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In this work we present a definition of crossed product for actions of inverse semigroups
on C∗-algebras, without resorting to covariant representations as done by Sieben in related
work. We also show the existence of an isomorphism between the crossed product by
a partial action of a group G and the crossed product by a related action of S(G), an
inverse semigroup associated to G introduced by the first named author.
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1. Introduction

In his master thesis [5], N. Sieben introduced the notion of a crossed product by an action of an inverse semigroup on a
C∗-algebra using covariant representations. We will present here another definition, inspired by the definition of the crossed
product by a partial action. There is only one difference: we will need to take a quotient that isn’t necessary in the case of
partial actions of groups. And for this, we will show that, under certain conditions over the algebra, the algebraic crossed
product is associative, and this part is very similar to what Dokuchaev and the first named author did in [1].

Associated to a partial action α of a group G and to the group itself, Sieben constructed a certain inverse semigroup SG ,
and showed that the crossed product of α is isomorphic to the crossed product of a certain action of SG . Here, we present
an analogous result, but using an inverse semigroup that depends only of the group G . It is the semigroup S(G) introduced
by the first named author in [2].

Recall that a semigroup is a set S with an associative operation.

Definition 1.1. An inverse semigroup is a semigroup S such that, for any r ∈ S , exists a unique r∗ ∈ S such that rr∗r = r and
r∗rr∗ = r∗ . We call r∗ the inverse of r.

Example 1.2. For any set X , the set I(X) of partial bijections of X (that is, bijections between subsets of X ), is an inverse
semigroup. In fact, by the Wagner–Preston Theorem [4], any inverse semigroup is isomorphic to an inverse subsemigroup
of I(S).
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Definition 1.3. Let G be a group with unit e. We define S(G) to be the universal semigroup generated by {[g]: g ∈ G} under
the following relations, for g,h ∈ G:

(i) [g−1][g][h] = [g−1][gh],
(ii) [g][h][h−1] = [gh][h−1],

(iii) [g][e] = [g].

Note that [e][g] = [gg−1][g] = [g][g−1][g] = [g][g−1 g] = [g][e] = [g], and then S(G) is a semigroup with unit [e].
The following is a universal property enjoyed by S(G):

Proposition 1.4. Let S be a semigroup and f : G → S be any function such that, for all g,h ∈ G:

(i) f (g−1) f (g) f (h) = f (g−1) f (gh),
(ii) f (g) f (h) f (h−1) = f (gh) f (h−1),

(iii) f (g) f (e) = f (g).

Then there exists a unique homomorphism f̂ : S(G) → S such that the diagram below commutes:

G

[·]

f
S

S(G)

f̂

In what follows we will recall some facts about S(G), referring the reader to [2] for more details. For g ∈ G , define
εg = [g][g−1]. Is not difficult to see that εg = ε2

g and [h]εg = εgh[h], for g,h ∈ G . Another interesting propriety is that any
element s ∈ S(G) admits a decomposition

s = εs1 . . . εsn [g],
where n � 0 and s1, . . . sn , g ∈ G . This decomposition is unique, except for the order of the s j . We will call it the standard
form of s.

We may construct an anti-automorphism ∗ on S(G), such that [g]∗ := ∗([g]) = [g−1] and, for any s ∈ S(G), s∗ is the
inverse (in the sense of inverse semigroups) of s.

With this we may conclude that the inverse is unique, and so S(G) is an inverse semigroup.
In the definition of crossed product by an action of an inverse semigroup that we will present, we will use the natural

partial order of inverse semigroups, defined as follows: given elements s and t of an inverse semigroup S we say that

s � t ⇔ s = t f , for some idempotent f ∈ S.

Example 1.5. Take an idempotent l = εl1 . . . εln [ j] ∈ S(G), with l1, . . . ln, j ∈ G . By the uniqueness of decomposition of S(G),
is not difficult to see that j must be the unit of the group. So l = εl1 . . . εln . Now, for r = εr1 . . . εrn [h] and s = εs1 . . . εsm [g]
in S(G), if s � r we have that s = r f , for some f ∈ S(G) idempotent. Then f = ε f1 . . . ε fk and we have that:

εs1 . . . εsm [g] = εr1 . . . εrn [h]ε f1 . . . ε fk = εr1 . . . εrnεhf1 . . . εhfk [h].
By the uniqueness of the decomposition in S(G), it follows that g = h and {s1, . . . , sm} = {r1, . . . , rn,hf1, . . . ,hfk}. So, the
difference between s and r are some ε’s.

2. Actions

Let G be a group.

Definition 2.1. A partial action α of G on an associative algebra A is a pair({D g}g∈G , {αg}g∈G
)

where, for each g ∈ G , D g is a ideal of A and αg : D g−1 → D g is a isomorphism satisfying, for g,h ∈ G:

(i) De = A,
(ii) αg(D g−1 ∩ Dh) = D g ∩ D gh ,

(iii) αg ◦ αh(x) = αgh(x), ∀x ∈ Dh−1 ∩ Dh−1 g−1 .
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Definition 2.2. A partial action of G on a C∗-algebra A is a partial action such that, for all g ∈ G , D g is a closed ideal of A
and αg is a ∗-isomorphism.

