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In this paper we derive a family of asymptotic expansions for the nth Landau constant Gn .
The proof is based on a new general integral representation of the constants in terms of
a Hypergeometric Function. As a consequence we prove two conjectures related to earlier
asymptotic developments of the Gn ’s.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and previous results

Let Tn( f ) be the polynomial operator, that associates to each function f , holomorphic on the open unit disk, the partial
sum of order n of its Taylor series f (z) = ∑

k�0 ak zk . In 1913, Landau [3] showed that if | f (z)| < 1 for |z| < 1, then∣∣∣∣∣
n∑

k=0

ak

∣∣∣∣∣ � Gn

and ‖Tn‖ = Gn , where

Gn = 1 +
(

1

2

)2

+
(

1 · 3

2 · 4

)2

+
(

1 · 3 · 5

2 · 4 · 6

)2

+ · · · +
(

1 · 3 · · · (2n − 1)

2 · 4 · · · (2n)

)2

is the nth Landau constant [7,9].
The investigation of the asymptotic behavior of Gn was begun by Landau, who proved that

Gn ∼ 1

π
logn,

then Watson [9] established the following asymptotic formula

Gn = 1

π
log(n + 1) + 1

π
(γ + 4 log 2) + o(1).

Here γ = 0.577215 . . . is the Euler–Mascheroni constant. Recently, Zhao [10] gave a much better approximation as follows

Gn = 1

π
log(n + 1) + 1

π
(γ + 4 log 2) − 1

4π(n + 1)
+ 5

192π(n + 1)2
+ O

(
1

(n + 1)3

)
.

More recently, Mortici [4] extended this asymptotic formula to
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Gn = 1

π
log(n + 1) + 1

π
(γ + 4 log 2) − 1

4π(n + 1)
+ 5

192π(n + 1)2

+ 3

128π(n + 1)3
− 341

122880π(n + 1)4
+ O

(
1

(n + 1)5

)
.

Finally, A. Nemes and the author (hereinafter called “they”) established a complete asymptotic expansion for Gn in terms of
1/(n + 1) [5]. First, they showed that

Gn ∼ 1

π
log

(
n + 1

2

)
+ 1

π
(γ + 4 log 2) −

∑
k�1

αk

(n + 1
2 )k

(1.1)

as n → +∞, where the αk ’s are certain computable constants. From this expansion it followed that the Landau constants
Gn have the following asymptotic expansion

Gn ∼ 1

π
log(n + 1) + 1

π
(γ + 4 log 2) −

∑
k�1

βk

(n + 1)k
(1.2)

as n → +∞, where βk ’s, again, are some computable constants. The computation of the first few coefficients αk and βk led
them to the conjecture that βk = (−1)kαk for every k � 1. In this paper we show that such an identity indeed holds by
proving the following more general result:

Theorem 1.1. Let 0 < h < 3/2. The Landau constants Gn have the following asymptotic expansions

Gn ∼ 1

π
log(n + h) + 1

π
(γ + 4 log 2) −

∑
k�1

gk(h)

(n + h)k
(1.3)

as n → +∞, where the coefficients gk(h) are certain computable constants that satisfy gk(h) = (−1)k gk(3/2 − h) for every k � 1.

By the uniqueness theorem on asymptotic series αk = gk(1/2), βk = gk(1), therefore we have indeed proved the above
conjecture. For the sake of completeness, we obtain an explicit expression for the coefficients gk(h) in Appendix A.

In the same paper they derived the first few terms of an asymptotic series for Gn in terms of 1/(n + 3/4),

Gn ∼ 1

π
log

(
n + 3

4

)
+ 1

π
(γ + 4 log 2) + 11

192π(n + 3
4 )2

− 1541

122880π(n + 3
4 )4

+ 63433

8257536π(n + 3
4 )6

− 9199901

1006632960π(n + 3
4 )8

+ 317959723

17716740096π(n + 3
4 )10

− · · · .

This suggested that there might exist an alternating even type asymptotic series for the Gn ’s in terms of 1/(n + 3/4). We
show that such an asymptotic expansion really exists by proving the following theorem:

Theorem 1.2. The Landau constants Gn have the following asymptotic expansion

Gn ∼ 1

π
log

(
n + 3

4

)
+ 1

π
(γ + 4 log 2) −

∑
k�1

(−1)kγk

π(n + 3
4 )2k

as n → +∞, where the coefficients γk are positive rational numbers.

