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1. Introduction

Since being introduced by Darboux in 1882 as a transformation which generates a new Sturm-Liouville differential
equation from an old one giving a relation between two solutions [1], the Darboux transformation (DT) has been widely
used. DT method based on Lax pairs has been proved to be one of the most fruitful algorithmic procedures to get explicit
solutions of nonlinear evolution equations. The key for constructing Darboux transformation is to expose a kind of covariant
properties that the corresponding spectral problems possess. In 1990, Matveev and Salle [2] first investigated the DT in
integral form and presented binary Darboux transformation (BDT). Nimmo [3-6] has carried out a lot of excellent work
about BDT: in Ref. [4], the general construction of BDT for KP hierarchy preserving certain properties of the operator,
such as self-adjointness, is given; the BDT of two-dimensional Zakharov-Shabati/AKNS spectral problem [5] is obtained by
composing the elementary transformation, for one solution matrix, with its inverse for another solution matrix.

Recently, more and more physicists and mathematicians are interested in studying soliton equations with self-consistent.
They constitute an important class of integrable equations and serve as important models fields of physics, such as hydrody-
namics, solid state physics, plasma physics, etc. [7-15]. In the past few years, in the (1 + 1)-dimensional case, many SESCSs
have been constructed, various approaches for solving such system, for example, d-method [14,15], the inverse scattering
method [16,17], Darboux transformations (DT) [18-20], bilinear Backlund transformations and Hirota bilinear method [21],
hodograph transformations [22], have been used. New approach also appears in systematic construction of SESCSs. Gen-
eralized binary Darboux transformations with arbitrary functions in time t for some (1 + 1)-dimensional SESCSs, which
offer a non-auto-Backlund transformation between two SESCSs with different degrees of sources, have been constructed and
can be used to obtain the N-soliton solution. But in the (2 4 1)-dimensional case, fewer results for the SESCSs have been
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obtained. The KP equation with self-consistent sources (KPESCS) arose in some physical models describing the interaction
of long and short waves and the soliton solution of it was first found by Mel'nikov [23,24]. Zeng [18] and Hu [25] has
carried out a lot of excellent work. Due to the important role played by the soliton equations with self-consistent sources
(SESCSs) in many fields of physics, we have presented a method to find the explicit time part of the Lax representation for
mKPSESCSs and to construct generalized binary Darboux transformations with arbitrary functions at time t for mKPSESCSs
which, in contrast with the Darboux transformation for soliton equations [2,26], offer a non-auto-Bédcklund transformation
between two SESCSs with different degrees of sources and can be used to obtain N-soliton, rational, breather type and
exponential solutions [27,28].

The paper will be organized as follows. We recall some facts about the Darboux transformation for the mKP equation
in the next section. In Section 3, through the pseudo-differential operator (PDO) formalism we introduces an mKPESCS and
the conjugate Lax pairs of the mKP hierarchy with self-consistent sources briefly. Using the conjugate Lax pairs, we can
construct the generalized Darboux transformations with arbitrary functions in time t for mKPESCS. In Section 4, by the na-
ture of Wronskian, the N-times repeated generalized binary Darboux transformation for the mKPESCS will be constructed.
In Section 5, with the generalized Darboux transformations and the N-times repeated generalized binary Darboux transfor-
mation, some new solutions such as soliton, rational, breather type and exponential solutions and some other solutions can
be obtained.

2. The Darboux transformation for mKP equation

Based on the framework of the Sato theory, we first give a simple description of the mKP hierarchy [29-31]. Let us
consider the following pseudo-differential operator (PDO)

L=0+Ho+Hi1d " +Hd 2+ H30 >+, (2.1)

where 9 denotes ;_x and H; (i=0,1,2,...) are functions of infinitely many variables t = (t1, t3,...) with t; = x. Denote

Bm = (Lpm)+ for Vm € N, where B, = (Lpy)+ denote the differential of L,;; whose order is more than 1. When Ho =0, L is
reduced to the operator for the mKP hierarchy. Then the mKP hierarchy is written in the Lax representation

Ly, =[Bm, L], m=1,2,..., (2.2)
or the equivalent form

Lt =[Bm.L"], mn=1,2,.... (2.3)
The mKP hierarchy (2.2) can also be written in the zero-curvature form

(Bn)y, — (Bit, +[Bn, Bk1=0, n,k=2,3,.... (2.4)
Eq. (2.4) has a pair of conjugate Lax pairs as follows

&, =B, (2.5a)

P, =Bn®7, (2.5b)
and

& =—(Bpo™, (2.6a)

@ =—(Bn)o™, (2.6b)

where By = (8Brd~1)*, k >2. When n=2, m =3 we get the mKP equation as follows

4Hp, — Hyxx +6H*Hy — 3( " "Hey,) — 6Hx (07" Hy,) = 0. (2.7)
Under the following transformation:

u=-—H, t=—t3, y=—aty, (2.8)
we get the simplest and the most important equation in the hierarchy (2.4), the mKP equation

AU + Uyyy — 6UZ Uy + Gaux(8_1uy) + 30{2(8_11,1”) =0, (2.9)

which is called the mKPI equation when « =i and mKPIl equation when « = 1. From (2.5) and (2.6), we will get the
conjugate Lax pairs of (2.9), respectively, as follows

a®; =g +2udy, (2.10a)
3

3 3
O =A (WP, A (U) = —dxxx — Uy — 5uxa — 5uZa — 53—1uya, (2.10b)
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and
ad) =—bF +2udy, (2.11a)
+ + + + 3 35 EP
O =ATWPT, AT(U) = —0Oxx + 33U+ Euxa — Eu d— 53 uyo. (2.11b)
From (2.10) and (2.11), we can construct three types of Darboux transformations for the mKP equation (2.9).
2.1. The forward Darboux transformation for the mKP equation

If u is a solution of mKP equation (2.9) and @, = @ (x, y,t) is a solution of (2.10). The forward Darboux transformation
for the lax pairs (2.10) is defined by [32]

o

u[—l]:u+81n< 1;"), (2.12a)
¢1
o

o [-1=0" — Lo, (2.12b)
¢l.x

where u[—1] is a new solution of the mKP equation (2.9). Substituting (2.12) into (2.10b), we have

A™(u[-1]))@ 7 [-1] = <q>— - (p—fcpx—)
@ t

1,x

(AW)P )Py + P (A~ WP )x | Py (A” ()P )xPy

= Ai(u)¢7 - — —
@1,2( ((pl,x)2

(2.13)