We call (A, G,α) a (C∗-)partial dynamical system if α is a partial action of the group G in the (C∗-)algebra A.

Definition 2.3. Let S be an inverse semigroup with unit e. We say that β is an action of S in the algebra A if for each s ∈ S
exists an ideal Es of A and an isomorphism βs : Es∗ → Es such that, for all r, s ∈ S , βr ◦ βs = βrs and Ee = A.

We note that the composition βr ◦ βs referred to above is only defined on the set of points x in the domain of βs for
which βs(x) lies in the domain of βr . Is easy to verify that (βs)

−1 = βs∗ .

Proposition 2.4. Let β be an action of the inverse semigroup S in the algebra A. Then, for s, t ∈ S, we have that Est ⊆ Es.

Proof. By definition it follows that:

Est = Dom(βt∗s∗) = Dom(βt∗βs∗) = β−1
s∗ (Et ∩ Es∗) = βs(Et ∩ Es∗) ⊆ Es. �

For the case of actions of S(G) we have:

Proposition 2.5. Let β be an action of S(G) on the algebra A. Then, for g,h ∈ G, we have that E[g][h] = E[gh] ∩ E[g] .

Proof. Using the last proposition, it follows that:

E[g][h] = E[g][g−1][g][h] = E[g][g−1][gh] = β[g](E[g−1][gh] ∩ E[g−1])
= β[g]

(
β[g−1](E[gh] ∩ E[g]) ∩ E[g−1]

) = β[g]
(
β[g−1](E[gh] ∩ E[g])

) = E[gh] ∩ E[g]. �
Definition 2.6. An action of the inverse semigroup S on a C∗-algebra A is an action of S on the algebra A such that, for all
s ∈ S , Es is a closed ideal of A and βs is a ∗-isomorphism.

In [2], the first named author shows that for any group G and any set X , there exists a bijection between the set of
partial actions of G on X and the set of actions of S(G) on X .

This result extends to the case of actions on an algebra or on a C∗-algebra as we shall now see. We begin with the
following:

Proposition 2.7. Let G be a group and let β be an action of S(G) on the algebra A. Then ({E[g]}g∈G , {β[g]}g∈G) is a partial action of G
on A.

Proof. Item (i) and (iii) are obvious. Item (ii) follows from β[g] ◦ β[h] = β[g][h] and Proposition 2.5. �
The converse result follows by the universal propriety of S(G).

Proposition 2.8. Let α = ({D g}g∈G , {αg}g∈G) be a partial action of the group G on the algebra A. Then

f : G → I(A),

g 
→ αg

satisfies (i)–(iii) of Proposition 1.4.

Proof. The result follows easily of items (ii) and (iii) of the definition of partial action. �
With this, we have an unique homomorphism

β : S(G) → I(A),

s 
→ βs

such that β[g] = αg .
Now, for s1, . . . , sn , h ∈ G , let s = εs1 . . . εsn [h] = [h]εh−1s1

. . . εh−1sn
∈ S(G) be in the standard form. Note that

βs = β[h]β[h−1s ]β[(h−1s )−1] . . . β[(h−1s )−1] = αhαh−1s α(h−1s )−1 . . . α(h−1s )−1 = αh|D −1 ∩···∩D −1 .

1 1 n 1 1 n h s1 h sn
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So we conclude that Es∗ := dom βs = Dh−1 ∩ Dh−1s1
∩ · · · ∩ Dh−1sn

. Since s∗ = [h−1]εs1 . . . εsn , we have Es := dom βs∗ =
Dh ∩ Ds1 ∩ · · · ∩ Dsn .

Let us find the range of βs:

βs(Es∗) = αh(Dh−1 ∩ Dh−1s1
∩ · · · ∩ Dh−1sn

) ⊆ αh(Dh−1 ∩ Dh−1si
) = Dh ∩ Dsi , ∀i.

So βs(Es∗ ) ⊆ Dh ∩ Ds1 ∩ · · · ∩ Dsn . If we change h by h−1 and si by h−1si , we conclude that βs(Es∗ ) ⊇ Dh ∩ Ds1 ∩ · · · ∩ Dsn , so

βs(Es∗) = αh(Dh−1 ∩ Dh−1s1
∩ · · · ∩ Dh−1sn

) = Dh ∩ Ds1 ∩ · · · ∩ Dsn = Es.

So, for all s ∈ S , βs : Es∗ → Es is an isomorphism, Es is an ideal and since E[e] = De = A, we have that β is an action of S(G)

on A.
Observe that, for r = [r1][r2] . . . [rn] ∈ S(G) (not necessarily in the standard form), βr = αr1αr2 . . . αrn , Er∗ =

Dr−1
n

∩ Dr−1
n r−1

n−1
∩ · · · ∩ Dr−1

n r−1
n−1...r−1

1
and Er = Dr1 ∩ Dr1r2 ∩ · · · ∩ Dr1r2...rn .

