∞,+∞)l \ {
(0,0,0)

}
such that

λ f ′
H (x̄; u) +

m∑
i=1

μi(gi)
↓
H (x̄; u) +

l∑
j=1

ν j(h j)
′
H (x̄; u) > 0,

μi gi(x̄) = 0, i = 1,2, . . . ,m.

Condition (8) is known as primal one and condition (9) as dual.
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The following example shows that the constraint qualification is essential for Theorem 5.

Example 2. Consider the problem (P) with an inequality constraint and a set constraint such that X = [0,+∞), f , g : R → R
are given by f (x) = −x, g(x) = x2. Let x̄ = 0. The point x̄ is the only feasible one and it is an isolated local minimizer. We
have T (X, x̄) = [0,+∞), f ′

H (x̄; u) � 0 and g↓
H (x̄; u) = 0 for all u ∈ T (X, x̄), whence obviously condition (8) does not hold.

The Abadie constraint qualification is not satisfied.

Theorem 6 (Sufficient conditions for an isolated local minimum). Let x̄ be a feasible point of (P). Suppose that the functions f , h j ,
j = 1,2, . . . , l, are Hadamard differentiable at x̄ in every direction u ∈ T (X, x̄). Assume that for every u ∈ T (X, x̄) \ {0} condition (8)
or condition (9) is satisfied. Then x̄ is an isolated local minimizer.

Proof. Since conditions (8) and (9) are equivalent by Lemma 1, it is enough to prove that condition (8) implies x̄ is an
isolated local minimizer.

Suppose that x̄ is not an isolated minimizer. Therefore for every sequence εk > 0, εk → 0 there exists a sequence xk ∈ X
such that

‖xk − x̄‖ � εk, gi(xk) � 0, i = 1,2, . . . ,m,

h j(xk) = 0, j = 1,2, . . . , l, f (xk) < f (x̄) + εk‖xk − x̄‖. (10)

Denote tk = ‖xk − x̄‖. According to tk � εk , εk → 0 we have tk → 0. Denote dk = (xk − x̄)/tk . Since ‖dk‖ = 1 we can ensure
that the sequence {dk} is convergent, that is dk → d. Using that d ∈ T (X, x̄) we obtain from (10) that(

f ′
H (x̄;d), (gI(x̄))

↓
H (x̄;d),h′

H (x̄;d)
) ∈ [−∞,0] × [−∞,0]p × {0}l

which contradicts (8). �
Denote

U (x̄) := T
(
L( f ; x̄; X), x̄

) ∩
⋂

i∈I(x̄)

T
(
L(gi; x̄; X), x̄

) ∩
l⋂

j=1

T
(
L(h j; x̄; X), x̄

) ∩
l⋂

j=1

T
(
L(−h j; x̄; X), x̄

)
.

Theorem 7 (Sufficient conditions for a strict global minimum). Let x̄ be a feasible point of (P). Suppose that

L( f ; x̄; X), L(gi; x̄; X), i ∈ I(x̄), L(h j; x̄; X), L(−h j; x̄; X), j = 1,2, . . . , l,

are pseudoconvex, the functions f , h j , j = 1,2, . . . , l, are Hadamard directionally differentiable at x̄ in every direction u ∈ U (x̄).
Assume that for all u ∈ U (x̄), u �= 0 there exists

(λ,μ,ν) ∈ [0,+∞) × [0,∞)p × (−∞,+∞)l \ {
(0,0,0)

}
such that condition (8) or condition (9) is satisfied. Then x̄ is a strict global minimizer.

Proof. According to Lemma 1 it is enough to prove that the statement x̄ is a strict global minimizer follows from con-
dition (8). Let condition (8) hold, but x̄ is not a strict global minimizer. Therefore there exists x ∈ S , x �= x̄ such that
f (x) � f (x̄). It follows from the pseudoconvexity of L( f ; x̄; X) that x − x̄ ∈ T (L( f ; x̄; X), x̄). We conclude from here that
there exist sequences {tk}, tk → +0, and {uk}, uk → (x − x̄) with f (x̄ + tkuk) � f (x̄). Hence

f ′
H (x̄; x − x̄) = lim

k→+∞
f (x̄ + tkuk) − f (x̄)

tk
� 0. (11)