Note that we must have γk = (−1)kπ g2k(3/4).
The proofs are based on a new general integral representation of the Gn constants.

2. A general integral representation

For later use, we need the following lemma:

Lemma 2.1. Fix 0 < h < 3/2 and let

F (t) = 2 F1

(
1

2
,

1

2
;1; t

)
=

∑
k�0

(
2k

k

)2 1

24k
tk, |t| < 1, (2.1)

where 2 F1(a,b; c; t) is the Hypergeometric Function and t is complex. The function
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Γh(x) =
{

1 − xe(h−1/2)x

ex−1 F (1 − e−x), x > − log 2 and x �= 0,

0, x = 0

is continuous on (− log 2,+∞) and can be extended into a complex analytic function near the origin.

Proof. The function 1 − e−x maps (− log 2,+∞) onto (−1,1). Since the function F is analytic on (−1,1), we conclude that
F (1 − e−x) is a well-defined continuous function on (− log 2,+∞). The function{ x

ex−1 , x �= 0,

1, x = 0
(2.2)

is continuous for every real x, hence Γh is continuous on (− log 2,+∞). Now we regard x as a complex variable. It is clear
that F (1 − e−x) is a well-defined complex analytic function near the origin. The function (2.2) is complex analytic near x = 0
since it has the power series∑

k�0

Bk

k! xk

converges for |x| < 2π . Here Bk is the kth Bernoulli Number. Hence, the Γh can be extended into a complex analytic function
near the origin. �

We are in position to state the main result of this section.

Theorem 2.1. Fix 0 < h < 3/2. The nth Landau constant Gn can be expressed in the form

Gn = 1

π
log(n + h) + 1

π
(γ + 4 log 2) + 1

π

+∞∫
0

e−(n+h)x Γh(x)

x
dx. (2.3)

It is interesting to note that the function F defined by (2.1) appears in the ordinary generating function of the Landau
constants since

F (x)

1 − x
=

∑
n�0

Gnxn.

We shall use the following representation of the ψ Digamma Function (for details about this function see, e.g., [6]):

Lemma 2.2. Suppose that t > 0 and a > 0, a being fixed. Then

ψ(t + a) = log t +
+∞∫
0

(
1

x
− e(1−a)x

ex − 1

)
e−tx dx.

Proof. Our starting point is the representation

ψ(s) =
+∞∫
0

(
e−x

x
− e(1−s)x

ex − 1

)
dx,

valid for s > 0. Suppose that t > 0 and a > 0, a being fixed. The substitution s = t + a yields

ψ(t + a) =
+∞∫
0

(
e−x

x
− e(1−(t+a))x

ex − 1

)
dx.

The formula

log t =
+∞∫
0

e−x − e−tx

x
dx,

and a straightforward calculation gives
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ψ(t + a) =
+∞∫
0

(
e−x

x
− e−tx

x
− e(1−(t+a))x

ex − 1
+ e−tx

x

)
dx

=
+∞∫
0

e−x − e−tx

x
dx +

+∞∫
0

(
1

x
− e(1−a)x

ex − 1

)
e−tx dx

= log t +
+∞∫
0

(
1

x
− e(1−a)x

ex − 1

)
e−tx dx. �

Proof of Theorem 2.1. Cvijović and Klinowski [2] showed that

Gn = 1

π
ψ

(
n + 3

2

)
+ 1

π
(γ + 4 log 2) −

∑
k�1

(
2k

k

)2 1

24kπ

(k − 1)!
(n + 3

2 )((n + 3
2 ) + 1) · · · ((n + 3

2 ) + k − 1)
. (2.4)

By the Beta integral we have

(k − 1)!
(n + 3

2 )((n + 3
2 ) + 1) · · · ((n + 3

2 ) + k − 1)
=

+∞∫
0

e−(n+3/2)x(1 − e−x)k−1
dx =

+∞∫
0

e−(n+1/2)x

ex − 1

(
1 − e−x)k

dx.