So, it is easy to see that the following theorem holds.

Theorem 2.9. Let G be a group and A be an algebra. Then there is a bijection between the partial actions of G on A and the actions
of S(G) on A.

Now, if we have an action β of S(G) on the C∗-algebra A, Proposition 2.7 implies that ({E[g]}g∈G , {β[g]}g∈G) is a partial
action of G on the algebra A. But E[g] is closed and β[g] preserves ∗. So ({E[g]}g∈G , {β[g]}g∈G) is a partial action of G on the
C∗-algebra A.

Conversely, if α = ({D g}g∈G , {αg}g∈G) is a partial action of G on the C∗-algebra A, we construct an action β of S(G)

on the algebra A. But intersection of closed ideals is a closed ideal, and αg preserve ∗. So β is an action of S(G) on the
C∗-algebra A. So we may extend Theorem 2.9:

Theorem 2.10. Let G be a group and A a C∗-algebra. There is a bijection between the partial actions of G on A and the actions of S(G)

on A.

3. Algebraic crossed product

Consider a partial action α of the group G on the algebra A.

Definition 3.1. We define the algebraic crossed product of α as

A �
a
α G =

{
finite∑
g∈G

agδg: ag ∈ D g

}
,

where δg are symbols, with addition defined in the obvious way and the product being the linear extension of

(agδg)(ahδh) = αg
(
αg−1(ag)ah

)
δgh.

Notice that αg−1 (ag)ah ∈ D g−1 ∩ Dh , so αg(αg−1 (ag)ah)δgh ∈ D g ∩ D gh , so the multiplication is well defined.
For the case of actions of an inverse semigroups a similar construction may be performed, but it is just a first step in

the definition of the algebraic crossed product.

Definition 3.2. Let β be an action of the inverse semigroup S on the algebra A. Define

L =
{

finite∑
s∈S

asδs: as ∈ Es

}
,

where δs are symbols, with addition defined in the obvious way and the product being the linear extension of

(arδr)(asδs) = βr
(
βr−1(ar)as

)
δrs.

In [1], Dokuchaev and the first named author found conditions under which A �α G is associative, and they presented
an example to show that associativity may fail (Proposition 3.6). Based on this example we may easily construct an action
of S(G) such that L is not associative. We therefore need to know under which conditions L is associative.

We begin by recalling the definition of the algebra of multipliers.

Definition 3.3. The algebra of multipliers of a K -algebra A is the set M(A) of all ordered pairs (L, R), where L and R are
linear operators on A such that, for a,b ∈ A:
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(i) L(ab) = L(a)b,
(ii) R(ab) = aR(b),

(iii) R(a)b = aL(b).

For (L, R), (L′, R ′) ∈ M(A), k ∈ K , we define:

k(L, R) = (kL,kR),

(L, R) + (L′, R ′) = (L + L′, R + R ′),
(L, R)(L′, R ′) = (L ◦ L′, R ′ ◦ R).

We say that L is a left multiplier and R is a right multiplier of A.

We will show that the operation of multiplication on L is associative when the ideals Es associated with the action
β are (L, R)-associative, that is, when L ◦ R ′ = R ′ ◦ L for all (L, R), (L′, R ′) ∈ M(Es) (for more details about the algebra of
multipliers see [1]).

Theorem 3.4. Let β be an action of the inverse semigroup S on the algebra A. If the ideals Es are (L, R)-associative, then the operation
of multiplication of the set L defined in Definition 3.2 is associative.

Proof. Let r, s, t ∈ S and ar ∈ Er , as ∈ Es , at ∈ Et .
We want to prove that

arδr(asδsatδt) = (arδrasδs)atδt,

that is:

βr
(
βr∗(ar)βs

(
βs∗(as)at

))
δrst = βrs

(
βs∗r∗

(
βr

(
βr∗(ar)as

))
at

)
δrst .

Analyzing the right side:

βrs
(
βs∗r∗

(
βr

(
βr∗(ar)as

))
at

)
δrst = βrs

(
βs∗

(
βr∗

(
βr

(
βr∗(ar)as

)))
at

)
δrst

= βrs
(
βs∗

(
βr∗(ar)as

)
at

)
δrst

= βr
(
βs

(
βs∗

(
βr∗(ar)as

)
at

))
δrst .

So we need to prove that:

βr
(
βr∗(ar)βs

(
βs∗(as)at

)) = βr
(
βs

(
βs∗

(
βr∗(ar)as

)
at

))
.

Applying βr∗ in both sides of equality by the left:

βr∗
(
βr

(
βr∗(ar)βs

(
βs∗(as)at

))) = βr∗
(
βr

(
βs

(
βs∗

(
βr∗(ar)as

)
at

)))
and it is equivalent to:

βr∗(ar)βs
(
βs∗(as)at

) = βs
(
βs∗

(
βr∗(ar)as

)
at

)
.

