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For Ω ⊂ R
d open, we characterize when cosine operator functions generated by second

order partial differential operators on Lp(Ω,μ) and C0,ρ (Ω), respectively, are hypercyclic
and prove that this happens if and only if they are weakly mixing. In the case of d = 1
we give an easy to check characterization of when this happens. Moreover, mixing of these
cosine operator functions is also characterized.
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1. Introduction

A continuous linear operator T on a separable Banach space X is called hypercyclic if there is a hypercyclic vector x ∈ X
for T which means that {T nx; n ∈ N} is dense in X . There are a number of articles dealing with hypercyclic operators, for
a survey see e.g. [11,12].

Analogously, a family (T ι)ι∈I of continuous linear operators on X , is called hypercyclic if there exists an element x ∈ X
such that {T ιx; ι ∈ I} is dense in X . In this case x is again called hypercyclic vector for the family (T ι)ι∈I . Apart from single
operators, there are various results on hypercyclic C0-semigroups, see e.g. [8,2,5,4,6,13,14,1,7].

A notion closely related to hypercyclicity is that of transitivity. A family of continuous linear operators (T ι)ι∈I on a Banach
space X is called transitive if for each pair of non-empty, open subsets U , V of X there is ι ∈ I such that T −1

ι (U ) ∩ V �= ∅. It
was shown by Grosse-Erdmann that (T ι)ι∈I is transitive if and only if (T ι)ι∈I is hypercyclic and the set of hypercyclic vectors
is dense [10, Satz 1.2.2 and its proof]. Moreover, Peris proved that a commuting family of continuous linear operators (T ι)ι∈I

for which each T ι has dense range is hypercyclic if and only if the set of hypercyclic vectors is dense [11, Proposition 1].
In particular, an arbitrary commuting family of continuous linear operators (T ι)ι∈I for which each T ι has dense range is
hypercyclic if and only if it is transitive.

A family of continuous linear operators (T ι)ι∈I on a Banach space X is called weakly mixing if (T ι ⊕ T ι)ι∈I is transitive
on X ⊕ X . And finally, a family of continuous linear operators (Tt)t∈R is called mixing if for each pair of non-empty, open
subsets U , V of X there is t0 ∈ R such that T −1

t (U ) ∩ V �= ∅ for every t � t0.
A cosine operator function on a Banach space X is a strongly continuous mapping C from the real line into the space of

continuous linear operators on X satisfying C(0) = id and the d’Alembert functional equation 2C(t)C(s) = C(t + s)+ C(t − s)
for all s, t ∈ R. If T is a C0-group it is easily seen that C(t) := 1

2 (T (t) + T (−t)) defines a cosine operator function. The
generator of a cosine operator function is defined as A f := limt→0

2
t2 (C(t) f − f ) for f ∈ D(A), i.e. for those f for which the

limit exists. If T is a C0-group with generator (A, D(A)) then the cosine operator function defined by C(t) = 1
2 (T (t)+ T (−t))

has generator (A2, D(A2)).
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Transitive cosine operator functions on Banach spaces were first considered by Bonilla and Miana in [3]. Among other
things they gave a sufficient condition for the translation cosine function on L p

ρ(R) and C0,ρ(R), respectively, to be transitive
and characterized when it is mixing. Moreover, they showed that there is a topologically mixing cosine operator function
on any separable infinite dimensional Banach space.

The paper is organized as follows. In Section 2 we show that at least for cosine operator functions stemming from
strongly continuous groups hypercyclicity and transitivity are equivalent. In Section 3 we give sufficient conditions for
hypercyclicity of cosine operator functions generated by second order partial differential operators on space of integrable
functions and continuous functions, respectively. Moreover, we show that under some mild additional conditions these
sufficient conditions are also necessary and that then hypercyclicity is equivalent to weak mixing. Furthermore, mixing of the
same cosine operator functions is characterized as well. Since the given conditions might be difficult to check for concrete
examples we concentrate on the one-dimensional case in Section 4 and considerably simplify the conditions characterizing
hypercyclicity and mixing. Several examples are given to illustrate the given results.

2. A general observation

In this short section we show that for cosine operator functions defined via a C0-group hypercyclicity is indeed equivalent
to transitivity. We begin with a general proposition.

Proposition 1. Let T be a C0-group on the Banach space X and define C(t) := 1
2 (T (t) + T (−t)), t ∈ R. If the cosine operator function

C = (C(t))t∈R is hypercyclic then σp(T (t)∗) = ∅ for all t > 0, where σp(T (t)∗) denotes the point spectrum of the transpose of T (t).

Proof. Assume there is t0 > 0 such that σp(T (t0)
∗) �= ∅. Let (A, D(A)) be the generator of T . Since T (t0) is one-to-one and

onto it follows from the spectral mapping theorem for the residual spectrum (cf. [9, Theorems IV.3.7 and 3.8]), that there are
λ ∈ σp(A∗) and x′ ∈ X ′ \ {0} such that etλ ∈ σp(T (t)∗) and T (t)∗x′ = etλx′ for all t > 0. From this we get C(t)∗x′ = cosh(tλ)x′
for t > 0.

Let x be a hypercyclic vector for C . Then, since x′ �= 0 we get

K = {
x′(C(t)x

); t � 0
} = {

cosh(tλ)x′(x); t � 0
} = {

cosh(tλ); t � 0
}

x′(x)

giving a contradiction. �
Corollary 2. Let T be a C0-group on the Banach space X and let C(t) := 1

2 (T (t) + T (−t)), t ∈ R. If the cosine operator function
C = (C(t))t∈R is hypercyclic then the set of hypercyclic vectors for C is a dense Gδ-set in X. In particular, C is hypercyclic if and only if
C is transitive.

Proof. We have C(t) = 1
2 (T (2t) + id)T (−t). Because T (−t) is one-to-one and onto, C(t) has dense range if T (2t) + id has

dense range, i.e. if −1 /∈ σp(T (2t)∗) which is true by the above proposition. Since C(s)C(r) = C(r)C(s) for all r, s ∈ R it
follows from [11, Proposition 1] that the set of hypercyclic vectors for C is dense in X . From [3, Theorem 1.1] we obtain that
C is hypercyclic if and only if C is transitive. �
Remark 3. It seems to be still unknown whether for general cosine operator functions hypercyclicity and transitivity are
equivalent properties.

3. Characterizations of hypercyclicity and mixing in arbitrary dimensions

In this section we characterize when cosine operator functions generated by second order differential operators are
hypercyclic or mixing, respectively. Observe that by taking t = 0 in the d’Alembert equation we get C(s) = C(−s) for all
s ∈ R so that C is hypercyclic (mixing) if and only if (C(s))s�0 is hypercyclic (mixing).

