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1. Introduction

A nest algebra is an operator algebra whose invariant subspace lattice is a nest. Since Ringrose introduced them in 1965,
nest algebras have been widely studied, see [3,11]. The most extensive results known are obtained in the Hilbert space
case. It is natural and interesting to extend these results to the Banach space case. The purpose of this paper is to extend
to the Banach space setting the result about Lie isomorphisms between nest algebras on Hilbert spaces by Marcoux and
Sourour [12]. The techniques here are quite different from those in Hilbert space case. Motivation for this is the recent
trend to study the well-known and important results to spaces lacking inner products and projections (see for example
[4,5,11,16,17]).

Let A be an associative algebra. Then A becomes a Lie algebra under the Lie product [A, B] = AB − B A. A Lie homo-
morphism φ of A into another associative algebra is a linear map which preserves the Lie product, that is, φ([A, B]) =
[φ(A), φ(B)] for all A, B ∈ A. As usual, a bijective Lie homomorphism is called a Lie isomorphism. The study of Lie iso-
morphisms of associative algebras and operator algebras, primarily focusing upon their relations to associative (anti-)
isomorphisms, has a long history. See [1,2,6,7,10,12–14] and the references therein.

The main result in this paper is as follows.

Theorem 1.1. Let X and Y be Banach spaces. Let N and M be nests on X and Y , respectively. Suppose that ψ is a Lie isomorphism
from the nest algebra AlgN onto the nest algebra AlgM. Then one of the following holds.

(1) There exist an invertible operator T in B(Y , X) and a linear functional τ on AlgN vanishing on each commutator such that

ψ(A) = T −1 AT + τ (A)I

for all A ∈ AlgN .
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(2) There exist an invertible operator T in B(Y , X∗) and a linear functional τ on AlgN vanishing on each commutator such that

ψ(A) = −T −1 A∗T + τ (A)I

for all A ∈ AlgN .

For the proof of our results, in Section 3 we describe the structure of commutative Lie ideals. This characterization makes
it possible to identify the behavior of the Lie isomorphism on some special sets of operators. In fact, we note that the
introduction of techniques of commutative Lie ideals in the treatment of Lie isomorphisms is perhaps the most interesting
novelty in this paper.

2. Preliminaries

Throughout, all algebras and vector spaces will be over F, where F is either the real field R or the complex field C.
Given a Banach space X with the topological dual X∗ , by B(X) we mean the algebra of all bounded linear operators
on X . The terms operator on X and subspace of X will mean bounded linear map of X into itself and norm closed linear
manifold of X , respectively. For A ∈ B(X), denote by A∗ the adjoint of A. For any non-empty subset L ⊆ X , L⊥ denotes its
annihilator, that is, L⊥ = { f ∈ X∗: f (x) = 0 for all x ∈ L}. For x ∈ X and f ∈ X∗ , the rank-one operator x ⊗ f is defined by
(x ⊗ f )z = f (z)x.

A nest N on a Banach space X is a totally ordered family of subspaces of X which contains (0) and X , and is complete
in the sense that it is closed under the formation of arbitrary closed linear spans (denoted by

∨
) and intersections (denoted

by
∧

). For E ∈N , we define

E− =
∨

{F ∈ N : F < E}
and

E+ =
∧

{F ∈ N : F > N}.
It is not difficult to verify that X = ∨{E ∈ N : E− < X} = ∨{E+: E ∈ N , E < X} and (0) = ∧{E ∈ N : E+ > (0)} =∧{E−: E ∈ N , E > (0)}. The nest algebra AlgN associated to the nest N is the set of operators on X leaving every
subspace in N invariant, that is,

AlgN = {
A ∈ B(X): Ax ∈ E for every x ∈ E and for every E ∈ N

}
.

Lemma 2.1. (See [8,16].) Let N be a nest. Then the rank-one operator x ⊗ f belongs to AlgN if and only if there exists a subspace E
in N such that x ∈ E and f ∈ E⊥− . Here E⊥− means (E−)⊥ .

From the lemma, one can see that nest algebras are rich in rank-one operators. Using this property, there is a character-
ization of idempotents. By idem(N ) we denote the set of all idempotent operators in the nest algebra AlgN .

Lemma 2.2. (See [12, Lemma 3.1].) Let N be a nest and A be in AlgN .

(1) A ∈ FI + idem(N ) if and only if [A, [A, [A, T ]]] = [A, T ] for all T ∈ AlgN .
(2) A is the sum of a scalar operator and an idempotent operator whose range belongs to N if and only if [A, [A, T ]] = [A, T ] for all

T ∈ AlgN .