Hence

∑
k�1

(
2k

k

)2 1

24kπ

(k − 1)!
(n + 3

2 )((n + 3
2 ) + 1) · · · ((n + 3

2 ) + k − 1)
= 1

π

∑
k�1

(
2k

k

)2 1

24k

+∞∫
0

e−(n+1/2)x

ex − 1

(
1 − e−x)k

dx

= 1

π

+∞∫
0

e−(n+1/2)x

ex − 1

∑
k�1

(
2k

k

)2 1

24k

(
1 − e−x)k

dx

= 1

π

+∞∫
0

e−(n+1/2)x F (1 − e−x) − 1

ex − 1
dx.

Plugging this into (2.4) yields

Gn = 1

π
ψ

(
n + 3

2

)
+ 1

π
(γ + 4 log 2) − 1

π

+∞∫
0

e−(n+1/2)x F (1 − e−x) − 1

ex − 1
dx. (2.5)

Using the lemma with t = n + h and a = 3/2 − h (0 < h < 3/2) we get

1

π
ψ

(
n + 3

2

)
= 1

π
log(n + h) + 1

π

+∞∫
0

(
1

x
− e(h−1/2)x

ex − 1

)
e−(n+h)x dx.

Plugging this into (2.5) and manipulating the terms under the integral we deduce (2.3). �
3. The proof of Theorem 1.1

Since Γh(0) = 0, from Lemma 2.1 we conclude that a power series

Γh(x)/x =
∑
k�0

g̃k(h)xk (3.1)

holds as x → 0+. From the asymptotic formula (see formula (2.8) in [8])

2 F1

(
1

2
,

1

2
;1;1 − t

)
= − 1

π
log t + O(1), t → 0+,

we have

F
(
1 − e−x) = x + O(1)
π
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as x → +∞. Hence, Γh(x)/x = o(ex) as x → +∞. These imply that the integral in (2.3) satisfies the conditions of Watson’s
Lemma (see, e.g., [6]), and we obtain the asymptotic expansion

Gn ∼ 1

π
log(n + h) + 1

π
(γ + 4 log 2) + 1

π

∑
k�1

(k − 1)!g̃k−1(h)

(n + h)k
(3.2)

as n → +∞. If we set

gk(h) = − (k − 1)!g̃k−1(h)

π
, (3.3)

we get the form as it appears in Theorem 1.1. In order to prove the relation gk(h) = (−1)k gk(3/2 − h), it is enough to show
that g̃k−1(h) = (−1)k g̃k−1(3/2 − h). This is equivalent to the assertion Γh(x) = Γ3/2−h(−x) near x = 0. From the well-known
relation (see, e.g., [1, p. 560])

2 F1(a,b; c; t) = (1 − t)−a
2 F1

(
a, c − b; c; t

t − 1

)
, −1 < t <

1

2
,

it follows that

F
(
1 − e−x) = ex/2 F

(
1 − ex) (3.4)

near x = 0. Hence, as x → 0

Γh(x) = 1 − xe(h−1/2)x

ex − 1
F
(
1 − e−x) = 1 − −xe(h−1/2)x

1 − ex
ex/2 F

(
1 − ex)

= 1 − −xe(h−1)x

e−x − 1
F
(
1 − ex) = 1 − −xe((3/2−h)−1/2)(−x)

e−x − 1
F
(
1 − ex) = Γ3/2−h(−x).

4. The proof of Theorem 1.2

By Theorem 1.1 it is obvious that in the case h = 3/4 the asymptotic expansion (1.3) is even-type, since gk(3/4) =
(−1)k gk(3/4). Using the notations of the previous section, the coefficients γk of Theorem 1.2 can be written as γk =
(−1)kπ g2k(3/4) = (−1)k−1(2k − 1)!g̃2k−1(3/4). It remains to show that the γk ’s are positive rational numbers. This is equiv-
alent to the rationality of the g̃2k−1(3/4)’s and the assertion (−1)k−1 g̃2k−1(3/4) > 0 for k � 1. Hereinafter t is complex and
x is real from a small neighborhood of 0. Now we use the fact that Γ3/4 is complex analytic around the origin. In the
imaginary axis, near x = 0,

Γ3/4(ix) =
∑
k�1

(−1)k g̃2k−1(3/4)x2k.

From the transformation formula (see, e.g., [1, p. 560])

2 F1(a,b;2b; t) = (1 − t)−
a
2 2 F1

(
a,2b − a;b + 1

2
;− (1 − √

1 − t)2

4
√

1 − t

)
,

it follows that

F
(
1 − e−x) = ex/4 F

(
− (1 − e−x/2)2

4e−x/2

)
= ex/4 F

(
− sinh2

(
x

4

))
.