2.2. The backward Darboux transformation for the mKP equation

If u is a solution of mKP equation (2.9) and @;’ = @;’(x, y,t) is a solution of (2.11). The backward Darboux transforma-
tion for the lax pairs (2.10) is defined by

@"r

2,X

u[+1]:u+81n< 7 ), (2.14a)
D

2

Ci+ [ @@ dx

O [+1]= o7

, (2.14b)

where C; is an arbitrary constant. We point out that throughout the paper, the integral operation [ P;P,dx (such as
f(D*cD;X dx) here means ffoo P1P,dx and contains no arbitrary function of y and t, only numerical constant if we impose
some suitable boundary condition on the integrand functions Py and P; at x = —oo or x = oco. For arbitrariness of the
constants in the Darboux transformations such as Cq here, in our computation later, the integral constants are taken to be
zero. Substituting (2.14) into (2.10b), we get the following equality:
C1 +f<1>‘<1>;rxdx>
@ ¢
_JIAT )P, + @ (AT WP, )xldx — AT(W)(Cr + [ @~ P, dx)

+
¢2

A*(u[+1])a>*[+1]=<

(2.15)

2.3. The binary Darboux transformation for the mKP equation

Applied the forward Darboux transformation and the backward Darboux transformation to the system (2.10), we can get
the binary DT as follows

O [+1 g

u[+1,—1]:u[+1]+8ln<g) =u+aln<1—}"+>, (2.16a)
@7 [+1] Co+ [ @) &5 dx
7 [+1] PP DS — 7 (Cr+ [P @F, dx)

O7[+1,-1]=D [+1] - P [+H]y=D —

D7 [+1]x DL D) — (C + [ D] D7, dx)

, (2.16b)
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Cot [ @] & dx
_ 22 . _
binary DT for system (2.11). Specific formula is as follows:

where & [+1] = , Ci (i=1,2) are arbitrary constants. Similarly, we can get the forward DT, backward DT and

The forward Darboux transformation for the system (2.11),

<Pz+,x

u[+1]=u+9dln = (2.17a)
(DZ
@+

PH[+1]=0" - 2o}, (217b)
(pZ,x

where u[+1] is a new solution of the mKP equation (2.9).

The backward Darboux transformation for the system (2.11),

1
C3 +f<1>+<1>1’,xdx
o ’

Dy x
u[—l]:u+8ln(¢’ ) (2.18a)

dt[-1]= (2.18b)

The binary Darboux transformation for the system (2.11),
&[-1 DT
u[—l,—i—l]:u[—l]—i-aln(y):u+81n<%), (2.19a)
D, [—-1] Cs +f<1§2 Py, dx
o [-1] PYO DS — T (C3+ [PT O], dX)

———— T[]y =07 - - -
®F (1 i ;) — (Ca+ [ &5 B;,dx)

OT[-1,+1]=F[-1] -

, (2.19b)

Cat/[ D ] dx

where @2’“[—1] = o2 , Ci (i=1,2,3,4) are arbitrary constants.
1.x

3. The binary Darboux transformation for the mKP equation with self-consistent sources

Based on the framework of the references [31-36], we will get the mKP equation with self-consistent sources and the
corresponding lax pairs. For the pseudo-differential operator L given by (2.1)

L=0+Ho+H19 "+ Hpd 2+ H39 >+,

and we consider a constraint as follows
m m
L"=By+ ) qid~'rd or (L") =) gqid"'rid, (3.1)
i=1 i=1

where Bp, = (Ln)+, Gir, = Biqi, Tig, = —Bygi (i=1,...,m, k>2) and (L")_ denote the residual parts of L". The n-
constrained mKP hierarchy is defined as follows:

("), = [, L"] = [Bi, L"], (3.2a)
G = Brg, (3.2b)
Iy, = —Byr. (3.2¢)

Adding the term (By)¢, to the right-hand side of (3.2a), we can define the mKP hierarchy with self-consistent sources as
follows:

(B, — (L"), + Bk, L"] =0, (3.3a)
di.o, = Bidi, (3.3b)
Tig =—Byri, i=1,2,...,m. (3.3¢)

So if the variable t, is viewed as the evolution variable, the n-constrained mKP hierarchy may be regarded as the stationary
hierarchy of the mKP hierarchy with self-consistent sources. Under conditions (3.1), (3.3b) and (3.3c), we naturally get the
conjugate Lax pairs of (3.3a) as follows
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O =By®™, (3.4a)
m
@;:L"¢’:Bn¢’+2qi/ri¢;dx, (3.4b)
i=1
and
&) =—Byot, (3.5a)

m

* m
of =—(1")' @ =BT - [a( > ai / r;0 dx>81i| ¢t =—B,oT — Zr,-/q,-q)j dx. (3.5b)
i=1

i=1
When k = 2, n =3, under transformation (2.8) and setting
Yi=qi,  ¢i=—Ti,
we will get the mKPESCS and its conjugate Lax pairs respectively from (3.3)-(3.5). The mKPESCS is

m
A1t + U — 6U? Uy + Bty (07 ) +3a? (37 uyy) — Y (Wigh)x =0, (3.62)
i=1
Vi y = Yixx + 2Utix, (3.6b)
Ay = —hixx+2Uupix, i=1,2,...,m, (3.6¢)

which is called the mKPIESCS when o =i and mKPIIESCS when o = 1. Under conditions the system of (3.4), (3.5) and
(3.6b), (3.6¢) the Lax pairs for (3.6a) are

P, =&, +2ud,, (3.7a)

D =A" (WP +F (Y, )P, (3.7b)
where F; (¥, )@~ ==Y 1" 1 ¥ J ¢i®y dx. The conjugate Lax pairs for (3.6a) are

ad) =—bF +2udy, (3.8a)

o =ATwet +Fi(y, 9@, (3.8b)

where Ff (Y, )@ =Y I", ¢i [ i@, dx. With the system of (3.6b) and (3.6¢), we can construct the forward DT, backward
DT and binary DT for the mKPESCS.

Theorem 3.1. If u, Y1, ..., ¥m, ¢1, ..., ¢m be the solution of the mKPESCS (3.6) and &7 satisfies (3.7), then the forward Darboux
transformation for the lax pairs (3.7) can be defined by

Dy 4
u[—l]:u+81n< ¢; ) (3.93)
1
o [-1]=0 — 21 5 (3.9b)
o, :
D i xd
$il—11= ¢ — %, (3.90)
1
Q.
Yil—-11=vi — ¢—_1/fi,x7 (3.9d)
1,x

namely, u[—1], @ [-1], ¢i[—1], ¥i[—1],i=1,2,...,m, satisfy (3.6) and (3.7).