We consider an open subset Ω of R
d and a locally Lipschitz continuous vector field F on Ω such that for every x0 ∈ Ω

the unique solution ϕ(·, x0) of the initial value problem

ẋ = F (x), x(0) = x0

is defined on R. Moreover, let h : Ω → R be a continuous function.
We call a locally finite Borel measure μ on Ω p-admissible for F and h, if T (t) f (x) := exp(

∫ t
0 h(ϕ(r, x))dr) f (ϕ(t, x)),

t ∈ R, defines a C0-group on L p(μ), where p ∈ [1,∞).
For t ∈ R we define the Borel measures νp,t(B) := ∫

ϕ(−t,B)
hp

t dμ, where ht(x) := exp(
∫ t

0 h(ϕ(r, x))dr) for t ∈ R. Note that

these are well defined since ϕ(t, ·) is a homeomorphism of Ω with ϕ(t, ·)−1(B) = ϕ(−t, B) for each t ∈ R and B ⊂ Ω Borel
measurable.

Moreover, a function ρ : Ω → (0,∞) is called C0-admissible for F and h, if T (t) defined as above gives a C0-group on
C0,ρ(Ω), where

C0,ρ(Ω) := {
f ∈ C(Ω); ∀ε > 0:

{
x ∈ Ω; ∣∣ f (x)

∣∣ρ(x) � ε
}

is compact
}
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is equipped with the norm ‖ f ‖ := supx∈Ω | f (x)|ρ(x). Since Ω is locally compact and μ is locally finite the subspace Cc(Ω)

of compactly supported continuous functions is dense in L p(μ). The same obviously holds for C0,ρ(Ω).
As [13, Theorem 4.7, Proposition 4.12, Remark 3.10 and the remark following Theorem 4.11] one proofs the following

theorem which we give only for completeness’ sake. Observe that by our hypotheses we have ϕ(t,Ω) = Ω for all t ∈ R

and that {ht(x)ρ(x) � δ} ∩ ϕ(−t, K ), δ > 0, is always compact if ρ is upper semicontinuous. Recall that x �→ ϕ(t, x) is
continuously differentiable if F is continuously differentiable. In case of existence we denote the Jacobian of x �→ ϕ(t, x) by
Dϕ(t, x).

Theorem 4. Let μ be a locally finite Borel measure on Ω and let F and h be as above.

a) The following are equivalent.
i) μ is p-admissible for F and h.

ii) νp,t has a μ-density gp,t ∈ L∞(μ) and there are constants M � 1,ω ∈ R such that ‖gp,t‖∞ � Meω|t| for all t ∈ R.
b) Assume that μ has a positive Lebesgue density ρ . If F is continuously differentiable the following are equivalent.

i) μ is p-admissible for F and h.
ii) There are M � 1, ω ∈ R such that for t ∈ R and λd-almost all x ∈ Ω

hp
t (x)ρ(x) � Meω|t|ρ

(
ϕ(t, x)

)∣∣det Dϕ(t, x)
∣∣,

where λd denotes d-dimensional Lebesgue measure.
c) Let μ be p-admissible for F and h and assume that μ has a positive Lebesgue density ρ . If F is differentiable a μ-density of νp,t ,

resp. νp,−t , is given by

ρ(ϕ(−t, ·))|det Dϕ(−t, ·)|
ρhp

−t

,

resp.

ρ(ϕ(t, ·))|det Dϕ(t, ·)|
ρhp

t

.

d) Let ρ : Ω → (0,∞). Then i) implies ii).
i) ρ is C0-admissible for F and h.

ii) There are constants M � 1 and ω ∈ R such that for all t ∈ R and x ∈ Ω

ht(x)ρ(x) � Meω|t|ρ
(
ϕ(t, x)

)
.

Moreover, if ρ is upper semicontinuous the above are equivalent.
e) Let F and h be twice continuously differentiable, μ be p-admissible, and ρ C0-admissible for F and h. Let X be either L p(μ) or

C0,ρ(Ω). The generator of the cosine operator function on X defined via

(
C(t) f

)
(x) = 1

2

(
ht(x) f

(
ϕ(t, x)

) + h−t(x) f
(
ϕ(−t, x)

))
is given by the closure of the operator

C2
c (Ω) → X,

f �→
d∑

j,k=1

F j Fk∂ j∂k f +
d∑

j=1

(
2hF j +

d∑
k=1

Fk∂k F j

)
∂ j f +

(
h2 +

d∑
j=1

F j∂ jh

)
f .

In particular, if F ≡ a ∈ R
d and h ≡ α ∈ R it follows that for a p-admissible measure μ, respectively a C0-admissible ρ ,

the generator of the cosine operator function under consideration is the closure of the operator

C2
c (Ω) → X, f �→ 〈

a,∇2 f a
〉 + 2α〈a,∇ f 〉 + α2 f ,

where ∇2 denotes the Hessian of f .

Theorem 5. Let μ be p-admissible for F and h. For the cosine operator function C(t) := 1
2 (T (t) + T (−t)) with T (t) f (x) =

ht(x) f (ϕ(t, x)), among the following, i) implies ii) and ii) implies iii).

i) For each compact subset K of Ω there are sequences (L+
n )n∈N and (L−

n )n∈N of Borel subsets of K and a sequence (tn)n∈N of positive
numbers such that for Ln := L+

n ∪ L−
n one has

lim μ(K \ Ln) = lim νp,tn (Ln) = lim νp,−tn (Ln) = 0

n→∞ n→∞ n→∞



366 T. Kalmes / J. Math. Anal. Appl. 365 (2010) 363–375
and

lim
n→∞νp,2tn

(
L+

n

) = lim
n→∞νp,−2tn

(
L−

n

) = 0.

ii) C is weakly mixing on L p(μ).
iii) C is hypercyclic on L p(μ).

Moreover, if for every compact subset K of Ω one has lim|t|→∞ μ(K ∩ ϕ(t, K )) = 0 the above are equivalent.

Proof. In order to show that i) implies ii) let U j, V j, j = 1,2, be open, non-empty subsets of L p(μ) and f j ∈ U j ∩ Cc(Ω),
g j ∈ V j ∩ Cc(Ω), j = 1,2. Then K := supp f1 ∪ supp f2 ∪ supp g1 ∪ supp g2 is compact. Choose (L+

n )n∈N , (L−
n )n∈N and (tn)n∈N

as in i) for K . We can assume without loss of generality that L+
n ∩ L−

n = ∅.
Setting for n ∈ N, j = 1,2

v j,n := htn (·)g j
(
ϕ(tn, ·)

)
χL+

n

(
ϕ(tn, ·)

) + h−tn(·)g j
(
ϕ(−tn, ·)

)
χL−

n

(
ϕ(−tn, ·)

)
it follows from

‖v j,n‖ �
(∫

hp
tn

∣∣g j
(
ϕ(tn, ·)

)∣∣p
χϕ(−tn,L+

n ) dμ

)1/p

+
(∫

hp
−tn

∣∣g j
(
ϕ(−tn, ·)

)∣∣p
χϕ(tn,L−

n ) dμ

)1/p

� ‖g j‖∞
(
νp,tn

(
L+

n

)1/p + νp,−tn

(
L−

n

)1/p)
(where by ‖ · ‖∞ we denote the sup-norm) that ( f jχLn + v j,n)n∈N converges to f j in L p(μ).