Let i ∈ I(x̄) be arbitrary. Since gi(x) � 0 = gi(x̄) using similar arguments we obtain that (gi)
↓
H (x̄; x − x̄) � 0. Suppose that

j is any integer from the set {1,2, . . . , l}. Using that h j(x) = h j(x̄) we obtain from the pseudoconvexity of L(h j; x̄; X) that
x− x̄ ∈ T (L(h j; x̄; X), x̄). Therefore (h j)

′
H (x̄; x− x̄) � 0. By the pseudoconvexity of L(−h j; x̄; X) we have that (h j)

′
H (x̄; x− x̄) � 0

which is a contrary to condition (8). �
In the next theorem the Lagrange multipliers do not depend on the direction.

Theorem 8 (Sufficient conditions for a strict global minimum). Let x̄ be a feasible point of (P). Suppose that L( f ; x̄; X), L(gi; x̄; X),
i ∈ I(x̄), are pseudoconvex, the functions f , h j , j = 1,2, . . . , l, are Hadamard directionally differentiable at x̄ in every direction u ∈
T (X, x̄). Assume that there exists (λ,μ,ν) ∈ [0,+∞) × [0,∞)p × (−∞,+∞)l \ {(0,0,0)} such that condition (9) is verified for
every u ∈ T (X, x̄) \ {0}. Let the following sets be pseudoconvex for every j ∈ {1,2, . . . , l}: L(h j; x̄; X) if ν j > 0, L(−h j; x̄; X) if ν j < 0.
Then x̄ is a strict global minimizer of (P).

Proof. The proof uses the arguments of Theorem 7. �
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4. Optimality conditions with nonstrict inequalities

In this section we derive necessary conditions for a local minimum of the problem (P) and sufficient conditions for a
global one of the same problem.

Lemma 3. Let a > −∞. Then the following two conditions are equivalent:

(a,b, c) /∈ (−∞,0) × [−∞,0]p × {0}l (12)

and

∃(μ,ν) ∈ [0,+∞)p × (−∞,+∞)l: a + 〈μ,b〉 + 〈ν, c〉 � 0, μi = 0 if bi = −∞. (13)

Proof. Let (12) hold. We prove condition (13). Assume the contrary that

a + 〈μ,b〉 + 〈ν, c〉 < 0

for all (μ,ν) ∈ [0,+∞)p × (−∞,+∞)l . Take μ = 0 and ν = 0. Therefore a < 0. Take ν = 0 and μi = 0, i �= s. Hence
a + μsbs < 0 for all μs � 0. Suppose that bs > 0. If we take μs sufficiently large, then we obtain that a + μsbs > 0 which is
a contradiction. Therefore bs � 0 for all s = 1,2, . . . , p. At last, we take μ = 0 and ν j = 0, j �= s. Therefore a +νscs < 0 for all
νs ∈ R. If cs < 0, then a +νscs > 0 for all negative numbers νs with sufficiently large absolute value which is a contradiction.
If cs > 0, then a + νscs > 0 for all sufficiently large positive numbers νs which is a contradiction again. Consequently cs = 0
for all s = 1,2, . . . , l. Thus (a,b, c) ∈ (−∞,0) × [−∞,0]p × {0}l which is a contrary to condition (12).

The claim is trivially satisfied if among a, bi (i = 1,2, . . . , p), c j ( j = 1,2, . . . , l) there are infinities. For all bi equal to
−∞ we put the respective multipliers μi equal to 0. Then we remove all these ones equal to −∞ and apply the reasonings
given above.

Let (13) hold. We prove condition (12). Assume the contrary that

(a,b, c) ∈ (−∞,0) × [−∞,0]p × {0}l.