Proof. From above, it is seen that u[—1], @ [—1], ¥i[—1], ¢i[—1] (i =1, 2,...,m) satisfy (3.6b), (3.6c) and (3.7a). So we
only need to prove (3.7b), which is the following equality

(A~ (W)@ )Py + Py (A~ ()P )x n Dy (A~ (W) Py 1Py

_ - 9y _ _
@ [—1]t=<q> ——_qbX) =A (W —
P t

1,x ¢£x (dsl_,x)2
()P — (F,;(l/f,q?@{)@; _ ¢{(F,;(1/f )P )x d’f(FnZ(I/ffb);D{)xqﬁ;
q)l,x ¢1,x ((pl,x)

= A" (u[-1])® " [-1]+ Fp, (¥ [-1], ¢[-1]) @ [-1]. (3.10)
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It is easy to verify that (2.13)
(AT W20y + @, (A" W)@ )x n D (A (W) P )xP,

A (u[-1D)o [-1]1=A"W)®~ _ .
( ) (pl,x ((p],x)z

)

still holds now. So we only need to prove the following identity:

Fn(,9)0 )Py @y (Fr (¥, $)P )x

Fp(W[-11,¢[—=11)@ " [-1] = Fp (¥, $)P~ —

Py Py
D (FL (W, )P )x Dy
1( m(¢_¢)2])x X ) (31])
(@1
Substituting the expression of F,, (¢, )@~ = — Z;“:] Vi [ ¢i®; dx into (3.11), we can easily verify that the identity (3.11)

is hold. This completes the proof. O

Theorem 3.2. If u, V1, ..., ¥m, &1, ..., dm be the solution of the mKPESCS (3.6) and q§2+ satisfies (3.8), then the backward Darboux
transformation for the lax pairs (3.8) can be defined by

¢+
2,x
u[+l]:u+81n< +), (3.12a)
(DZ
Ca+ [®~ D dx
O [+1]= 4f—+2" (3.12b)
(D2
(p-‘r
2
Gil+1]=¢i — q)—"‘d)i’x’ (3.120)
2,x
& dx
Yil+1] =i — fz%, (3.12d)
2

where C4 is an arbitrary constant. This theorem can be expressed as u[+1], @~ [+1], ¢i[+1], ¥i[+1] (i =1,...,m) satisfy (3.6)
and (3.7).

Proof. The same as above, it is seen that u[+1], ® " [+1], ¢i[+1], ¥i[+1] (i=1,...,m) satisfy (3.6b), (3.6c) and (3.7a). So
we only need to prove (3.7b), which is the following equality

Cot [@ @), dx\  [IA- WP )PS, + P (AT WP )xldx — AT W)(C1 + [ @~ D) dx)
<D‘[+1][=( oF ) = ’ oF ’
2 t 2
Frn(y, )@ )@, + @~ (FL (¥, $)@))x1d + +
+f[( m (Y, 9)P7) 2,x++ (Fn (¥, )@y )xldx Fm(w,jb)cbz <C1+/¢,(p2+xdx>
@, (@)?
=A™ (u[+1])@ " [+1] + Fp (v [+1], g[+1]) @ " [+1]. (313)

Similarly, it is easy to verify that (2.15)
JIA~ W@ )P5  + &~ (AT W)@ )yldx — AT (u)(Cy + [ &~ D, dx)
o) '

A™ (u[+1])@ 7 [+1] =

still holds now. So we only need to prove the following identity:

JUFq (¥, )P )PF, + @~ (Fh (¥, $)P3 )xldx

Fo(WI+11, [+11) @ [+1] =

+
2,
Fr(, ¢)@,
- M G +/q>—q>2+xdx . (3.14)
((pz )2 s
Substituting the expression of Fy (¥, $)®~ = — 1o, yi [ ¢i®x dx and Ff(y, ¢)®T =Y 11, ¢i [ i@ dx into (3.14), we

can easily verify that the identity (3.14) is hold. This completes the proof. O

Applied the forward Darboux transformation (3.9) (Theorem 3.1) and the backward Darboux transformation (3.12) (The-
orem 3.2) to the system (3.7), we can get the binary Darboux transformation for the system (3.7).
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Theorem 3.3. Ifu, Y1, ..., ¥m, @1, ..., ¢m be the solution of the mKPESCS (3.6) and let @, and <1>;r satisfy the system (3.7) and (3.8)
C+[ oy of dx

respectively, then the binary Darboux transformation for the system (3.7) by choosing C4 =0, @, [+1] = T (Cis a con-
2
stant) as follows
[+1, 1] al < 1 P ) (3.15a)
u[+1,-1]=u+dln| ————F— ), 15a
C+ [ o] dF dx
o7 [Df by dx
@*[+1,—1]=¢*—%, (3.15b)
[ @@y dx—C
O [ D7 ¢ixdx
1, —1] = ¢ — —2 1L 3.15c
éil 1=¢i C+f¢f¢§fxdx ( )
&7 [ xdx
YL, 1= gy - DS P Vi (315d)

— + .
[ @7, @5 dx—C

Proof. With the forward Darboux transformation (3.9) and the backward Darboux transformation (3.12), we can get the
following equations:

@ [+1 foon
u[+1, —1] = ul+1] + am(M) Cus am(l—l’;),
L dx

@1 [+1] C+ [ 2
O [+1,—1]=® [+1] — %‘P_Hﬂx =& — %’
Vil+1, =11 = ¢i[+1] — %Wi[+1]x=1//i - %’

C+[ ] dF  dx

where C4 =0, &, [+1] = oF (C is a constant). This completes the proof. O
2

If C is replaced by C(t), an arbitrary function in time t in (3.15), then (3.6b), (3.6c) and (3.7a) are also covariant
w.r.t. (3.15). In the following, substituting (3.15) into (3.7b), we can obtain the equality

@7 [+1, 1] =A™ (u[+1, —=11) @~ [+1, =11 + F, (¥ [+, =11, #[+1, —1])@ " [+1, —1]. (3.16)

With F (¢[+1, =11, ¢[+1, 1)@ [+1, -1 = = >, Yil+1, =11 [ ¢i[+1, —=11@ " [+1, —1]xdx and (3.15), we have the
left-hand side of (3.16)

<p;fq>2+<p;dx> _¢__<¢;f¢;¢;dx>
=] — (L 22" ),
t t

¢‘[+1,—1]r=(¢‘—_— -
[ o7, @5 dx—C [ o1, @5 dx—C

(317)

By a tedious computation, the right-hand side of (3.16) does not contain derivatives of t. From above, it is obvious that
(3.7b) is not covariant w.r.t. (3.15) any longer when we replace C in (3.15) by C(t). In fact, we have the following theorem.