Because βr∗ : Er → Er∗ is an isomorphism, the above condition is equivalent to:

aβs
(
βs∗(as)at

) = βs
(
βs∗(aas)at

)
, ∀a ∈ Er∗ , as ∈ Es, at ∈ Et .

Denoting Rat : Es∗ → Es∗ the right multiplier by at in Es∗ and La : Es → Es the left multiplier by a in Es , the last equation is
equivalent to:

La ◦ βs ◦ Rat ◦ βs∗(as) = βs ◦ Rat ◦ βs∗ ◦ La(as), ∀a ∈ Er∗ , as ∈ Es, at ∈ Et .

Now, βs ◦ Rat ◦ βs∗ is a right multiplier of Es , and because Es is (L, R)-associative, the last equation holds.
So the multiplication of L is associative. �
So, let us suppose that the ideals Es related with the action β of S on A are (L, R)-associative.

Definition 3.5. Let β be an action of the inverse semigroup S on the algebra A. Consider N = 〈aδr − aδt : a ∈ Er, r � t〉, that
is, the ideal generated by aδr − aδt . We define the algebraic crossed product of β as

A �
a
β S = L

N
.
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Note that r � t implies r = ti, for i idempotent. So, by Proposition 2.4, Er ⊆ Et .
We will denote the elements of A �

a
β S by asδs , where asδs ∈ L.

Lemma 3.6. Let β be an action of S on A. For r1, . . . , rn, g,h ∈ G, we have:

(1) aδ[g][h] = aδ[gh] , for a ∈ E[g][h] ,
(2) aδεr1 ...εrn [g] = aδ[g] , for a ∈ Eεr1 ...εrn [g] .

Proof. (1): Well, [g][h] = [g][h][h−1][h] = [gh][h−1][h]. As [h−1][h] is idempotent, [g][h] � [gh] and so aδ[g][h] − aδ[gh] ∈ N .
(2): Note that εr1 . . . εrn [g] = [g]εg−1r1

. . . εg−1rn
and the results follows because εg−1r1

. . . εg−1rn
is idempotent. �

So, we may now state the main result of this section:

Theorem 3.7. Let α be a partial action of the group G on the algebra A. Consider the action β related with α by Theorem 2.9. Then
A �

a
α G ∼= A �

a
β S(G).

Proof. Define

ϕ : A �
a
α G → A �

a
β S(G),

aδg 
→ aδ[g], linearly extended.

Let us prove that ϕ is an isomorphism. It is well defined and using the lemma above we may prove that it is a homomor-
phism, because:

ϕ(aδg)ϕ(bδh) = (aδ[g])(bδ[h]) = β[g]
(
β[g−1](a)b

)
δ[g][h] = β[g]

(
β[g−1](a)b

)
δ[gh],

ϕ
(
(aδg)(bδh)

) = ϕ
(
αg

(
αg−1(a)b

)
δgh

) = αg
(
αg−1(a)b

)
δ[gh] = β[g]

(
β[g−1](a)b

)
δ[gh].

To show that ϕ is bijective we will present an inverse for it. For s1, . . . sn , g ∈ G consider s = εs1 . . . εsn [g] ∈ S(G) and the
function γ such that γ (s) = g . Is very easy to show that γ is a homomorphism between the inverses semigroups S(G)

and G . Note that γ (s∗) = g−1 = γ (s)−1. So we may define:

ψ : L → A �
a
α G,

aδs 
→ aδγ (s), linearly extended.

Note that ψ is a homomorphism and using Example 1.5 we see that ψ(N) = 0.
So we may extend ψ to the homomorphism

ψ̃ : A �
a
β S(G) → A �

a
α G,

aδs 
→ aδγ (s), linearly extended.

As it is obvious that ψ̃ and ϕ are inverses one each other, the theorem holds. �
4. Crossed product

Let A be a C∗-algebra with unit and let α be a partial action of a group G on A. For g ∈ G and ag ∈ D g , define in A �
a
α G

the following operation ∗:

(agδg)
∗ = αg−1

(
a∗

g

)
δg−1 , linearly extended:(

finite∑
g∈G

agδg

)∗
=

finite∑
g∈G

(agδg)
∗.

It is easy to show that A �
a
α G with ∗ is a ∗-algebra. Considering the following norm in A �

a
α G , we have that it is

a normed ∗-algebra:∥∥∥∥∥
finite∑
g∈G

agδg

∥∥∥∥∥
1

=
finite∑
g∈G

‖ag‖,

where the norm in the right side is the norm in A.
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Given a Banach ∗-algebra B , its enveloping C∗-algebra is the completion of B/kerρs with respect to ρs(x) =
sup{‖ρ(x)‖: ρ is a representation of B}.

To define the crossed product by a partial action α of G on A, we want to take the enveloping C∗-algebra of A �
a
α G .