Therefore

a + 〈μ,b〉 + 〈ν, c〉 < 0 for all (μ,ν) ∈ [0,+∞)p × (−∞,+∞)l,

which contradicts (13). �
Theorem 9 (Necessary conditions for a local minimum). Let x̄ be a local minimizer of (P). Suppose that the functions gi , i /∈ I(x̄), are
continuous at x̄, there exist the Hadamard directional derivatives f ′

H (x̄; u) and h′
H (x̄; u) for all directions u ∈ T (X, x̄). Assume that the

generalized Abadie constraint qualification C(x̄) = T (S I(x̄), x̄) holds. Then the following conditions are satisfied for every u ∈ T (X, x̄):(
f ′

H (x̄; u), (gI(x̄))
↓
H (x̄; u),h′

H (x̄; u)
)

/∈ [−∞,0) × [−∞,0]p × {0}l (14)

and there exists (λ,μ,ν) ∈ [0,+∞) × [0,+∞)p × (−∞,+∞)l \ {(0,0,0)} such that

λ f ′
H (x̄; u) + 〈

μ, (gI(x̄))
↓
H (x̄; u)

〉 + 〈
ν,h′

H (x̄; u)
〉
� 0 (15)

where I(x̄) = {1,2, . . . , p}. If f ′
H (x̄; u) > −∞, then inequality (15) holds with λ > 0, if f ′

H (x̄; u) = −∞, then λ = 0. If (gi)
↓
H (x̄; u) =

−∞, i ∈ I(x̄), then μi = 0.

Proof. 10) We prove (14). Assume the contrary that there exists u ∈ T (X, x̄) with

f ′
H (x̄; u) < 0, (gi)

↓
H (x̄; u) � 0, i ∈ I(x̄), and h′

H (x̄; u) = 0.

By the generalized Abadie constraint qualification u ∈ T (S I(x̄), x̄). Therefore there are sequences tk → +0, uk → u such that
x̄ + tkuk ∈ S I(x̄) . We have that

gi(x̄ + tkuk) � 0 for all i /∈ I(x̄),

and all sufficiently large integers k by the assumed continuity. Hence the points x̄ + tkuk are feasible for all sufficiently
large k and f (x̄ + tkuk) � f (x̄) since x̄ is a local minimizer. Therefore f ′

H (x̄; u) � 0 which contradicts our assumption.
20) We prove condition (15). Assume that u is arbitrary direction from T (X, x̄) and f ′

H (x̄; u) > −∞. Then, by (14),(
f ′

H (x̄; u), (gI(x̄))
↓
H (x̄; u),h′

H (x̄; u)
)

/∈ (−∞,0) × [−∞,0]p × {0}l.

Condition (15) holds with λ = 1 thanks to Lemma 3.
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Consider the case when f ′
H (x̄; u) = −∞. According to (14) we have that

(
(gI(x̄))

↓
H (x̄; u),h′

H (x̄; u)
)

/∈ [−∞,0]p × {0}l.

By Lemma 1 there exists (μ,ν) ∈ [0,∞)p × (−∞,+∞)l \ {(0,0)} such that

〈
μ, (gI(x̄))

↓
H (x̄; u)

〉 + 〈
ν,h′

H (x̄; u)
〉
> 0.

Therefore condition (15) is fulfilled with λ = 0 and with a strict inequality. �
Corollary 2 (Kuhn–Tucker necessary conditions). Let x̄ be a local minimizer of (P). Suppose that the functions gi , i /∈ I(x̄) are continuous
at x̄, f is Lipschitz in a neighborhood of x̄, there exist the Hadamard directional derivatives f ′

H (x̄; u) and h′
H (x̄; u) for all directions

u ∈ T (X, x̄). Assume that the generalized Abadie constraint qualification C(x̄) = T (S I(x̄), x̄) holds. Then for every u ∈ T (X, x̄) there
exists (μ,ν) ∈ [0,∞)p × (−∞,+∞)l such that

f ′
H (x̄; u) + 〈

μ, (gI(x̄))
↓
H (x̄; u)

〉 + 〈
ν,h′

H (x̄; u)
〉
� 0.

Proof. This corollary follows from the proof of Theorem 9 using that the Hadamard directional derivative is finite in our
case. �

Example 2 shows that the constraint qualification cannot be removed from Theorem 9 and Corollary 2. The point x̄ = 0
is a local minimizer, but f ′

H (x̄; u) < 0, g↓
H (x̄; u) = 0 for all u > 0 and condition (14) does not hold.

It is well known that the constraint qualifications are essential in Fritz John optimality condition for nonsmooth pro-
grams (see [13, Example 4.4]). The following example shows that the generalized Abadie constraint qualification cannot be
eliminated from Theorem 9.