Theorem 3.4.Ifu, Y1, ..., Ym, P1, ..., ¢m be the solution of the mKPESCS (3.6) and let ¢ and <I>2+ satisfy the system (3.7) and (3.8)
cCO+[ q>;<z>;fx dx

respectively, then the binary Darboux transformation for the system (3.7) by choosing C4 =0, &1 [+1] = oF (C(t)isan
2
arbitrary function in t) defined by:
-t
(pl ¢2,x
u[+1,-1]=u+4dln g , (3.18a)
CO) + [ @) dx
o7 [&F b dx
OT[+1,-1]=d" — Lf X (3.18b)
fqﬁquq)z dx —C()
@ [ D] pixdx
Bt 1= gy — 22 P o (318¢)

C(t) + [ D7 @5, dx’
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@7 [ &S i xdx

il+1, —11=1v; — - ; 3.18d

Vil+ 1= @, @5 dc—CO ( )
and

N0 CO®;

- 1,-1]= , m 1,-1]=— , 3.18

L P PSS Py (B18¢)
transforms (3.6b), (3.6¢) and (3.7), respectively, into

ai[+1, —1]y = ¥i[+1, =1 + 2u[+1, =119 [+1, — 1]y, (3.19a)

adil+1, =11y = —gi[+1, =1 + 2u[+1, =11 [+1, -1y, i=1,2,...,m, (3.19b)

a® [+1, -1y = &7 [+1, =1l + 2u[+1, =1]® 7 [+1, —1]x, (3.19¢)

D7 [+1, -1y = A7 (u[+1, —1]) @~ [+1, =11 + Fp (¥ [+1, =11, ¢[+1, —1]) @~ [+1, —-1]. (3.19d)

So u[+1, —1], ¥i[+1, —1], ¢i[+1,—1] (i=1,...,m+ 1) is a new solution of the mKPESCS (3.6) with degree m + 1.

Proof. Eqs. (3.19a)-(3.19¢) hold obviously. We only need to prove (3.19d). Substituting (3.18b) into the left-hand side
of (3.19d) and using the result of the previous theorem, we have

o7 [P dx ) _ < o7 [P dx >

— =(Dt - —

[o7 @ dx—Ct)/, [ o7, ®5 dx—C() ),

= A" (u[+1, =1]) @~ [+1, =11 + F, (¥ [+1, =11, ¢[+1, —1]) @ [+1, —1]
CO®] [ D7 dx

&7 [+1, 1] = <¢_ —

— — ) (3.20)
(J &1, @5 dx— C(1))?
So we only need to prove
U [+1 1]f¢ (1, — 11041, —T]du e S OPL S @5 P X
— = .= ,—1xdx = — ,
m+1 m+1 X (f q)ixd);r dx — C(t))2
i.e., to prove
C(tydS &7 [dFd d dFP-d
/ Vewas (Cb,_ L] &5 O dx )dx:_ [ & @ dx (321)
Ct)+ [ &, dx [ o7, @5 dx—C(t) ) [ @1, @7 dx—C()
the left-hand side of (3.21)
_/ N0 [¢_ 1, [P Py dx+ DT DS Dy @;qsz*@ljqu);q)xdx}
N C(t) + [ o7 @7, dx X [ @7, @5 dx—C(t) (f @1, D7 dx —C(1))?
;0 D, [ D) Py dx [ of o7 dx
=/— —= — == , (3.22)
[O7, @ dx—Ct) ([ 1, @F dx—C(1))? [ o7, @ dx—C(t)

= the right-hand side of (3.21). This completes the proof. O

Remark. For system (3.8), the DTs described in this section can also be constructed, we omit the results here. If C(t) is not
a constant, the DT (3.18) provides a non-auto-Bdcklund transformation between two mKPESCSs (3.6) with degrees m and
m + 1, respectively.

4. The N-times repeated generalized binary Darboux transformation for the mKPESCS

In this section, we will used Theorem 3.4 to construct the N-times repeated generalized binary Darboux transformation
for the mKPESCS. By the nature of Wronskian, we have the following lemma:

Lemmad.l.[fo~, o ,..., &y are solutions of (3.7) and ot dF L, ¢1J\5+N are solutions of (3.8). For notational simplicity, we

N+1°
denote q§k_[i] = 45,:[4-1', —i], <I>;,’+k[i] = <D,J\;+k[+i, —il,k=1,...,N,i=0,1,...,N,m=2, ..., N. Then we have
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Wi (D Im—11,.... ¢, Im—11; &y Im—11,..., &% [m—1]; Cu(®), ..., Crnyk(0))
W@y [m—2]. B m - 2 DN l[m 2L @i lm = 21 Ca (O, -, Con () (41a)
Cn1)+ [ @, 1[m—2]¢>;+m 1lm = 2], dx ’ '
W (P Im—11,..., &, Im—15; @y Im—11,..., &% [m—1]; Cu(®), ..., Crnyk(0))
C Wa(P M2 By (m =2 1[m 2L @i lm = 21 Cca (0, -, o () (41b)
[ @y [m—=20®y . [m— 2]dx—Cm 10 ’ ’
W3(@,Im—1],..., ¢, [m—1]; & [m—1],. ,¢+m+k m=1], @7 [m —2]; Cu (D). ..., Conyi—1 (1))
W@ m=2] . B M =2k Py 1[m 2, Py e g (M =21, @ [m — 21 Cn_1 (O, .., Cinpe—1 (1))
Cn1(O+ [ @, 1[m 2]<1>N+,11 J[m —2],dx ’
(4.1¢c)
Wy(Dpim—11,.... & ([m=1], & [m=2; &y [m—1],..., &8 [m—1]; Cn(D), ..., Cnpr—1())
C Wa(@p yIm =21 @y M =2], @7 M =2 Dy (M= 2] Dy [m = 21 Co1 (), Conge1 (6)
[ @y [m=21® . m—2]dx — Crn_1(t) ’
(4.1d)
where
Wi(pm—1],..., ¢, [m =11 &5, (m—1],..., &8, [m—1]; Cu(0), ..., Cnii (D))
:det(B,;ij_H,-(t)+/Q§T;71+i[m—1]¢1¢+m7]+j[m—1]xdx>, ij=1,...,k+1, (4.2a)
Wa(®pm—11,..., ¢, [m =11 &y, (m—1],..., &8, [m—1]; Cu(0), ..., Cnpi (D))
:det(—ai,jcm_m(t)+/qb,;_l+i[m 1@y 4 jlm — l]dx), i,j=1,...,k+1, (4.2b)
W3(®pm—11,..., ¢, [m =11 &y, Im=1],..., 08, [m—1],®F[m—2]; Cu(D), ..., Cnyr—1(D))