But this is not a Banach ∗-algebra. So we need to show that its representations are contractive. With this purpose, let π be
a representation of A �

a
α G . For ag ∈ D g :∥∥π(agδg)

∥∥2 = ∥∥π(agδg)
∗π(agδg)

∥∥ = ∥∥π(
(agδg)

∗(agδg)
)∥∥ = ∥∥π(

αg−1

(
a∗

gag
)
δe

)∥∥.

Now, note that αg−1 (a∗
gag)δe ∈ Aδe , and Aδe is a C∗-algebra (isomorphic to A). Then:∥∥π(agδg)

∥∥2 = ∥∥π(
αg−1

(
a∗

gag
)
δe

)∥∥ �
∥∥αg−1

(
a∗

gag
)
δe

∥∥
1 = ∥∥αg−1

(
a∗

gag
)∥∥ = ∥∥a∗

gag
∥∥ = ‖ag‖2.

So, we have that:∥∥∥∥∥ π

(
finite∑
g∈G

agδg

)∥∥∥∥∥ �
finite∑
g∈G

∥∥π(agδg)
∥∥ �

finite∑
g∈G

‖ag‖ =
∥∥∥∥∥

finite∑
g∈G

agδg

∥∥∥∥∥
1

.

So we may take the enveloping C∗-algebra of A �
a
α G to define the crossed product.

Definition 4.1. The crossed product algebra A �α G , is the enveloping C∗-algebra of the ∗-algebra A �
a
α G .

Let us denote the elements of A �α G as classes of the elements of A �
a
α G , agδg .

To define the crossed product by an action β of an inverse semigroup S on A, we want to do the same, that is, take the
enveloping C∗-algebra of A �

a
α S .

So, for r ∈ S and ar ∈ Er , define in A �
a
β S:

(arδr)
∗ = βr∗

(
a∗

r
)
δr∗ , linearly extended.

We may easily see that A �
a
β S is a ∗-algebra. Also define a norm∥∥∥∥∥

finite∑
s∈S

asδs

∥∥∥∥∥
2

=
finite∑
s∈S

‖as‖.

It is easily seen that A �
a
β S is a normed ∗-algebra.

Proposition 4.2. Every representation ρ : A �
a
β S → B(H) is contractive.

Proof. A representation ρ of A �
a
β S is one of L such that ρ|N ≡ 0.

Let s ∈ S and as ∈ Es . As s∗s � e (e the unit of S), it follows that∥∥ρ(asδs)
∥∥2 = ∥∥ρ(asδs)

∗ρ(asδs)
∥∥ = ∥∥ρ(

(asδs)
∗(asδs)

)∥∥ = ∥∥ρ(
βs∗

(
a∗

s as
)
δs∗s

)∥∥
= ∥∥ρ(

βs∗
(
a∗

s as
)
δe

)∥∥ �
∥∥a∗

s as
∥∥ = ‖as‖2.

For any element
∑finite

s∈S asδs ∈ L:∥∥∥∥∥ ρ

(
finite∑
s∈S

asδs

)∥∥∥∥∥ �
finite∑
s∈S

∥∥ρ(asδs)
∥∥ �

finite∑
s∈S

‖as‖ =
∥∥∥∥∥

finite∑
s∈S

asδs

∥∥∥∥∥
2

.

So ρ is contractive. �
Definition 4.3. The crossed product by the action β of the inverse semigroup S on the C∗-algebra A, denoted A �β S , is the
enveloping C∗-algebra of the ∗-algebra A �

a
β S .

Note that to construct A �β S , we do two quotients. So, we will denote its elements like arδr , where arδr ∈ L.
Also note that A �β S is just the completion of (A ×a

β S)/kerρs , with respect to ρs(x) = sup{‖ρ(x)‖: ρ representation of
A ×a

β S}.
Let α be a partial action of the group G on the C∗-algebra A. Consider the action β of S(G) on A related by the

Theorem 2.10.

Theorem 4.4. The C∗-algebras A �α G and A �β S(G) are isomorphic.
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Proof. For g ∈ G and ag ∈ D g , define

φ : A �
a
α G → A �β S(G),

agδg → agδ[g], linearly extended.

Obviously φ is well defined and, using Lemma 3.6, we see that it is a homomorphism. Also it is easy to check that φ

preserves ∗.
Then, by the universal property of A �α G , it follows that there exists a unique ∗-homomorphism ϕ : A �α G → A �β S(G)

such that the diagram below commutes, that is, ϕ(agδg) = agδ[g] .

A �
a
α G

[·]

f
A �β S(G)

A �α G
f̂

Let

K =
{

finite∑
s∈S(G)

asδs: as ∈ Es

}
.

Using the homomorphism γ : S(G) → G that we define in Theorem 3.7, consider

ω : K → A �α G,

asδs 
→ asδγ (s), linearly extended.

Now take M the ideal of K generated by aδr − aδt , where a ∈ Er and r � t . Is easy to see that ω is a homomorphism and,
using Example 1.5, we see that ω(M) = 0.