Example 3. Consider the problem (P) with equality constraint only. The functions f , h : R2 → R are given as follows:
f (x1, x2) = x2

1 + x2 and

h(x1, x2) =
{

sin x1 if x1 � 0, x2 = 0;
x1 otherwise.

Here X = R2. The point x̄ = (0,0) is a local minimizer. The functions f and h are differentiable at x̄. However, the Fritz John
conditions

λ∇ f (x̄) + μ∇h(x̄) = (0,0) with (λ,μ) �= (0,0), λ � 0,

are not satisfied. It is immediately seen that the generalized Abadie constraint qualification does not hold.

In the following example f is not Hadamard differentiable and Theorem 9 is not satisfied.

Example 4. Consider the problem (P) with inequality constraint and a set constraint where X = {(0,0)}. The functions f ,
g : R2 → R are given as follows:

f (x1, x2) = g(x1, x2) =
{−1 if (x1, x2) �= (0,0);

0 if (x1, x2) = (0,0).

The point x̄ = (0,0) is a local minimizer, because it is the only feasible point. The function f is not Hadamard differentiable
and f ↓

H (x̄; u) = g↓
H (x̄; u) = −∞ for all u ∈ R2. All other hypotheses of Theorem 9 hold, but condition (14) is not satisfied.

The only pair of Lagrange multipliers which fulfills condition (15) is (λ,μ) = (0,0).

Remark 2. We can compare Theorem 9 with [13, Theorems 4.1, 4.8] and [14, Theorems 4.1, 5.2]. Dual conditions for the
vector problem are obtained in [13, Theorem 4.1]. The objective function is Hadamard differentiable with a convex derivative,
the inequality constraints are Dini differentiable with a convex derivative, the equality constraints are Dini differentiable
with a linear derivative and some cones are convex or closed. The result is given in term of subdifferentials. The generalized
Abadie constraint qualification is assumed. In [13, Theorem 4.8] the inequality constraints are Hadamard differentiable with
a convex derivative, but there are no equality constraints in the problem. Only primal optimality condition for the vector
problem is derived in [14, Theorem 4.1]. The objective function and the equality constraints are Hadamard differentiable and
the result is given in terms of the Hadamard derivative and the lower Hadamard derivative. A dual condition of Kuhn–Tucker
type is obtained in [14, Theorem 5.2]. All functions in this result are Gâteaux differentiable and some cones are supposed
to be closed.
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Definition 2. Let the function f be defined on the set X and x̄ ∈ X . We call the sublevel set L( f ; x̄; X) strongly pseudoconvex
if for all x ∈ L( f ; x̄; X), x �= x̄ there are a number ε > 0 and sequences tk → +0, uk → (x − x̄) such that

f (x̄ + tkuk) � f (x̄) − εtk.

Theorem 10 (Sufficient conditions for a strict global minimum). Let x̄ be a feasible point of (P), there exist the Hadamard derivatives
f ′

H (x̄; u), h′
H (x̄; u) for all u ∈ T (X, x̄). Assume that there exists

(λ,μ,ν) ∈ [0,+∞) × [0,+∞)p × (−∞,+∞)l \ {
(0,0,0)

}
such that the sets L( f ; x̄; X), L(gi; x̄; X), i ∈ I(x̄), L(h j; x̄; X) if ν j > 0, L(−h j; x̄; X) if ν j < 0 are pseudoconvex, at least one of the
sets L(gi; x̄; X), i ∈ I(x̄), where μi > 0 or L( f ; x̄; X) where λ > 0 is strongly pseudoconvex, condition (15) is verified for every

u ∈ T
(
L( f ; x̄; X), x̄

) ∩
⋂

i∈I(x̄)

T
(
L(gi; x̄; X), x̄

) ∩
⋂

j∈{1,2,...,l}, ν j>0

T
(
L(h j; x̄; X), x̄

) ∩
⋂

j∈{1,2,...,l}, ν j<0

T
(
L(−h j; x̄; X), x̄

)
.

Then x̄ is a strict global minimizer of (P).