:det(ﬁ,-,jcm_m-(t)+/q>n;_1+,.[m—1]¢>;Vr+m 1 jm = l]xdx>

and
8i,jCm— 1+1(t)+/ 14PN jx X = Py gy i=1 k=110 k1, (4.2¢)
Wy (Ppm—11,..., ¢, [m=1], &7 [m=2]; &y, [m—1],..., &8, [m—1]; Cu(®), ..., Cnir—1(D)
:det<—5,-,,-cm_1+,»(t)+/ I [ B U N Hl[m—l]dx)
and

—8; jCm— 1+,(t)+/ _ 1+”q>,¢+m_1+ldx_¢>; i =l k =110 k4 1 (4.2d)

Proof. With Theorem 3.4, we have

— m— 2]/¢N+m m =210, | [m—2]dx

D m—-1]=&_ ., .[m—-2]— — (4.3a)
moi motH fq>m (M —=20®y [ —2]dx — Con1 (0)
o e 5 <1>N+m m— 2][(15,; Jm— 2]<1>N+m 1M = 2] dx A3h
Nim-14jlm—1=@ N 14jlm—21— [0 m =210, Jim—2ldx— Cor© (4.3b)
m— m— -

where i, j=1,...,k+ 1. According to (4.2a) and (4.3), we have
6i,ij,1+i(t)+f<D,;]+i[m 1]q§N+m 1+j[m 1] dx

= 85, jCmo14i(6) + / B M =210, — 2]edx
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=51 {Cn14i(0) + / B ilm = 1107y, Im — Tl
f‘p; pilm = 2Py g [m = 21dx [ @ [m = 21Dy, 14jM = 2] dx
[ @, _4m— 2]<DN+m 1m —2]xdx — Cpq ()
=38i,jCm—1+i(t) +a;,j — dag,jb; o, (4.4)

where a; j= [@, | [m— 1]<DN+m 1y jlm = Tledx, bio=/[P, 1+l[m—2],(1,‘I>,J\j+n171[m—2]dx,

1
[ @i Im—=21@4 . [m—2]xdx — Cn1(t)
With the system of (4.2) and (4.4), we can obtain

d=

Wi (Oplm—11,.... & Im = 11 & m = 1. @[ — 11 Cn(0), . G (©)
Cm(t) +a1,1 —dag1b10 ay 2 —dag2b1 0 ayk+1 — dagrs1b10
az1 —dag,1b2 o Cmy1(t) +az2 —dag b0 --- az k+1 — dag r41b2,0
(k41,1 — dao,1bry1,0 Ag41,2 — dagabiy1,0 oo Cgk () + Qg1 k1 — dao g+1brs1,0
Cm-1(t) +ag,0 do,1 ap,2 .. ag k+1
b1,0 Cm(t) +a11 a2 a1 k+1
—d bz.0 az1 Cni1(H) +azz - a2 k41
bk11,0 A+1,1 k41,2 oo Crgk () + Qg1 1
Wi (@M =21, B [ — 20 B I = 20 B[ — 28 Gt (O Gk ()

Cn1(t) + [ @y _4Im— 2]<pN+m (Im — 2]xdx

As can be seen from the above, formula (4.2a) is proved. Similarly, formulae (4.2b), (4.2c) and (4.3d) can be proved. This
completes the proof. O

With Theorem 3.4 and Lemma 4.1, we can construct the N-times repeated generalized binary Darboux transformation
for the mKPESCS.

Theorem 4.2. If u, Y1, ..., ¥m, &1, ..., dm be the solution of the mKPESCS (3.6), let @1, ..., &y and <DNH, A di;,;N satisfy the
system (3.7) and (3.8) respectively, C1(t), ..., Cy(t) are N arbitrary functions in t. Then the N times repeated generalized binary
Darboux transformation for the system (3.7) is given by

Wi(@] .. Oy P go s Py C1(D), . CN(©)x
u[+N,—N]:u+81n< W ((pl @N ¢N+1 @N:N.C o o ) (4.5a)
.. N412 -+ FNgN> 1) eeey N()
OT[+N —N]—W“(qj P PPN P GO, O D) (45b)
’ Wo (@7 .., By Py g Dy i C1(D, . O (D) '
¢i[+N N]—W3((p7"' - Py ¢N+1""’ l¢+Na¢i;C1(t)v~--»CN(t)) (450)
e Wi(Dy .., By Py Py C1(D), ... CN (D)) '
W[+N —N]_ W4(¢]_7 gD[\]v\/flv N+]”(DI_\IF+N’C1(t)79CN(t)) (45d)
b Wa(@y o @i Bppgs @y CLO, -, Cu (D)
¢m+j[+N, —N] (4.5€)
= /JC( t)W3(¢17""’¢j11’¢j7+ Py ¢N+1~~ ¢1¢+; 1’¢;lr+j+l’""¢I¢+N’¢N+]#C1(t) S Cim1(®), Cipr (B, ..., CN (D)
’ Wi(P7 ..., By DY g B s C1(D, .. O (D) ’

(4.5f)
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Ym+j[+N, —N]

—— Wa(@y ... P]
=—/CG.n
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- — T + + + .
1’¢j+1 ----- ®Ns¢jv¢N+’l ~~~~~ ®N+j71’¢N+j+l ----- ¢N+N)C](t)