So we may define

φ̃ : A �
a
β S(G) → A �α G,

asδs 
→ asδγ (s), linearly extended.

By Lemma 3.6, φ̃ is a homomorphism easily checked to preserve ∗. Then, by the universal property of A �β S(G) there
exists a unique ∗-homomorphism ϕ̃ : A �β S(G) → A �α G such that the diagram below commutes,

A �
a
β S(G)

[·]

f
A �α G

A �β S(G)

f̂

that is, ϕ̃(asδs) = asδγ (s) .
Obviously ϕ ◦ ϕ̃ = IdA�β S(G) and ϕ̃ ◦ ϕ = IdA�α G , and the theorem is proved. �

5. Covariant representations

The crossed product by an action of an inverse semigroup was introduced by Nándor Sieben in [5] in 1994. In this
definition, he used covariant representations of an action. We will outline his definition and we will show that our definition
is equivalent to his. See [5] for further details on Sieben’s work.

Definition 5.1. Let β be an action of the inverse semigroup S on the C∗-algebra A. A covariant representation of β is a triple
(π,ν, H) where π : A → B(H) is a representation of A on the Hilbert space H and ν : S → P Iso(H) is a map preserving
products, such that, for s ∈ S:

(i) νsπ(a)νs∗ = π(βs(a)) for all a ∈ Es∗ (covariance condition),

(ii) νs has initial space span{π(Es∗ )H} and final space span{π(Es)H}.

The set of covariant representations of (A, S, β) is denoted CovRep(A, S, β).
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Let β be an action of the unital inverse semigroup S on the C∗-algebra A. Define

L̃ = {
x ∈ l1(S, A): x(s) ∈ Es

}
,

with norm, scalar multiplication and addition inherited of l1(S, A).
For x, y ∈ L̃, the product x ∗ y is defined by:

(x ∗ y)(s) =
∑
rt=s

βr
(
βr∗

(
x(r)

)
y(t)

)
.

Also define x∗ to be the element of l1(S, A) such that:

x∗(s) = βs
(
x(s∗)∗

)
.

The operations are well defined and L̃ is a Banach ∗-algebra.

Definition 5.2. If (π,ν, H) ∈ CovRep(A, S, β), define π × ν : L̃ → B(H) by

(π × ν)(x) =
∑
s∈S

π
(
x(s)

)
νs.

We have that π × ν is a ∗-homomorphism.
Sieben defines the crossed product by an action of inverse semigroup as follows.

Definition 5.3. Let β be an action of the unital inverse semigroup S on the C∗-algebra A. Define a seminorm ‖.‖c on L̃ as

‖x‖c = sup
{∥∥(π × ν)(x)

∥∥: (π,ν, H) ∈ CovRep(A, S, β)
}
.

Consider I = {x ∈ L̃: ‖x‖c = 0}. The crossed product of β is the C∗-algebra obtained by the completion of the quotient L̃/I
with respect to ‖.‖c .

We want to prove that the above definition is equivalent to Definition 4.3. The first step is to show that in the above
definition, we may take the L instead of L̃.

Lemma 5.4. Let E ⊆ F be linear spaces and let ‖.‖1 and ‖.‖2 be two norms over F such that there exists k > 0 such that, for all x ∈ F ,
‖x‖2 � k‖x‖1 . Suppose that E is dense in F with respect to ‖.‖1 . Then the completions of E and F with respect to ‖.‖2 are isomorphic.

Proof. For i = 1,2 denote Ei the completion of E with respect to ‖.‖i , and the same for F . The function T : (E,‖.‖2) → F 2,
that includes an element of E in F and then put them in F 2, is a linear isometry, and then is uniformly continuous. So we
may extend it to the isometry T̃ : E2 → F 2. Is easy to see that F ⊆ Ran(T̃ ).

Now, as T̃ is an isometry and E2 is complete, Ran(T̃ ) is complete with respect to ‖.‖2. Then, Ran(T̃ ) = F 2 and T̃ is an
isomorphism between E2 and F 2. �

So, consider L ⊆ L̃. In L̃ we have defined a norm

‖x‖a =
∑
s∈S

∥∥x(s)
∥∥,

and a seminorm

‖x‖c = sup
{∥∥(π × ν)(x)

∥∥: (π,ν, H) ∈ CovRep(A, S, β)
}
.

Note that we may take the completion of L̃ with respect to the seminorm ‖.‖c , and this is equal to the completion
of L̃/(ker‖.‖c) with respect to the norm ‖.‖c .