We remark that this result was proved in [12] for the Hilbert space case but the proof is valid for the Banach space case.

Lemma 2.3. (See [9].) Let N be a nest and A be in AlgN .

(1) If AT = T A for all T ∈ AlgN , then A = λI for some λ ∈ F.
(2) If AT A = 0 for all T ∈ AlgN , then there is an E in N such that AE = 0 and A∗E⊥ = 0.

We close this section with a proposition about rank-preserving linear maps, whose proof can be found in many papers,
for example, [15]. Let E and F be subspaces of X and X∗ respectively. By E ⊗ F we denote the set {x ⊗ f : x ∈ E, f ∈ F }.

Proposition 2.4. Let Xi be an infinite-dimensional Banach space, i = 1,2. Let Ei and Fi be linear subspaces of Xi and X∗
i respectively.

Let Ai be a unital subalgebra of B(Xi) containing Ei ⊗ Fi . Suppose that φ is a linear bijective map from A1 onto A2 which satisfies
φ(FI) = FI and carries FI + E1 ⊗ F1 onto FI + E2 ⊗ F2 . Then one of the following holds.
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(1) There are a bilinear map γ : E1 × F1 → F, linear bijective maps C : E1 → E2 and D : F1 → F2 such that φ(x ⊗ f ) = γ (x, f )I +
Cx ⊗ D f for all x ∈ E1 and f ∈ F1 .

(2) There are a bilinear map γ : E1 × F1 → F, linear bijective maps C : E1 → F2 and D : F1 → E2 such that φ(x ⊗ f ) = γ (x, f )I +
D f ⊗ Cx for all x ∈ E1 and f ∈ F1 .

3. Commutative Lie ideals

In this section, we shall describe commutative Lie ideals in a nest algebra. Throughout this section, N is a nest in a
Banach space X and N 0 =N \ {(0), X} �= ∅.

We begin with an example.

Example 3.1. Let E be in N . Define

I(N , E) = {
A ∈ AlgN : AE = 0 and A∗E⊥ = 0

}
.

In other words, I(N , E) is the set of all operators in AlgN whose ranges are contained in E and whose kernels contain E .
It is not difficult to verify that I(N , E) is an ideal. Moreover, the product of any pair of operators in I(N , E) is zero. So
I(N , E) and FI + I(N , E) are commutative Lie ideals.

We shall show that FI + I(N , E) is a maximal commutative Lie ideal and any maximal commutative Lie ideals arise in
this way. To do this, we need a deeper understanding of I(N , E).

Remark 3.2. The following properties can be straightforward verified. Let E and F be in N 0.

(1) The typical operators in I(N , E) are rank-one operators x ⊗ f with x ∈ E and f ∈ E⊥ .
(2) If AI(N , E)B = 0 with A, B ∈ B(X), then either AE = 0 or B∗E⊥ = 0.
(3) I(N , E) = I(N , F ) if and only if E = F .
(4) I(N , E)I(N , F ) = 0 if and only if F � E .

Lemma 3.3. Let A be in AlgN . Then A ∈ FI + I(N , E) for some E ∈N if and only if

[
A, [A, T ]] = 0 for each T ∈ AlgN . (3.1)

Proof. The necessity is obvious. To verify the sufficiency, we first expand Eq. (3.1) as follows

A2T − 2AT A + T A2 = 0, T ∈ AlgN . (3.2)

For N ∈ N , x ∈ N and f ∈ N⊥− , taking T = x ⊗ f in the above equation and then applying this equation to a vector y ∈ X ,
we get

f (y)A2x − 2 f (Ay)Ax + f
(

A2 y
)
x = 0. (3.3)

We now consider two cases.
Case 1. There is an F in N with F �= (0) such that the restriction of A to F is a scalar multiple of the identity operator

on F . By translating by a scalar operator, we may assume that the restriction of A to F is zero. Thus, for any N in N
with (0) < N � F and any x ∈ N , we have that Ax = 0. Hence Eq. (3.3) gives that (A2)∗ f = 0 for all f ∈ N⊥− . Noting that
X∗ = ∨{N⊥−: (0) < N � F }, we get A2 = 0. Then Eq. (3.2) becomes AT A = 0 for all T ∈ AlgN . Hence A ∈ I(N , E) for some
E ∈N by Lemma 2.3.