Ci—1®©, Cj1 (O, ..., Cn ()
Wa(o], ..., IR NP D N G100, .., Cn (b)) ’
i=1,2,....,m, j=1,2,...,N (4.58)
transforms (3.6b), (3.6¢) and (3.7), respectively, into
ayil[+N, =N]y = ¢i[+N, —Nlxx + 2u[+N, =N]i[+N, —Nlx, (4.6a)
adi[+N, —N1y = —¢i[+N, —Nlxx + 2u[+N, —=N1¢;[+N, —N]x, i=1,2,...,m (4.6b)
a® [+N, —N]y =P [+N, —=N]xx + 2u[+N, —=N]® " [+N, —N], (4.6¢)
@ [+N, —N]; = A~ (u[+N, —=N])@ " [+N, —=N]+ F;, (¢ [+N, —=N1, p[+N, —=N])@~[+N, —N]. (4.6d)
So u[+N, —N], ¥i[+N, —N], ¢i[+N,—N] (i=1,..., N +m) is a new solution of the mKPESCS (3.6) with degree N + m.
Proof. By the system of (3.18) and (4.1), we can obtain
u[N]=u[N—1]+Bln( (D’G[N_ 125N — 1y )
Cn(®) + [DPyIN — 1]¢N+N[N— 1]xdx
CuN-1]+ aln(W1(<1>,§7[N— 15; &5, yIN —1]; CN(t))x>
W1(®yIN —1]; @5, yIN —1]; Cn (b))
:u[N_zHam( W1(@y_ [N =21, &[N = 21; &y 1[IV—21,<1>;+N[N—2];CN_1(t>,cN<t>)x>
Wi (@y_4IN =21, FIN — 2]); @, y_4[N — 2], &, y[N — 2]; Cy_1(1), Cn (D)
:~--:u+81n( 1@1:, DN DN g ¢,¢+N,c1(t),...,cN(r))x> 47
Wi(@1,.... 9y (bNH,...,(DN+N,C1(t),...,CN(t))
So formula (4.5a) is proved.
®[N]= &[N —1]— <1>,;[N_— 1][¢,¢+N[N —1]®7[N — 1]xdx
J®§IN —11,®5 [N — 1]dx — Cn (1)
W4 (@y [N — 11, [N — 1]; @5, y[N — 1]; Cn ()
N Wa(PyIN —1]; @5, [N —1]; Cn (1))
Wa(@y_,[N =21, &[N =21, &[N — 2J; &3 ;[N — 21, &3, y[N — 21: Cn—1(£), Cn(©))
N Wa(Py_{[N—=2], By[N —2]; @y, 4[N — 2], @3 [N —2]; Cn_1(8), Cn—1(D))
o Wy(P1,.... 0y, ™ @NH,...,@NJFN;Cl(t),...,CN(t)) ' (48)
W2(<1>1_,...,<1>N[m—1],@NH,...,(D,LN;C1(t),...,CN(t))

So formula (4.5b) is proved. Similarly, we can prove (4.5c) and (4.5d) hold.
With the (3.18b) and (3.18e), we have

¢y -1
SOl = 1@yl — 1dx— Cj(©)

O U1/ Pyl — NP5 [~ Thedx CiOP;[j—1]
[ @71 = 11k@y, ;[ — 11dx = Cj(t) [ 71— 1@y, 1 — 11dx = C;()’

1pn1+j[]']:—

@5 1= [~ 11—

then

o

1ﬁm-ﬂ[]] W

;L.

So, we have
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i H . . . ﬂe(l+i))<72y+%+2(l+i)z
Fig. 1. (a), (b) and (c) showing the module of u[+1,—1] at y =0 are the soliton solutions of Egs. (5.1) with ¢1[+1,-1] = Y~—————— and

N t:
(14+i)e2x—4y+2(14t 4 2je T

12yt 2 42050 i Dxi2y+ B 46 2ix-aiy+ -7
(1-Dx=2y+ b7 +2(1-ixe «/fe“f yx+2y+ Gp +6t N iy+ 57 —(7-i)t

Yiltt, -] = 20 I T, 1) = T and g1, 1] = — il 1] =

2ie T —(1—i)e2x-4y+at (i—1)e2in+4y+2G+t _2e T 2T (1 edintay 26t 2ie2'xf4iyf8r_2e%
Yil+1, —1] = —ivte (DL respectively.
Y [N] = W4(Py[N — 1_], Vm4j[N 11]; @ N[N =11 Cn (D)
Wa(@y [N = 1]; @5, y[N =11 Cn(8))
W@ L) Y LT Py g L @D G (O, - O (D)

W@ [l Py L1 Py g Ll Py L1 Ca (). ()

VEO W@, OF, @75 Dy, Py GO, ., CN (D)
Ci()  Wady, ..., @y Py s i C1(D), ..., N (D)

_ C.(t)w4(¢; ..... Py P Py PP P P Py C1O. - Gt (0, Cia(®), . O ()
J Wo (@], ... Oy D Oy C1 (), ... CN (D)

2
. (1+:)x+2y+‘T+2iz
Vs S and

(4.9)
So formula (4.5f) is proved. Similarly, we can prove (4.5e). This completes the proof. O
Remark. If Cj(t) (j=1,..., N) are constants, we can obtain the N-times repeated Darboux transformation for (3.14). If C;(t)
(j=1,...,N) are not constants, the DT (4.5) provides a non-auto-Backlund transformation between two mKPESCSs (3.6)
with degrees m and N + m, respectively.
5. Some examples of solutions for the mKPESCS

5.1. Soliton solution

Example 1 (Single-soliton solution for mKPIESCS). If we set o =i in system of (3.6), we get the mKPIESCS

m
Aup + U — BU 11y + 6itiy (97 ) —3(0 T uyy) +4 ) (Wigi)x =0, (5.1a)
i=1
iy = Yixx + 2U¥ix, (5.1b)
i¢i7y =—@ix+2upix, i=1,2,...,m. (5.1c)

We take u = 0 as the initial solution for the mKPIESCS with m =0 and let
_ i 24013 v ile2 3 .
q)] —e ikx+ik”y—k t’ ¢;_ — ezkx ik y+k t’ Ct) = lezf(t)’ (5.2)

where k=a+ib, a,beR, b#0, f(t) is an arbitrary function in t. Then
]_:eaJr'B, d);—:eafﬂ’

where
o =bx—2aby —a(a* —3b*)t, B =—iax+i(a® —b?)y —ib(3a® — D)t.

With the system of (3.18), we can get the 1-soliton solution of single-soliton the mKPIESCS (5.1) with m =1 (see Fig. 1).

~
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PP be2® & 4ip2e2f® _ jge2e
U[+1,—1]=81n( 1_2% N ): e "‘. ib%e iae ’ 53
C® +f(pl ¢2’de 2ibe2f® 4 g2
1 -1 Ve of J2if(tyef O+a—p L
+ T - = H . ) .
ol : Ct)+ [y D dx  (b+ia)e?® + 2ibe?f © (5.3b)
dGrN 2b\/2if (t)ef O+oth

T o, @ dx—C(O)  2ibefO — (b —ig)e?”

From graph of the module u[+1, —1] at y =0 is plotted in Fig. 1, we find that different sources {¢1[+1, —1], ¥1[+1, —1]}
have different soliton wave solutions which mainly affect the shape of the soliton wave solutions. From Eq. (5.3a), we can
find that the solution only have some singularities when 2ibe2(/ O~® = _1. Otherwise, the solution u[+1, —1] is always
free of singularities.
More generally, if we take
- —ikjx+iky—k3t ik jx—ik2y+k3t L of .
@y =e YT gl =YL i =it j=1,2,...,N, (5.4)
where kj =a;+ibj, aj, Bj € C, ki # I_cj, Vi, j, Bj #0, fjt) (j=1,...,N) is an arbitrary function in t. So, with (4.5a), (4.5e)
and (4.5f), we can obtain the n-soliton solution for the mKPIESCS with m = N.