Moreover,

C(tn)( f jχLn + v j,n) = g jχLn + 1

2

(
htn (·) f j

(
ϕ(tn, ·)

)
χϕ(−tn,Ln) + h−tn(·) f j

(
ϕ(−tn, ·)

)
χϕ(tn,Ln)

+ h2tn(·)g j
(
ϕ(2tn, ·)

)
χϕ(−2tn,L+

n ) + h−2tn(·)g j
(
ϕ(−2tn, ·)

)
χϕ(2tn,L−

n )

)
,

so that

∥∥C(tn)( f jχLn + v j,n) − g j
∥∥ � ‖g j‖∞μ(K \ Ln)

1/p + ‖ f j‖∞
2

(
νp,tn

(
L+

n

)1/p + νp,−tn

(
L−

n

)1/p)
+ ‖g j‖∞

2

(
νp,2tn

(
L+

n

)1/p + νp,−2tn

(
L−

n

)1/p)
.

Hence, (C(tn)( f jχLn + v j,n) − g j)n∈N converges to g j in L p(μ) which shows that C(tn)(U j) ∩ V j �= ∅ for j = 1,2 and suffi-
ciently large n, i.e. C is weakly mixing.

Obviously, ii) implies iii).
Now, assume that lim|t|→∞ μ(K ∩ ϕ(t, K )) = 0 for every compact subset K of Ω . In order to show that iii) im-

plies i) let K be a compact subset of Ω and ε ∈ (0,1). By Corollary 2 there are v ∈ L p(μ) and t > 0 such that
‖v − χK ‖p < ε2 and ‖C(t)v + χK ‖p < ε2 and without loss of generality we can assume that μ(K ∩ ϕ(2t, K )) < ε2 as
well as μ(K ∩ ϕ(−2t, K )) < ε2.

By the continuity of the mapping L p(μ,C) → L p(μ,R), f �→ Re f and the fact that C commutes with it, we can assume
without loss of generality that v is real-valued.

Furthermore, for measurable subsets B ⊆ Ω we have ‖C(t)( f χB)‖ � ‖C(t) f ‖ for arbitrary t ∈ R and all f ∈ L p(μ).
Obviously the mapping L p(μ,R) → L p(μ,R), f �→ f + , where f + := max{0, f }, satisfies ‖( f + g)+‖ � ‖ f + + g+‖ and
commutes with C so that for measurable A ⊂ Ω

∥∥(
C(t)

(
v+χB

))
χA

∥∥ �
∥∥(

C(t)v
)+∥∥ = ∥∥(

C(t)v − (−χK ) + (−χK )
)+∥∥ �

∥∥(
C(t)v − (−χK )

)+∥∥ + ∥∥(−χK )+
∥∥

= ∥∥(
C(t)v − (−χK )

)+∥∥ �
∥∥C(t)v + χK

∥∥ < ε2/p

and ‖v − χK ‖p < ε2 implies

∥∥v−χB
∥∥ �

∥∥v−∥∥ = ∥∥(−v)+
∥∥ = ∥∥(χK − v − χK )+

∥∥ � ‖χK − v‖ + ∥∥(−χK )+
∥∥ = ‖χK − v‖ < ε2/p,

where v− := max{0,−v}.
Setting L := K ∩ {|1 − v|p � ε} ∩ {|1 + C(t)v|p � ε} it follows that μ(K \ L) < 2ε as well as v |L � 1 − ε1/p > 0 and

(C(t)v)|L � ε1/p − 1 < 0.
Now, define L− := {x ∈ L; (T (t)v)(x) � ε1/p − 1} and L+ := L \ L− .
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Using the fact that
∫

f dνp,t = ∫
hp

t (·) f (ϕ(t, ·))dμ for positive, measurable f we obtain

ε2 >
∥∥C(t)

(
v+χL

)∥∥p �
∫

hp
t v+(

ϕ(t, ·))p
χL

(
ϕ(t, ·))dμ +

∫
hp

−t(·)v+(
ϕ(−t, ·))p

χL
(
ϕ(−t, ·))dμ

=
∫
L

(
v+)p

dνp,t +
∫
L

(
v+)p

dνp,−t �
(
1 − ε1/p)p(

νp,t(L) + νp,−t(L)
)
,

so that the first part of condition i) follows, since ε was arbitrary.
By definition of L− we have (T (t)v)(x) � ε1/p − 1 for x ∈ L− and it follows from (C(t)v)|L � ε1/p − 1 that (T (−t)v)(x) �

ε1/p − 1 for x ∈ L+ . These inequalities give 1 − ε1/p � (T (t)v−)|L− which implies by bijectivity of ϕ(−t, ·) and ht(ϕ(−t, ·)) =
1/h−t that

1 − ε1/p �
(
T (t)v−)(

ϕ(−t, x)
) = h−t

(
ϕ(−t, x)

)
v−(x) = v−(x)/h−t(x)

for x ∈ ϕ(t, L−). Analogously it follows that v−(x)/ht(x) � 1 − ε1/p for x ∈ ϕ(−t, L+).
Using this, hr(x)hs(ϕ(r, x)) = hr+s(x) for all r, s ∈ R, and the positivity of the operator T (−t) we have(

1 − ε1/p)p
νp,2t

(
L+) =

∫ (
1 − ε1/p)p

hp
2t(x)χL+

(
ϕ(2t, x)

)
dμ(x)

=
∫ (

1 − ε1/p)p
hp

t (x)ht
(
ϕ(t, x)

)p
χϕ(−t,L+)

(
ϕ(t, x)

)
dμ(x)

=
∫ (

1 − ε1/p)p
hp

t (x)χϕ(−t,L+)(x)dνp,t(x) �
∫ (

v−)p
(x)/hp

t (x)hp
t (x)χϕ(−t,L+)(x)dνp,t(x)

=
∫

hp
t (x)

(
v−(

ϕ(t, x)
))p

χϕ(−t,L+)

(
ϕ(t, x)

)
dμ(x)

=
∫

ϕ(−2t,L+)

(
T (t)v−)p

(x)dμ(x) � 2p+1
∫

ϕ(−2t,L+)

(
C(t)v−)p

(x)dμ(x)

= 2p+1
∥∥(

C(t)v−)
χϕ(−2t,L+)

∥∥p

= 2p+1
∥∥(

C(t)
(

v+ − v
))

χϕ(−2t,L+)

∥∥p

= 2p+1
∥∥(

C(t)v+)
χϕ(−2t,L+) − (

C(t)v + χK
)
χϕ(−2t,L+) + χK∩ϕ(−2t,L+)

∥∥p

� 2p+1(2p
∥∥C(t)v+∥∥p + 2p

∥∥C(t)v + χK
∥∥p + 2p‖χK∩ϕ(−2t,L+)‖p)

� 23p+1(2ε2 + μ
(

K ∩ ϕ(−2t, K )
))

< 23(p+1)ε2.