Proof. Suppose that there exists x ∈ S , x �= x̄ such that f (x) � f (x̄). It follows from the pseudoconvexity of L( f ; x̄; X) that
x − x̄ ∈ T (L( f ; x̄; X), x̄). We conclude from here that there exist sequences {tk}, tk → +0, and {uk}, uk → (x − x̄) with
f (x̄ + tkuk) � f (x̄). Hence inequality (11) holds. Let i ∈ I(x̄) be arbitrary. Since gi(x) � 0 = gi(x̄) using similar arguments we
obtain that x − x̄ ∈ T (L(gi; x̄; X), x̄) and

(gi)
↓
H (x̄; x − x̄) � 0. (16)

Suppose that j is any integer from the set {1,2, . . . , l} with ν j > 0. Using that h j(x) = h j(x̄) we obtain from the pseudocon-
vexity of L(h j; x̄; X) that x − x̄ ∈ T (L(h j; x̄; X), x̄). Therefore

(h j)
′
H (x̄; x − x̄) � 0. (17)

If ν j < 0 by the pseudoconvexity of L(−h j; x̄; X) we have that x − x̄ ∈ T (L(−h j; x̄; X), x̄) and

(h j)
′
H (x̄; x − x̄) � 0. (18)

At least one of the inequalities (11), (16) is strict because of the strong pseudoconvexity. Inequalities (11), (16)–(18) contra-
dict condition (15). �
Corollary 3. Let x̄ be a feasible point of (P), X be open and the functions f , g, h be differentiable at x̄. Suppose that there exist
(λ,μ,ν) ∈ [0,+∞) × [0,+∞)p × (−∞,+∞)l with

λ∇ f (x̄) +
∑

i∈I(x̄)

μi∇gi(x̄) +
l∑

j=1

ν j∇h j(x̄) = 0.

Assume that, for x̄:

(i) f is quasiconvex;
(ii) for i ∈ I(x̄), i �= s, gi is quasiconvex, gs is strictly pseudoconvex with μs > 0;

(iii) for all j = 1,2, . . . , l, h j is quasiconvex if ν j > 0, h j is quasiconcave if ν j < 0.

Then x̄ is a strict global solution of (P).

Proof. The corollary is a consequence of Theorem 10 because the quasiconvexity (strict pseudoconvexity) at x̄ of a differen-
tiable function f defined on X follows from the (strong) pseudoconvexity of the sublevel set L( f ; x̄; X). �

There are in literature several papers which concern with sufficient conditions for a global minimum (see [3,8,18] and
references therein). Corollary 3 is a slight generalization of Theorem 3.1 in [3].

Theorem 11 (Sufficient conditions for a strict global minimum). Let x̄ be a feasible point of (P). Suppose that L( f ; x̄; X), L(gi; x̄; X),
i ∈ I(x̄), L(h j; x̄; X), L(−h j; x̄; X), j = 1,2, . . . , l, are pseudoconvex, and L( f ; x̄; X) is strongly pseudoconvex. Assume that the func-
tions f , h j , j = 1,2, . . . , l, are Hadamard directionally differentiable at x̄ in every direction u ∈ U (x̄) and for all u ∈ U (x̄) condition
(14) is satisfied. Then x̄ is a strict global minimizer.
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Proof. The proof follows from the arguments of Theorem 10. �
The following example shows that the optimality conditions could be applied for solving problems whose objective

function has pseudoconvex sublevel sets.

Example 5. Solve problem (P) with inequality constraint only, such that X = R2 and f : R2 → R, g : R2 → R are given by

f (x1, x2) =
{

x2
1 + x2 if (x1, x2) /∈ N,

12 + 4n−1 + n−3/2 if (x1, x2) ∈ N,

where N is the set which consists of the points (2 + 1
n ,8), n arbitrary positive integer and

g(x1, x2) = −x1 − x2 +
√

(x1 − x2)2 + 64.

The only point which satisfies the necessary conditions of Theorem 9 is x̄ = (2,8). Since f is a function with pseudoconvex
sublevel sets, L( f , x̄, X) is strongly pseudoconvex because the function f1 = x2

1 + x2 is strictly pseudoconvex, L(g, x̄, X) is
convex and therefore pseudoconvex, then it follows from Theorem 10 that x̄ is a strict global minimizer.
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