Example 2 (Two-soliton solution for the mKPIIESCS). If we set « =1 in system of (3.6), we get the mKPIIESCS

m
Aup + Uner — 6U 1ty + 61 (0 Ty ) +3(9 7 uyy) +4 ) (Yihi)x =0, (5.5a)
i=1
Vi,y = Vixx + 2U¥i x, (5.5b)
Giy=—Pixx +2Udix, i=1,2,....,m. (5.5¢)

We take u = 0 as the initial solution for the mKPIESCS with m =0 and let

. . l1€2f(t) lzC
O =%, ot =ebi, Ci(t) = —, Cot) = ———,
! ¢ 2+ = ¢ 10 ki +1h 2® ky+1
ai =kix+k2y —kXt,  Bi=Lx+Py—Bt, i=1,2; (5.6)

where kj, I; € C, f(t) is an arbitrary function in t and C is an arbitrary constant. From (4.5a), (4.5e) and (4.5f), we get the
2-soliton solution of the mKPIIESCS (5.5) with m =1 (see Fig. 2) as follows:

Ci(t) + [ 7 DT dx [ o7 of  dx
[ @5 &5, dx Co(t) + [ ®; DF  dx

X

u[+2,—-2]=20ln

GO+ [y dT,dx  [o7 D] dx

[ @5 @F, dx Cao(t) + [ @, DF  dx
L1e2f®© e th1 Le*1+F2
k1+0 k1+h k1+lp

lie%2th1 I,C le%2tF2

=dln ko414 ko+1p ko4l 1x

1192f(t) l]ea1+/31 lzea1+ﬂ2
k1+1h k1+1h ki+l

Lie%2th I,C e%2th2

ol oih T Tth

(k1+12) (ka2 +11)

14 ex1+B1-2f(®) 4 pa2+h2—Co | %eal+ﬁl+az+ﬁ2*zﬂf)*fo

| <(k] +11)e0!1+/31 —2f() + (ky + lz)ea2+ﬁ2—Co + (1=b)(kq *l<2)(’<1+11+k2+12)eo{1 +51 +az+ﬁ2—2f(t)—C0>
— 8 n )

. (5.7a)
Sl42.-2] VEIOW4(P5 5 @, D5 Ca(1)
1 s T = — —
Wi(®], @, @5, @ C1(b), C2(t))
2L F) 2 kie®1tA1=2f®) o2 +Fr-2/(0-Co k —2f()—C,
_ e - e - + e thterth 20y (5.7b)

(14 e1+A1=2f© 4 ex2+p2—Co 4 %eaﬂrﬂlJﬂszrﬂZ*zf@)*co)
1+2) (k2 +h
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Fig. 2. (a), (b) and (c) showing the module of u[+2, —2] at y =0 are the soliton solutions of Egs. (5.5) with ¢,[+2, —2] = —

() 2 3
1+e51 +efT 1661
32 2 33102 i) gt st z C
and  y(+2,-2] = %”"1‘3,) $ol+2,—2] = AR 3h el ) and y,[42,-2] = 4%, $al+2.-2] =

9+9552 +9e£2 +e$2 _1+4e%2 ,ef

] egl +8512) +64e¢ !
g el & 2 3
NS 1ie te Cyoiet”) g Val42, —2] = _avie c1mae) e £ = _6ix — 18y — 54it + 662, £? = 10ix — 50y + 250it + 6t2,

@ " [®)]
145 e85 10655 1ot et _gizees

£® — 4ix — 68y + 196it + 62, £V = 2ix — 2y + 2it — 262, £{¥ = 4ix — 8y + 16it — 22, £> = 6ix — 10y + 18it — 2¢2, respectively.

VEIOWs3 (P, @75 &5 Co(D)
Wo(®7, @55 @5, @) C1(0), C2(D))

V2 F 0T Ol + b)(1 + B 2210 (5.70)
__ 7c

B ]<1ect1+51—2f(t) _ kze¢12+ﬂ2*2f([)*co ko a1 +B1+oa+B2—2f(t)—Co ’
L@ h I T r+5¢ )

Yi[+2, -2]=—

$2[+2, —2] = ¥2[+2, —2] =0, where Co =1InC, ko = K2k3+ki k2 lz+k2k2117k2kzlz kik2lh —K212

From graph of the module u[+2, —2] at y =0 is plotted in Fig. 2, we find that dlfferent sources {¢a[+2, —2], ¥2[+2, —2]}
have different soliton wave solutions which mainly affect the shape of the soliton solutions. From Eq. (5.7a), we can find
that the solution only have some singularities when e*1+A1—2f() 4 e@2+F2—Co 4 % e thrteathr—2f0-Co — _1,
Otherwise, the solution u[+2, —2] is always free of singularities.

In a similar way, for Ym, N e N, N > m, when C;(t), j=1,...,m, are taken to be arbitrary functions in t and C;(t),
j=m+1,..., N, are taken to be numerical constants, we can get the N-soliton solution of (5.5) with degree m.

5.2. Rational solution

Example 3 (Lump solution for the mKPIESCS). We take u = 0, ¢1 = ael*+iK’y ;= be=ix=ik’y 3 the initial solution of (5.1)
with N=1 and let

o = (x —2ly + 3%t — (sbki;2>e ibeeHil?y—iPt— o = o i—ilPy=iPt+ {2 (5.8)

where | # +k, a,b,k,l € R and C(t) = 0; then by DT (3.18), we get the 1-lump solution for the mKPIESCS (5.1) with m =1
as follows

PP, o il

u[—H,—l]:aln( = ):1—11—1 - : . (5.9a)
CO+ [ @y @y dx x—2ly+3Pt — | — L

$1[+1, —1] = ael iy (1 - i >e"<x+lk2y ibx—ily—iPt+ (5.9b)

’ (e (T — 21yl + 3Pt — ilx + )

i _ 2; _ abkti ,—ilx+il2y—ilr— 9%
o kil 4ibkl(x — 2ly + 31t — 5775 kH )
Y1[+1, —1]1=be : . — (5.90
(k+D(1 —4ily + 6ilt + Z22%)

From Eq. (5.9a), we can find that the solution only have some singularities when x — 2ly + 31t — ; — (Z’ff)’z = 0. Otherwise,
the solution u[+2, —2] is always free of singularities.
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il
A
/ ||.\\\“l
A

fe—ix+y+it
At te—Axt2y+28it
fJo—ixt+y+it
Val+2, 2] = 4t —3e— A2y +28it $2[+2,-2]= 2t —3¢2ix—8iy—08it and ¥5[+2, —2] = 2t —5e2ix—8iy—98it * $2[+2,-2]= 41+ 5edixTby—124it and Y[+2, -2] = At 4eRinFoy—124it *

respectively.