In the same way one shows(
1 − ε1/p)p

νp,−2t
(
L−)

< 23(p+1)ε2,

so that the second part of condition i) follows as well. �
Remark 6. Note that in the above proof we did not need neither the strong continuity of t �→ T (t) nor the semigroup law
T (t)T (s) = T (t + s).

In fact, we only need μ to be a locally finite Borel measure on a locally compact, σ -compact Hausdorff space Ω such that
T (t) f = ht(·) f (ϕt(·)) is a continuous operator for every t from some index set, where ht is a positive continuous function on
Ω and ϕt a homeomorphism of Ω . For example, one could equip Ω = Z with the discrete topology and a measure μ with
a positive counting density (βn)n∈Z on Z, define ϕt(n) = n + t , n ∈ Z, for all t ∈ Z. Then T (t)(xn)n∈Z = (xn+t)n∈Z . Obviously,
T := T (1) is a well-defined operator on �p(β) if and only if supn∈Z βn/βn+1 < ∞. An analogue of the above theorem then
reads that under the assumption of supn∈Z βn/βn+1 < ∞ the sequence of operators (T n + T −n)n∈N is hypercyclic on �p(Z, β)

if and only if for each finite subset K of Z there are a strictly increasing sequence (nl)l∈N of natural numbers and a sequence
(σl)l∈N in {−1,1} such that

lim
l→∞

∑
k∈K

βk+nl = lim
l→∞

∑
k∈K

βk−nl = lim
l→∞

∑
k∈K

βk+2σlnl = 0.

From supn∈Z βn/βn+1 < ∞ it is easily deduced that the last condition is equivalent to that for every k ∈ Z there are a strictly
increasing sequence (nl)l∈N of natural numbers and a sequence (σl)l∈N in {−1,1} such that

lim
l→∞

βk+nl = lim
l→∞

βk−nl = lim
l→∞

βk+2σlnl = 0

(compare [13, Example 2.7]).
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An obvious modification of the proof of Theorem 5 gives the following result.

Theorem 7. Let μ be p-admissible for F and h. For the cosine function C defined by C(t) := 1
2 (T (t) + T (−t)) with T (t) f (x) =

ht(x) f (ϕ(t, x)), the following condition i) implies ii).

i) For each compact subset K of Ω there are families (L+
t )t�0 and (L−

t )t�0 of Borel subsets of K such that with Lt := L+
t ∪ L−

t

lim
t→∞μ(K \ Lt) = lim

t→∞νp,t(Lt) = lim
t→∞νp,−t(Lt) = 0

and

lim
t→∞νp,2t

(
L+

t

) = lim
t→∞νp,−2t

(
L−

t

) = 0.

ii) C is mixing on L p(μ).

If additionally lim|t|→∞ μ(K ∩ ϕ(t, K )) = 0 for all compact subsets K of Ω the above are equivalent.

Corollary 8. Let μ be p-admissible for F and h such that lim|t|→∞ μ(K ∩ ϕ(t, K )) = 0 for every compact subset K of Ω .

a) If the cosine operator function C defined by C(t) := 1
2 (T (t) + T (−t)) with T (t) f (x) = ht(x) f (ϕ(t, x)) is hypercyclic on L p(μ)

then the C0-semigroup (T (t))t�0 is hypercyclic, too.
b) If the cosine operator function C defined by C(t) := 1

2 (T (t) + T (−t)) with T (t) f (x) = ht(x) f (ϕ(t, x)) is mixing on L p(μ) then
the C0-semigroup (T (t))t�0 is mixing, too.

Proof. From hypercyclicity, resp. mixing, of C it follows from Theorem 5, resp. Theorem 7, that

lim
n→∞μ(K \ Ln) = lim

n→∞νp,tn (Ln) = lim
t→∞νp,−tn (Ln) = 0

for suitable (tn)n∈N and (Ln)n∈N , resp.

lim
t→∞μ(K \ Lt) = lim

t→∞νp,t(Lt) = lim
t→∞νp,−t(Lt) = 0

for suitable (Lt)t�0. Applying [13, Theorem 4.10], resp. [13, Theorem 5.1a)], now gives the corollary. �
For the case of continuous functions one has the following result.

Theorem 9. Let ρ be a C0-admissible function for F and h on Ω . For the cosine operator function C defined by C(t) := 1
2 (T (t)+T (−t))

with T (t) f (x) = ht(x) f (ϕ(t, x)), among the following i) implies ii) and ii) implies iii).

i) For every compact subset K of Ω there are sequences of positive numbers (tn)n∈N and open subsets (U+
n )n∈N, (U−

n )n∈N of Ω with
K ⊂ U+

n ∪ U−
n for every n ∈ N such that

lim
n→∞ sup

x∈K

ρ(ϕ(−tn, x))

h−tn(x)
= lim

n→∞ sup
x∈K

ρ(ϕ(tn, x))

htn(x)
= 0

as well as

lim
n→∞ sup

x∈K∩U−
n

ρ(ϕ(−2tn, x))

h−2tn(x)
= lim

n→∞ sup
x∈K∩U+

n

ρ(ϕ(2tn, x))

h2tn(x)
= 0.

ii) C is weakly mixing on C0,ρ(Ω).
iii) C is hypercyclic on C0,ρ(Ω).

Moreover, if for every compact subset K of Ω lim|t|→∞ supx∈K∩ϕ(t,K ) ρ(x) = 0 and infx∈K ρ(x) > 0 hold, the above are equivalent.

Proof. In order to show that i) implies ii) let W j, V j ⊂ C0,ρ(Ω) be open and non-empty, j = 1,2. Let f j ∈ W j ∩ Cc(Ω),
g j ∈ V j ∩ Cc(Ω), j = 1,2, and define K := supp f1 ∪ supp f2 ∪ supp g1 ∪ supp g2. Choose (U+

n )n∈N, (U−
n )n∈N , and (tn)n∈N as

in i) for K . Since K ⊂ U+
n ∪ U−

n there are C∞-functions ψ+
n � 0 and ψ−

n � 0 such that suppψ+
n ⊂ U+

n , suppψ−
n ⊂ U−

n and
ψ+

n + ψ−
n ≡ 2 in a neighbourhood of K .