Also note that, for x ∈ L̃ and (π,ν, H) ∈ CovRep(A, S, β):

∥∥(π × ν)(x)
∥∥ =

∥∥∥∥∥ ∑
s∈S

π
(
x(s)

)
νs

∥∥∥∥∥ �
∑
s∈S

∥∥π(
x(s)

)
νs

∥∥ �
∑
s∈S

∥∥π(
x(s)

)∥∥‖νs‖

�
∑
s∈S

∥∥π(
x(s)

)∥∥ �
∑
s∈S

∥∥x(s)
∥∥ = ‖x‖a,

and then ‖x‖c = sup ‖(π ×ν)(x)‖ � ‖x‖a . As L̃ is the completion of L with respect to ‖.‖a it follows, by the previous lemma,
that in Sieben’s definition we may take L instead of L̃.



R. Exel, F. Vieira / J. Math. Anal. Appl. 363 (2010) 86–96 95
Observe that by the Cohen–Hewitt Factorization Theorem [3, Theorem 32.22], it is easy to show that span{π(I)H} =
π(I)H , for any closed ideal I of a C∗-algebra A.

So, if we show that

‖x‖c = ρs(x),

for all x ∈ L (remember that ρs(x) = sup{‖ρ(x)‖: ρ representation of A ×a
β S} is the seminorm used to define A ×β S), we

have proved that the two definitions of crossed product by an action of inverse semigroup are the same. To this, consider
the next theorem.

Theorem 5.5. Let ρ be a representation of L on the Hilbert space H. Then ρ|N ≡ 0 ⇔ ρ = π × ν for some (π,ν, H) ∈
CovRep(A, S, β).

Proof. (⇐) Let ρ = π × ν and take aδr − aδt a generator of N , that is, r = ti, for i idempotent. For a ∈ Er = Eit ⊆ Ei and
h ∈ H :

ρ(aδr − aδt)(h) = (π × ν)(aδr − aδt)(h) = π(a)νr(h) − π(a)νt(h)

= π(a)νit(h) − π(a)νt(h) = π(a)νiνt(h) − π(a)νt(h).

Denote Ki = π(Ei)H . Then H = Ki ⊕ (Ki)
⊥ , and let us split the proof in cases:

νt(h) ∈ Ki : As i is idempotent, it follows that it is the identity in Ki . So νi(νt(h)) = νt(h) and then:

π(a)νiνt(h) − π(a)νt(h) = π(a)νt(h) − π(a)νt(h) = 0.

νt(h) ∈ (Ki)
⊥: Note that π(Ei) ≡ 0 in (Ki)

⊥ and then:

π(a)νiνt(h) − π(a)νt(h) = 0.

So ρ(N) = 0.
(⇒) Suppose that ρ|N ≡ 0. So, for r � t and a ∈ Er , ρ(aδr) = ρ(aδt). Define

π : A → B(H), ν : S → B(H),

a 
→ ρ(aδe), s 
→ limλ ρ(uλδs), {uλ} approx. identity of Es,

where limλ denotes the strong operator limit.
Let us prove that (π,ν, H) ∈ CovRep(A, S, β). It is obvious that π is a representation.
To show that ν is well defined, let s ∈ S and consider {uλ} an approximate identity for Es . As βs∗ : Es → Es∗ is an

isomorphism, we know that {βs∗ (uλ)} is an approximate identity of Es∗ . As H = π(Es∗ )H ⊕ (π(Es∗ )H)⊥ , we will split the
proof. If h ∈ π(Es∗ )H , then h = π(a)k = ρ(aδe)k, for a ∈ Es∗ ,k ∈ H . So:

νs(h) = lim
λ

ρ(uλδs)(h) = lim
λ

ρ(uλδs)ρ(aδe)(k) = lim
λ

ρ
(
βs

(
βs∗(uλ)a

)
δs

)
(k) = ρ

(
βs(a)δs

)
(k).

If h ∈ (π(Es∗ )H)⊥ , we have that 〈h,ρ(Es∗δe)H〉 = 〈h,π(Es∗ )H〉 = 0. So:〈
ρ
(
βs∗(

√
uλ)δe

)
(h), H

〉 = 〈
h,ρ

(
βs∗(

√
uλ)δe

)
H

〉 = 0,

that implies ρ(βs∗ (
√

uλ)δe)(h) = 0. Then:

lim
λ

ρ(uλδs)(h) = lim
λ

ρ
[
βs

(
βs∗(

√
uλ)βs∗(

√
uλ)

)
δs

]
(h) = lim

λ
ρ
[
(
√

uλδs)
(
βs∗(

√
uλ)δe

)]
(h)

= lim
λ

ρ(
√

uλδs)ρ
(
βs∗(

√
uλ)δe

)
(h) = 0.

So νs is independent of the approximate identity taken. As ρ is contractive (Proposition 4.2):

‖νs‖ =
∥∥∥lim

λ
ρ(uλδs)

∥∥∥ = lim
λ

∥∥ρ(uλδs)
∥∥ � lim

λ
‖uλδs‖ � lim

λ
‖uλ‖ � 1,

and then νs ∈ B(H). So it is well defined.
To show that νs is a partial isometry (with initial space π(Es∗ )H and final π(Es)H), first let us show that ν∗

s = νs∗ . Let
{uλ} be an approximate identity of Es∗ . Then, for k1,k2 ∈ H :〈

k1, νs∗(k2)
〉 = 〈

k1, lim
λ

ρ(uλδs∗)(k2)
〉 = lim

λ

〈
k1,ρ(uλδs∗)(k2)

〉 = lim
λ

〈
ρ(uλδs∗)

∗(k1),k2
〉

=
〈
lim
λ

ρ
(
βs(uλ)δs

)
(k1),k2

〉
= 〈

νs(k1),k2
〉
.