Fig. 3. (a), (b) and (c) showing the module of u[+2,—2] at y =0 are the solutions of breather type of Eqs. (5.1) with ¢,[+2, 2] = and

4o 3i(x+iy—90) 9e—3ix-3y+27it 5ix—5y—125it 4e5ix+5y—125it

More generally, if we take

e o .9 .13 abl}-t o .2 3 abljt
abk;ti ) —ilperilfy=ilit— g —iljx=ilfy—ijt+ =
J

_ J’ ¢+= N 510
ki +1;)2 2 =¢ (510)

where [; # +kj, a,b,kj,ljeR and C;(t) =0, j=1,...,N. Then we will give the multi-lump solution for the mKPIESCS with
N = 1. Using the same method, we can get a similar Lump solution for the mKPIIESCS.

— 2
o = (x—211y+31jt

5.3. Solutions of breather type

Example 4 (Solutions of breather type for the mKPIESCS). We take u = 0 as the initial solution for the mKPIESCS (5.1) with
N =0. If we take

o = e—i§1x+i£i2y—i§i3t7 ¢2+H _ eimx—inl—zy—in?t7 Ci(t) =ie?fi®, =12 (5.11)

where (£1,&) = (ki.11), (11.72) = (h. k1), ki.ly € C, Im(ky) # 0, Im(ly) # 0. (Here we take ky = —ai, I; = —bi, fi(t) =
f2(6)t.) We will get the solutions of breather type for the mKPIESCS by (4.5a), (4.5e) and (4.5f) as follows:

(2ta + 2tb +efbxfbiy+b3t7ax+aiyfa3ta+efaxfaiy+a3tfbxfbiy7b3tb)t(a+b)2

ul+2,-21= (ta+th+ e—bx—biy+b3t—ax+aiy—a3ta) (ta+th+ e—ax—aiy+a3t—bx—biy—b3tb) ’ (512a)
—b(x+iy+b2t)
e (a+b)
$1l+2, 2] = ta+th+ e—ax—aiy+a3t—bx—biy—b3tp’ (512b)
e0(=x—iy+a%t) (g & p
Yi[+2, -2]1=— @+b) (5.12¢)

e—ax—aiy+a3t—bx—biy—b3tg _ tq — tp’

efa(xfiyﬂzzt)(a +b)
$2l+2, —2] = ta+th + e—bx—biy—b3t—ax-+aiy—da3tg’ (512d)

e—b(x+iy+b2t) (a+b)

Yo[+2, —2]=— (5.12e)

e—bx—biy—b3t—ax+aiy—a3th _ tq —th’

From graph of the module u[+2, —2] at y = 0 is plotted in Fig. 3, we find that different sources {¢,[+2, —2], ¥2[+2, —2]}
have different the breather types of solutions which mainly affect the shape of the breather solutions. From Eq. (5.12a), we

can find that the solution only have some singularities when ge~@+)x—i@+hy—@-b>t — _ (g { hy¢ and

be—@+bx=i@+h)y+@-b>t _ _ g 4 py¢.

Otherwise, the solution u[+2, —2] is always free of singularities.
More generally, if we take

B = e ENHIE YIS gk eIy ) =20 =1, 2N; (5.13)

where (&1, ..., &n8) = K1, kni oo I, 1y oo o) = (4, 2 Ins ke, - k), ki 1 € C, Im(k;) £ 0, Im(l;) # 0. Similarly,
we can get the solution of breather type for the mKPIIESCS.
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5.4. Mixture of the exponential solutions

Example 5 (Mixture of the exponential for the mKPIIESCS). We take u = 0 as the initial solution for the mKPIIESCS (5.5) with
N =0. If we take

dﬁl_:(x+2py—3p2t)eg, @;:eé, cb;:(x—qu—qut)e”,

+ - ezf(t) C
D =e’, Ci(t) = , CGt)y=——o, (5.14)
4 p+q p+gq

where & = px + p?y — p3t, n =qx — ¢y — ¢t (p,q € C), f(t) is an arbitrary function in t and C is a constant, we will
obtain mixture of the exponential solution for the KPIIESCS with degree m =1 as follows

2py — 3p?t
u[+2, 2] :81n< XEPy p+2 T e ) (5.15a)
1+ (p + @) (x +2py — 3p?t) + TH=P==PTe
VA (p +9)*Boef ©
$i1l+2,—21= P ; ot (5.15b)
(p + q)%e2/O=1 4 [4g — (qCo + 1)(p + q) + Ao(p + )% + qAoBo(p + 9)?]
[2f®) 4 20f®-1
o(p+q)e
Yi[+2, —2] = an (5.15¢)

1—pCo+ (p+q)(14 pAgBo — Bo + e/ O—E-n)’

where Ag =x+ 2py — 3p%t, Bg =x — 2qy — 3q%t, Co = 4x — 2qy — 3q*t = 2ky — 3k?t. From Eq. (5.15a), we can find that the
solution only have some singularities when x+2py —3p%t =0 and 1+ (p +q)(x+2py — 3p2t) + qx+2pqy_3‘;2_fé+ezm)féfn =0.
Otherwise, the solution u[+2, —2] is always free of singularities.

Similarly, we can get the solution of mixture of the exponential for the mKPIESCS.
6. Conclusion

With the constrained flows of mKP hierarchy, constructed mKP hierarchy with self-consistent sources and their Lax
representation. Based on the conjugate Lax pairs, we construct the generalized binary Darboux transformation and the
N-times repeated Darboux transformation with arbitrary functions at time t for the mKPESCS which offers a non-auto-
Bdcklund transformation between two mKPESCSs with different degrees of sources. With the help of these transformations,
some new solutions for the mKPESCSs such as soliton solutions, rational solutions, breather type solutions and exponential
solutions are found by taking the special initial solution for auxiliary linear problems and the special functions of t-time.
And we also have some description of these solutions. It is convinced that this approach for constructing systems with self-
consistent sources and generalized Darboux transformation technique are available for other nonlinear evolution equations
in mathematical physics.
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