We define for n ∈ N and j = 1,2

v j,n := htn (·)g j
(
ϕ(tn, ·)

)
ψ−

n

(
ϕ(tn, ·)

) + h−tn (·)g j
(
ϕ(−tn, ·)

)
ψ+

n

(
ϕ(−tn, ·)

)
.
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Then, v j,n ∈ C0,ρ(Ω) and taking into account that ψ+
n + ψ−

n ≡ 2 in a neighbourhood of K , a straightforward calculation
gives

C(tn)v j,n = 1

2

(
h2tn(·)g j

(
ϕ(2tn, ·)

)
ψ−

n

(
ϕ(2tn, ·)

) + h−2tn(·)g j
(
ϕ(−2tn, ·)

)
ψ+

n

(
ϕ(−2tn, ·)

)) + g j.

Since h2tn (ϕ(2tn, x)) = 1/h−2tn (x) it follows that

sup
x∈Ω

h2tn(x)
∣∣g j

(
ϕ(2tn, x)

)∣∣ψ−
n

(
ϕ(2tn, x)

)
ρ(x) = sup

x∈ϕ(−2tn,K )

h2tn(x)
∣∣g j

(
ϕ(2tn, x)

)∣∣ψ−
n

(
ϕ(2tn, x)

)
ρ(x)

= sup
x∈K

h2tn

(
ϕ(−2tn, x)

)∣∣g j(x)
∣∣ψ−

n (x)ρ
(
ϕ(−2tn, x)

)
� 2‖g j‖∞ sup

x∈K∩U−
n

ρ(ϕ(−2tn, x))

h−2tn(x)

and analogously

sup
x∈Ω

h−2tn(x)
∣∣g j

(
ϕ(−2tn, x)

)∣∣ψ+
n

(
ϕ(−2tn, x)

)
ρ(x) � 2‖g j‖∞ sup

x∈K∩U+
n

ρ(ϕ(2tn, x))

h2tn(x)
,

which implies limn→∞ C(tn)v j,n = g j in C0,ρ(Ω).
In the same way one shows that limn→∞ v j,n = 0 in C0,ρ(Ω).
Because

sup
x∈Ω

∣∣htn(x) f j
(
ϕ(tn, x)

) + h−tn(x) f j
(
ϕ(−tn, x)

)∣∣ρ(x)

� sup
x∈ϕ(−tn,K )

htn (x)
∣∣ f j

(
ϕ(tn, x)

)∣∣ρ(x) + sup
x∈ϕ(tn,K )

h−tn (x)
∣∣ f j

(
ϕ(−tn, x)

)∣∣ρ(x)

� ‖ f j‖∞
(

sup
x∈K

ρ(ϕ(−tn, x))

htn (x)
+ sup

x∈K

ρ(ϕ(tn, x))

htn (x)

)
we have limn→∞ C(tn) f j = 0 in C0,ρ(Ω).

Altogether this gives

lim
n→∞( f j + v j,n) = f j

and

lim
n→∞ C(tn)( f j + v j,n) = g j, j = 1,2,

so that C(tn)(W j) ∩ V j �= ∅ for j = 1,2 and sufficiently large n so that ii) follows.
Trivially, ii) implies iii).
Now we assume that lim|t|→∞ supx∈K∩ϕ(t,K ) ρ(x) = 0 and infx∈K ρ(x) > 0 hold for every compact subset K of Ω . In order

to prove that iii) implies i) let K be a compact subset of Ω and ε ∈ (0, infx∈K ρ(x)). Let f ∈ Cc(Ω) be such that 0 � f � 1
and f ≡ 1 in a neighbourhood of K .

By Corollary 2 there are t > 0, v ∈ C0,ρ(Ω) with ‖v − f ‖ < ε and ‖C(t)v + f ‖ < ε. Without loss of generality we can
assume that

sup
x∈M∩ϕ(2t,M)

ρ(x) + sup
x∈M∩ϕ(−2t,M)

ρ(x) < ε,

where M := supp f .
As in the proof of Theorem 5 we can assume v to be real-valued and we obtain ‖C(t)v+‖ < ε and ‖v−‖ < ε.
Because of

ε >
∥∥C(t)v + f

∥∥ � sup
x∈K

∣∣C(t)v + 1
∣∣ρ(x)

and the choice of ε we get

∀x ∈ K : C(t)v(x) <
ε

ρ(x)
− 1 < −1

2
.

In the same way one derives from ε > ‖v − f ‖ that

∀x ∈ K : v(x) > 1 − ε

ρ(x)
>

1

2
,

i.e. v+ > 1/2 on K .
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From this we obtain

ε >
∥∥C(t)v+∥∥ = 1

2
sup
x∈Ω

(
ht(x)v+(

ϕ(t, x)
) + h−t(x)v+(

ϕ(−t, x)
))

ρ(x)

� 1

4

(
sup

x∈ϕ(−t,K )

ht(x)v+(
ϕ(t, x)

)
ρ(x) + sup

x∈ϕ(t,K )

h−t(x)v+(
ϕ(−t, x)

)
ρ(x)

)

� 1

8

(
sup
x∈K

ρ(ϕ(−t, x))

h−t(x)
+ sup

x∈K

ρ(ϕ(t, x))

ht(x)

)
.

Since T (t)v and T (−t)v are continuous functions it follows that the sets U+ := {x ∈ Ω; (T (t)v)(x) < −1/4} and U− :=
{x ∈ Ω; (T (−t)v)(x) < −1/4} are open and because of C(t)v < −1/2 on K we have K ⊂ U+ ∪ U− .

Because of ϕ(t, ·) and ϕ(−t, ·) are one-to-one and onto we obtain

∀x ∈ ϕ
(
t, U+)

:
1

2
�

(
T (t)v−)(

ϕ(−t, x)
) = v−(x)

h−t(x)

and

∀x ∈ ϕ
(−t, U−)

:
1

2
�

(
T (−t)v−)(

ϕ(t, x)
) = v−(x)

ht(x)
.

Having in mind that ht(x)h−t(ϕ(t, x)) = 1 for every x ∈ Ω we get

1

2
sup

x∈K∩U−

ρ(ϕ(−2t, x))

h−2t(x)

= 1

2
sup

x∈ϕ(−t,K∩U−)

ρ(ϕ(−t, x))

h−2t(ϕ(t, x))
� sup

x∈ϕ(−t,K∩U−)

v−(x)ρ(ϕ(−t, x))

ht(x)h−2t(ϕ(t, x))

= sup
x∈ϕ(−t,K∩U−)

ht(ϕ(−t, x))v−(ϕ(t,ϕ(−t, x)))

ht(ϕ(−t, x))h−t(ϕ(t,ϕ(−t, x)))
ρ
(
ϕ(−t, x)

)
= sup

x∈ϕ(−t,K∩U−)

(
T (t)v−)(

ϕ(−t, x)
)
ρ
(
ϕ(−t, x)

)
= sup

x∈ϕ(−2t,K∩U−)

(
T (t)v−)

(x)ρ(x) � 2 sup
x∈ϕ(−2t,K∩U−)

(
C(t)v−)

(x)ρ(x)

= 2 sup
x∈ϕ(−2t,K∩U−)

(
C(t)

(
v+ − v

))
(x)ρ(x)

� 2
(

sup
x∈ϕ(−2t,K∩U−)

(
C(t)v+)

(x)ρ(x) + sup
x∈ϕ(−2t,K∩U−)

∣∣(C(t)v
)
(x) + f (x)

∣∣ρ(x) + sup
x∈ϕ(−2t,K∩U−)

∣∣ f (x)
∣∣ρ(x)

)

� 2
(∥∥C(t)v+∥∥ + ∥∥C(t)v + f

∥∥ + sup
x∈ϕ(−2t,M)∩M

ρ(x)
)

� 6ε.