So ν∗
s = νs∗ .
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Let us show that ν∗
s νs is a projection over π(Es∗ )H , because we already see that νs ≡ 0 in (π(Es∗ )H)⊥ . Then, let

h = π(a)k ∈ π(Es∗ )H and {uγ } be an approximate identity of Es∗ :

ν∗
s νs(h) = νs∗

(
ρ(βs(a)δs)(k)

) = lim
γ

ρ(uγ δs∗)ρ
(
βs(a)δs

)
(k)

= lim
γ

ρ
(
βs∗

(
βs(uγ )βs(a)

)
δs∗s

)
(k) = ρ(aδs∗s)(k)

= ρ(aδe)(k) = h,

because ρ|N = 0. Then νs is a partial isometry with initial space π(Es∗ )H . Doing the same to νsν
∗
s , we conclude that π(Es)H

is the final space of νs .
Let us split the proof that ν is a homomorphism in two cases. Firstly take h ∈ π(Et∗s∗ )H . Then h = ρ(aδe)(k), a ∈ Et∗s∗

and k ∈ H . Let {uλ} be an approximate identity of Es . Using the first part of the proof of that ν is well defined we have:

νsνt(h) = νsνt
(
ρ(aδe)(k)

) = νsρ
(
βt(a)δt

)
(k) = lim

λ
ρ(uλδs)ρ

(
βt(a)δt

)
(k)

= lim
λ

ρ
(
βs

(
βs∗(uλ)βt(a)

)
δst

)
(k) = lim

λ
ρ
(
uλβs

(
βt(a)

)
δst

)
(k)

= ρ
(
βst(a)δst

)
(k) = νst(h).

Now let h ∈ (π(Et∗s∗ )H)⊥ . We have that νst(h) = 0. Let us show that νsνt(h) = 0. Take {uλ} an approximate identity of Es
and {uγ } of Et . Well, βs(βs∗ (uλ)uγ ) ∈ βs(Es∗ ∩ Et) = Est and by the Cohen–Hewitt Factorization Theorem, βs(βs∗ (uλ)uγ ) =
xy, x, y ∈ Est . By hypothesis:〈

ρ
(
βt∗s∗(y)δe

)
(h), H

〉 = 〈
h,ρ

(
βt∗s∗(y)δe

)
H

〉 = 〈
h,π

(
βt∗s∗(y)

)
H

〉 = 0,

that implies ρ(βt∗s∗ (y)δe)(h) = 0. As

ρ
(
βs

(
βs∗(uλ)uγ

)
δst

)
(h) = ρ(xyδst)(h) = ρ(xδst)ρ

(
βt∗s∗(y)δe

)
(h) = 0,

taking {uλ} ⊂ Es and {uω} ⊂ Es∗ their approximate identities, it follows that:

νsνt(h) = lim
λ

ρ(uλδs) lim
ω

ρ(uωδt)(h) = lim
λ,ω

ρ
(
βs

(
βs∗(uλ)uω

)
δst

)
(h) = 0.

So νst = νsνt and ν is a homomorphism.
Finally, we need to prove the covariance condition, that is, that νsπ(a)νs∗ = π(βs(a)). Let a ∈ Es∗ and {uλ}, {uγ } be

approximate identities of Es . Then:

νsπ(a)νs∗ = lim
λ

ρ(uλδs)ρ(aδe) lim
γ

ρ
(
βs∗(uγ )δs∗

) = lim
λ,γ

ρ(uλδs)ρ
(
aβs∗(uγ )δs∗

)
= lim

λ,γ
ρ
(
βs

(
βs∗(uλ)aβs∗(uγ )

)
δss∗

) = lim
λ,γ

ρ
(
uλβs(a)uγ δss∗

)
= ρ

(
βs(a)δss∗

) = ρ
(
βs(a)δe

) = π
(
βs(a)

)
,

because ρ|N ≡ 0. �
By the previous theorem we have, for x ∈ L:

‖x‖c = sup
{∥∥(π × ν)(x)

∥∥: (π,ν, H) ∈ CovRep(A, S, β)
}

= sup
{∥∥ρ(x)

∥∥: ρ representation of L equals zero in N
}

= sup
{∥∥ρ(x)

∥∥: ρ representation of A ×a
β S

} = ρs(x).

So we conclude that:

Theorem 5.6. The definition of crossed product by an action of inverse semigroup in a C∗-algebra that we present is equivalent to that
introduced by Sieben in [5].
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