This gives

−Γ3/4(ix) = ixeix/4

eix − 1
F
(
1 − e−ix) − 1 = ixeix/4

eix − 1
eix/4 F

(
− sinh2

(
ix

4

))
− 1 =

x
2

sin( x
2 )

F

(
sin2

(
x

4

))
− 1.

Now, we use the relation [1, p. 560]

1 F2(a,b;2b; t) =
(

1 + √
1 − t

2

)−2a

2 F1

(
a,a − b + 1

2
;b + 1

2
;
(

1 − √
1 − t

1 + √
1 − t

)2)

to obtain

F

(
sin2

(
x

4

))
=

(1 +
√

1 − sin2( x
4 )

2

)−1

F

((1 −
√

1 − sin2( x
4 )

1 +
√

1 − sin2( x )

)2)
= 1

cos2( x
8 )

F

(
tan4

(
x

8

))
.

4
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This gives

−Γ3/4(ix) =
x
2

sin( x
2 )

1

cos2( x
8 )

F

(
tan4

(
x

8

))
− 1,

and therefore
x
2

sin( x
2 )

1

cos2( x
8 )

F

(
tan4

(
x

8

))
− 1 =

∑
k�1

(−1)k−1 g̃2k−1(3/4)x2k. (4.1)

The series

x
2

sin( x
2 )

=
∑
k�0

(−1)k−1(22k−1 − 1)B2k

22k−1(2k)! x2k,

1

cos2( x
8 )

=
∑
k�0

(−1)k(22k+2 − 1)B2k+2

24k−2(2k + 2)(2k)! x2k,

tan

(
x

8

)
=

∑
k�1

(−1)k−1(22k − 1)B2k

24k−3(2k)! x2k−1,

F
(
x4) =

∑
k�0

(
2k

k

)2 1

24k
x4k

all have positive rational coefficients and thus the series in (4.1) too.

Appendix A

In view of expressions (3.1) and (3.3), we have the exponential generating function

− 1

π
Γh(x) =

∑
k�1

kgk(h)
xk

k! . (A.1)

We shall use the exponential generating functions of the S(k,m) Stirling Numbers of the Second Kind and the Bk(t) Bernoulli
Polynomials:

(
ex − 1

)m = m!
∑
k�m

S(k,m)
xk

k! ,
xetx

ex − 1
=

∑
k�0

Bk(t)
xk

k! .

A simple series transformation gives

F
(
1 − e−x) =

∑
m�0

(
2m

m

)2 1

24m

(
1 − e−x)m

=
∑
m�0

(
2m

m

)2
(−1)m

24m
m!

∑
k�m

(−1)k S(k,m)
xk

k!

=
∑
k�0

(
k∑

m=0

(−1)k+m
(

2m

m

)2 m!S(k,m)

24m

)
xk

k! ,

which yields

− 1

π
Γh(x) = 1

π

xe(h−1/2)x

ex − 1
F
(
1 − e−x) − 1

π

= 1

π

∑
k�0

Bk

(
h − 1

2

)
xk

k! ×
∑
k�0

(
k∑

m=0

(−1)k+m
(

2m

m

)2 m!S(k,m)

24m

)
xk

k! − 1

π

=
∑(

1

π

k∑((
k

j

)
Bk− j

(
h − 1

2

) j∑
(−1) j+m

(
2m

m

)2 m!S( j,m)

24m

))
xk

k! .

k�1 j=0 m=0
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Comparing this with (A.1) we obtain the relatively simple representation

gk(h) = 1

πk

k∑
j=0

((
k

j

)
Bk− j

(
h − 1

2

) j∑
m=0

(−1) j+m
(

2m

m

)2 m!S( j,m)

24m

)
.

The first few are given by

g1(h) = 4h − 3

4π
,

g2(h) = 96h2 − 144h + 43

192π
,

g3(h) = 128h3 − 288h2 + 172h − 21

384π
,

g4(h) = 30720h4 − 92160h3 + 82560h2 − 20160h − 619

122880π
,

g5(h) = 24576h5 − 92160h4 + 110080h3 − 40320h2 − 2476h + 1425

122880π
.
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