In the same way one verifies

1

2
sup

x∈K∩U+

ρ(ϕ(2t, x))

h2t(x)
< 6ε.

Since ε was chosen arbitrarily small, i) finally follows. �
Obvious modifications of the above proof yield the next result.

Theorem 10. Let ρ be a C0-admissible function for F and h on Ω . For the cosine operator function C(t) := 1
2 (T (t) + T (−t)) with

T (t) f (x) = ht(x) f (ϕ(t, x)), the following condition i) implies ii).

i) For every compact subset K of Ω there are open subsets (U+
t )t�0, (U−

t )t�0 of Ω with K ⊂ U+
t ∪ U−

t for every t � 0 such that

lim
t→∞ sup

x∈K

ρ(ϕ(−t, x))

h−t(x)
= lim

t→∞ sup
x∈K

ρ(ϕ(t, x))

ht(x)
= 0

as well as
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lim
t→∞ sup

x∈K∩U−
t

ρ(ϕ(−2t, x))

h−2t(x)
= lim

t→∞ sup
x∈K∩U+

t

ρ(ϕ(2t, x))

h2t(x)
= 0.

ii) C is mixing on C0,ρ(Ω).

Moreover, if for every compact subset K of Ω lim|t|→∞ supx∈K∩ϕ(t,K ) ρ(x) = 0 and infx∈K ρ(x) > 0 hold, the above are equivalent.

4. The one-dimensional case

In case of d = 1, that is Ω ⊂ R, we can considerably simplify the conditions characterizing hypercyclicity, resp. mixing,
derived in the previous section. One tool for this will be the next lemma. For a proof see [14, Lemma 7]. In this section we
simply write ∂2ϕ(t, x) for the Jacobian of x �→ ϕ(t, x).

Lemma 11. Let Ω ⊂ R be open and [a,b] ⊂ {F �= 0}. Assume that ρ : Ω → (0,∞) is measurable and satisfies hp
t (x)ρ(x) �

Meωtρ(ϕ(t, x))|∂2ϕ(t, x)| for some constants M � 1,ω � 0 and for every t � 0, x ∈ [a,b].
Then there is C > 0 such that 1/C < ρ(y) < C for all y ∈ [a,b] and

hp
t

(
ϕ(−t, c)

)
ρ
(
ϕ(−t, c)

)∣∣∂2ϕ(−t, c)
∣∣χϕ(t,Ω)

(c) � Chp
t

(
ϕ(−t, y)

)
ρ
(
ϕ(−t, y)

)∣∣∂2ϕ(−t, y)
∣∣χϕ(t,Ω)

(y)

� C2hp
t

(
ϕ(−t,d)

)
ρ
(
ϕ(−t,d)

)∣∣∂2ϕ(−t,d)
∣∣χϕ(t,Ω)

(d)

as well as

h−p
t (c)ρ

(
ϕ(t, c)

)∣∣∂2ϕ(t, c)
∣∣ � Ch−p

t (y)ρ
(
ϕ(t, y)

)∣∣∂2ϕ(t, y)
∣∣ � C2h−p

t (d)ρ
(
ϕ(t,d)

)∣∣∂2ϕ(t,d)
∣∣

for all t � 0, where c := a, d := b if F |[a,b] > 0, respectively c := b, d := a if F |[a,b] < 0.

Now we come to a characterization of hypercyclicity on L p(μ) which is more applicable in concrete situations than the
one given by Theorem 5. Recall that λm denotes m-dimensional Lebesgue measure.

Theorem 12. Let Ω ⊂ R be open and F continuously differentiable. Assume the locally finite p-admissible measure μ has a positive
Lebesgue density ρ . Then the following are equivalent.

i) The cosine operator function C defined via

(
C(t) f

)
(x) = 1

2

(
ht(x) f

(
ϕ(t, x)

) + h−t(x) f
(
ϕ(−t, x)

))
is weakly mixing on L p(μ).

ii) The cosine operator function C is hypercyclic on L p(μ).
iii) λ1({F = 0}) = 0 and for every m ∈ N for which there are m different components Ω1, . . . ,Ωm of Ω \ {F = 0}, for λm-almost all

choices of x j ∈ Ω j , j = 1, . . . ,m, there are a sequence of positive numbers (tn)n∈N tending to infinity and a sequence (σn)n∈N ∈
{1,−1}N such that

lim
n→∞ h−p

tn
(x j)ρ

(
ϕ(tn, x j)

)
∂2ϕ(tn, x j) = 0,

lim
n→∞ h−p

−tn
(x j)ρ

(
ϕ(−tn, x j)

)
∂2ϕ(−tn, x j) = 0,

and

lim
n→∞ h−p

2σntn
(x j)ρ

(
ϕ(2σntn, x j)

)
∂2ϕ(2σntn, x j) = 0

for j = 1, . . . ,m.

Proof. That i) implies ii) is again trivial. In order to show that ii) implies iii) observe that ϕ(t, x) = x if F (x) = 0 so that
ht(x) f (ϕ(t, x)) = exp(th(x)) f (x) for every f ∈ L p(μ) on {F = 0}. From this it follows easily that C cannot be hypercyclic if
λ1({F = 0}) > 0. Hence, L p(μ) = L p(Ω \ {F = 0},μ). Because of ϕ(t,Ω \ {F = 0}) ⊂ Ω \ {F = 0} we can therefore consider
C on L p(Ω \ {F = 0},μ) rather than on L p(μ). Obviously, C is hypercyclic on L p(Ω \ {F = 0},μ) by ii). But for a compact
subset of Ω \ {F = 0} we obviously have K ∩ ϕ(t, K ) = ∅ for |t| large enough, in particular lim|t|→∞ μ(K ∩ ϕ(t, K )) = 0.

Let x1, . . . , xm be from different components of Ω \ {F = 0} which, by Theorem 4b), we assume without loss of generality
to satisfy

ht(x j)ρ(x j) � Meωtρ
(
ϕ(t, x j)

)∣∣∂2ϕ(t, x j)
∣∣
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for all t � 0, j = 1, . . . ,m. Since Ω is open there is r < 0 such that ϕ(t, x j) is well defined for all t ∈ [r,∞), j = 1, . . . ,m and
the aforementioned inequality is valid for ϕ(r, x j) in place of x j , too. For j = 1, . . . ,m we define K j := {ϕ(t, x j); 0 � t � 1} if
F (x j) > 0, respectively K j := {ϕ(t, x j); r � t � 0} if F (x j) < 0. Then the K j ’s are compact intervals contained in Ω \ {F = 0}
satisfying λ(K j) > 0, since F (x j) �= 0, and K j = [x j,ϕ(1, x j)] if F (x j) > 0, respectively K j = [x j,ϕ(r, x j)] if F (x j) < 0. In
particular μ(K j) > 0.

For the compact set K := ⋃
1� j�m K j choose measurable subsets (L+

n )n∈N , (L−
n )n∈N and a sequence of positive numbers

(tn)n∈N according to i) of Theorem 5. Without loss of generality we can assume that L+
n ∩ L−

n = ∅ for all n ∈ N. Set Ln :=
L+

n ∪ L−
n .

Since C is weakly mixing, it follows from Theorem 4b) that ω > 0, because otherwise {‖T (t)‖; t ∈ R} was bounded,
implying the boundedness of each orbit under C . Defining Ln := L+

n ∪ L−
n and Ln, j := Ln ∩ K j , n ∈ N, 1 � j � m, we obtain

from Theorem 4c) and Lemma 11 that for some constant C j > 0

νp,−tn (Ln, j) =
∫

Ln, j

h−p
tn

(y)ρ(ϕ(tn, y))|∂2ϕ(tn, y)|
ρ(y)

dμ(y) � C jh
−p
tn

(x j)ρ
(
ϕ(tn, x j)

)∣∣∂2ϕ(tn, x j)
∣∣μ(Ln, j).

Because limn→∞ μ(Ln, j) = μ(K j) > 0 it follows from limn→∞ νp,tn (Ln, j) = 0 that

lim
n→∞ h−p

tn
(x j)ρ

(
ϕ(tn, x j)

)∣∣∂2ϕ(tn, x j)
∣∣ = 0

for all j = 1, . . . ,m and the continuity of (s, y) �→ hs(y),ϕ , and ∂2ϕ together with Lemma 11 imply that (tn)n∈N has to
converge to infinity.

Furthermore, we get from Theorem 4c) and Lemma 11

νp,tn (Ln, j) =
∫

Ln, j

hp
tn

(ϕ(−tn, y))ρ(ϕ(−tn, y))|∂2ϕ(−tn, y)|
ρ(y)

dμ(y)

� C jh
p
tn

(
ϕ(−tn, x j)

)
ρ
(
ϕ(−tn, x j)

)∣∣∂2ϕ(−tn, x j)
∣∣μ(Ln, j).

Observing that htn (ϕ(−tn, ·)) = 1/h−tn this shows by the same arguments as above that

lim
n→∞ h−p

tn
(x j)ρ

(
ϕ(−tn, x j)

)∣∣∂2ϕ(−tn, x j)
∣∣ = 0.

Moreover, by the same reasoning we obtain for some other C j > 0

νp,2tn

(
L+

n

)
� C jh

−p
2tn

(x j)ρ
(
ϕ(2tn, x j)

)∣∣∂2ϕ(2tn, x j)
∣∣μ(

L+
n

)
and

νp,−2tn

(
L−

n

)
� C jh

−p
−2tn

(x j)ρ
(
ϕ(−2tn, x j)

)∣∣∂2ϕ(−2tn, x j)
∣∣μ(

L−
n

)
.

Since μ(Ln) = μ(L+
n ) + μ(L−

n ) tends to μ(K ) > 0 for n to infinity, iii) follows.
In order to show that iii) implies i) let K be a compact subset of Ω . Since obviously L p(Ω,μ) = L p(Ω \ {F = 0},μ) and

ϕ(t,Ω \ {F = 0}) ⊂ Ω \ {F = 0} for all t � 0 we can assume without loss of generality that K ⊂ Ω \ {F = 0}.
Therefore, there are finitely many intervals [a j,b j] ⊂ Ω \ {F = 0} such that each [a j,b j] is contained in a different

component of Ω \ {F = 0} and K ⊂ ⋃
1� j�m[a j,b j]. We define x j := a j if F |[a j ,b j ] > 0, respectively x j := b j if F |[a j ,b j ] < 0,

where without loss of generality we assume iii) to be true for x1, . . . , xm . Let (tn)n∈N be a sequence of positive numbers
according to iii) for x1, . . . , xm . From Lemma 11 it follows that for some C j > 0

νp,−tn (K ) �
m∑

j=1

νp,tn

([a j,b j]
) =

m∑
j=1

∫
[a j ,b j ]

h−p
t (y)ρ(ϕ(tn, y))|∂2ϕ(tn, y)|

ρ(y)
dμ(y)

�
m∑

j=1

C jμ
([a j,b j]

)
h−p

tn
(x j)ρ

(
ϕ(tn, x j)

)∣∣∂2ϕ(tn, x j)
∣∣,

so that limn→∞ νp,tn (K ) = 0.
Analogously, one shows that limn→∞ νp,tn (K ) = limn→∞ νp,2σntn (K ) = 0 as well. Setting L+

n := K , L−
n := ∅ in case of

σn = 1 and L+
n := ∅, L−

n := K in case of σn = −1 now shows that condition i) of Theorem 5 is satisfied so that i) follows. �
Using the same arguments one gets the following result.

Theorem 13. Let Ω ⊂ R be open and F continuously differentiable. Assume the locally finite p-admissible measure μ has a positive
Lebesgue density ρ . Then the following are equivalent.
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i) The cosine operator function C defined via(
C(t) f

)
(x) = 1

2

(
ht(x) f

(
ϕ(t, x)

) + h−t(x) f
(
ϕ(−t, x)

))
is mixing on L p(μ).

ii) λ1({F = 0}) = 0 and for every m ∈ N for which there are m different components Ω1, . . . ,Ωm of Ω \ {F = 0}, for λm-almost all
choices of x j ∈ Ω j, j = 1, . . . ,m, there is a family (σt)t∈R ∈ {1,−1}R such that

lim
t→∞ h−p

t (x j)ρ
(
ϕ(t, x j)

)
∂2ϕ(t, x j) = 0,

lim
t→∞ h−p

−t (x j)ρ
(
ϕ(−t, x j)

)
∂2ϕ(−t, x j) = 0,

and

lim
t→∞ h−p

2σt t(x j)ρ
(
ϕ(2σtt, x j)

)
∂2ϕ(2σtt, x j) = 0

for j = 1, . . . ,m.

Using the next lemma instead of Lemma 11 one can derive analogously to Theorem 12 a result for the case of continuous
functions. A proof of the next lemma can be found in [13, Lemma 10].

Lemma 14. Let Ω ⊂ R be open and [a,b] ⊂ {F �= 0}. Assume that ρ : Ω → (0,∞) satisfies ht(x)ρ(x) � Meωtρ(ϕ(t, x)) for some
M � 1, ω ∈ R and all x ∈ [a,b], t � 0.

Then there is C > 0 such that 1/C < ρ(y) < C for all y ∈ [a,b] and

hp
t

(
ϕ(−t, c)

)
ρ
(
ϕ(−t, c)

)
χϕ(t,Ω)(c) � Chp

t

(
ϕ(−t, y)

)
ρ
(
ϕ(−t, y)

)
χϕ(t,Ω)(y)

� C2hp
t

(
ϕ(−t,d)

)
ρ
(
ϕ(−t,d)

)
χϕ(t,Ω)(d)

as well as

h−p
t (c)ρ

(
ϕ(t, c)

)
� Ch−p

t (y)ρ
(
ϕ(t, y)

)
� C2h−p

t (d)ρ
(
ϕ(t,d)

)
for all t � 0 and all y ∈ [a,b], where c := a, d := b if F |[a,b] > 0, respectively c := b, d := a if F |[a,b] < 0.

Having at hand the above lemma the proofs of the next results are so similar to the one of Theorem 12 that we omit
them.

Theorem 15. Let Ω ⊂ R be open, F continuously differentiable and ρ be a positive function on Ω C0-admissible for F and h. Then
the following are equivalent.

i) The cosine operator function C defined via(
C(t) f

)
(x) = 1

2

(
ht(x) f

(
ϕ(t, x)

) + h−t(x) f
(
ϕ(−t, x)

))
is weakly mixing on C0,ρ(Ω).

ii) The cosine operator function C is hypercyclic on C0,ρ(Ω).
iii) {F = 0} = ∅ and for all x ∈ Ω , there are a sequence of positive numbers (tn)n∈N tending to infinity and a sequence (σn)n∈N ∈

{1,−1}N such that

lim
n→∞

ρ(ϕ(tn, x))

htn (x)
= lim

n→∞
ρ(ϕ(−tn, x))

h−tn(x)
= 0

and

lim
n→∞

ρ(ϕ(2σntn, x))

h2σntn (x)
= 0.

Theorem 16. Let Ω ⊂ R be open, F continuously differentiable and ρ be a positive function on Ω C0-admissible for F and h. Then
the following are equivalent.

i) The cosine operator function C defined via(
C(t) f

)
(x) = 1

2

(
ht(x) f

(
ϕ(t, x)

) + h−t(x) f
(
ϕ(−t, x)

))
is mixing on C0,ρ(Ω).
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ii) {F = 0} = ∅ and for all x ∈ Ω , there is a family (σt)t∈R ∈ {1,−1}R such that

lim
t→∞

ρ(ϕ(t, x))

ht(x)
= lim

t→∞
ρ(ϕ(−t, x))

h−t(x)
= 0

and

lim
t→∞

ρ(ϕ(2σtt, x))

h2σt t(x)
= 0.

For the special case of F ≡ 1 and h ≡ 0 we obtain the so-called left translation group (T (t) f )(x) = f (x + t). Since the
generator of the corresponding cosine operator function is given by the closure of the operator

C2
c (R) → Lp(μ), f �→ d2

dx2
f

it is closely related to the wave equation. For this special case we have the following corollary which should be compared
with [3, Theorem 2.2].

Corollary 17. Let μ be p-admissible for F ≡ 1 and h ≡ 0 on R, admitting a positive Lebesgue density ρ . Then for the cosine operator
function C defined by (C(t) f )(x) = 1

2 ( f (x + t) + f (x − t)) the following are equivalent.

i) C is hypercyclic on Lp(μ).
ii) For almost all x ∈ R there are a sequence of positive numbers (tn)n∈N tending to infinity and a sequence (σn)n∈N ∈ {1,−1}N such

that

lim
n→∞ρ(x + tn) = lim

n→∞ρ(x − tn) = lim
n→∞ρ(x + 2σntn) = 0.

Clearly, if in the above corollary for ρ there are M � 1 and ω ∈ R such that for all t ∈ R

ρ(x) � Meω|t|ρ(x + t)

not only for almost all x but for all x (as is the case in [3, Theorem 2.2]) then ii) is equivalent to

ii′) There are a sequence of positive numbers (tn)n∈N tending to infinity and a sequence (σn)n∈N ∈ {1,−1}N such that

lim
n→∞ρ(tn) = lim

n→∞ρ(−tn) = lim
n→∞ρ(2σntn) = 0.

Example (Perturbed wave equation). Let F ≡ 1, h ≡ α ∈ R and μ = λ1 on R. It follows that ϕ(t, x) = x + t and ht(x) =
exp(α|t|) so that by Theorem 4b) λ1 is p-admissible for F and h for arbitrary p ∈ [1,∞). By Theorem 4e) the generator
(A, D(A)) of the corresponding cosine operator function is given by the closure of the operator

C2
c (R) → Lp(λ), f �→ f ′′ + 2α f ′ + α2 f ,

i.e. for f ∈ D(A) we have

∂2

∂t2
C(t) f (x) = ∂2

∂x2
C(t) f (x) + 2α

∂

∂x
C(t) f (x) + α2C(t) f (x)

in a generalized sense.
Since h−p

t (x) = exp(−pα|t|) it follows immediately from Theorem 12 that the cosine operator function is mixing, in
particular hypercyclic on L p(μ) for every p ∈ [1,∞) if and only if this is true for some p ∈ [1,∞) if and only if α > 0.

In the same way one shows that ρ ≡ 1 is C0-admissible for F and h and that C is hypercyclic on C0,ρ(R) if and only if
it is mixing if and only if α > 0.

Example (Exponential translation). Let Ω = (0,∞) and F (x) = x, h ≡ 0, so that ϕ(t, x) = xet . Let μ be the measure on
(0,∞) with Lebesgue density ρ(x) = χ(0,1)(x) + 1

x2 χ[1,∞)(x). Using Theorem 4b) it is not hard to see that the locally finite
measure μ is p-admissible for F and h. By Theorem 4e) the generator (A, D(A)) of the corresponding cosine operator
function is given by the closure of the operator

C2
c (0,∞) → Lp(λ), f �→ (

x �→ x2 f ′′(x) + xf ′(x)
)
,

i.e. for f ∈ D(A) we have

∂2

∂t2
C(t) f (x) = x2 ∂2

∂x2
C(t) f (x) + x

∂

∂x
C(t) f (x)

in a generalized sense.
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Since limt→∞ ρ(xet)et = limt→∞ ρ(xe−t)e−t = limt→∞ ρ(xe2t)e2t = 0 for every x ∈ (0,∞) it follows immediately from
Theorem 12 that the cosine operator function is mixing, in particular hypercyclic on L p(μ) for every p ∈ [1,∞).

Moreover, ρ is C0-admissible for F and h but it follows from Theorem 15 that C is not hypercyclic on C0,ρ(0,∞).
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