Case 2. A|N is not a scalar multiple of the identity operator on N for each non-zero N in N . If we choose f ∈ N⊥− and
y ∈ X such that f (y) = 1, from Eq. (3.3) we get

A2x + μN Ax + γN x = 0

for all x ∈ N with N− �= X . If μN �= μM for some N, M ∈ N , then the restriction of A to min{N, M} is a scalar multiple of
the identity operator on min{N, M}. So μN is independent of N and hence so is γN . Consequently, there are scalars μ and
γ such that

A2x + μAx + γ x = 0

for all x ∈ span{N ∈ N : N− �= X}. Hence A2 + μA + γ I = 0. Now translate A by a scalar operator so that A2 = λI . Then
Eq. (3.2) yields AT A = λT for all T ∈ AlgN . If λ = 0, then A ∈ I(N , E) for some E ∈ N by Lemma 2.3. If λ �= 0, then
AT = 1

λ
(AT A)A = T A for all T ∈ AlgN and so A is a scalar multiple of I by Lemma 2.3. �
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Theorem 3.4. We have:

(1) Let E be in N 0 . Then FI + I(N , E) is a maximal commutative Lie ideal in AlgN .
(2) Let L be a non-trivial commutative Lie ideal in AlgN . Then L ⊆ FI + I(N , E) for some E ∈ N 0 . Hence if L is maximal, then

L = FI + I(N , E) and such E is unique.

Proof. (1) Suppose K is a commutative Lie ideal in AlgN which contains FI + I(N , E). Let A be in K. Then for all x ∈ E
and f ∈ E⊥ , we have

A(x ⊗ f ) = (x ⊗ f )A. (3.4)

From this, we see that there is a scalar λ such that Ax = λx for all x ∈ E . By translating A by a scalar operator we may
assume that λ = 0. Hence Eq. (3.4) gives that A∗E⊥ = 0.

(2) Since L is a commutative Lie ideal, each operator in L satisfies Eq. (3.1). So there are maps λ : L → F and η : L →⋃{I(N , F ): F ∈N 0} such that

A = λ(A)I + η(A), A ∈ L.

Furthermore, for A, B ∈ L and T ∈ AlgN ,
[
η(A),

[
η(B), T

]] = [
A, [B, T ]] = 0,

that is,

η(A)η(B)T − η(A)Tη(B) − η(B)Tη(A) + Tη(B)η(A) = 0. (3.5)

Let E = ∨{F ∈N : η(A)|F = 0 for all A ∈ L}. Then η(A)|E = 0 for all A ∈ L and hence E �= X since L is non-trivial.
Let A be in L. For F > E , we can choose x ∈ F and B ∈ L such that η(B)x �= 0. Taking T = x ⊗ f in Eq. (3.5) for f ∈ F ⊥−

and noting η(B)2 = 0, we get

η(B)(x ⊗ f )η(B) = 0

and

η(A)η(B)(x ⊗ f ) − η(A)(x ⊗ f )η(B) − η(B)(x ⊗ f )η(A) + (x ⊗ f )η(B)η(A) = 0.

The first equation gives η(B)∗ f = 0 since η(B)x �= 0 and then the second equation becomes

η(A)η(B)(x ⊗ f ) − η(B)(x ⊗ f )η(A) = 0

for all f ∈ F ⊥− . So η(A)∗|F ⊥− is a scalar operator. Hence η(A)∗|E⊥ is a scalar operator since span{F ⊥− : F > E} is ∗-weakly

dense in E⊥ . Now noting that (η(A)∗|E⊥ )2 = (η(A)2)∗|E⊥ = 0, we get that η(A)∗|E⊥ = 0.
The proof is complete. �

4. The induced map of ψ on N 0

In this section and foregoing, we assume that N and M are nests on X and Y , respectively, and that ψ is a Lie
isomorphism from AlgN onto AlgM.

Let E be in N 0. Then ψ(FI + I(N , E)) is a maximal commutative Lie ideal in AlgM by Theorem 3.4(1). Hence by
Theorem 3.4(2) there is a unique element F ∈M0 such that ψ(FI + I(N , E)) = FI + I(M, F ). Now we define a map

ψ̂ : N 0 → M0

by

ψ
(
FI + I(N , E)

) = FI + I
(
M, ψ̂(E)

)
.

Lemma 4.1. ψ̂ is bijective.

Proof. Let E and F be in N 0 and suppose that ψ̂(E) = ψ̂(F ). Then by the definition,

ψ
(
FI + I(N , E)

) = ψ
(
FI + I(N , F )

)
and hence by the injectivity of ψ ,

FI + I(N , E) = FI + I(N , F ).
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So E = F . This proves the injectivity of ψ̂ . To show the surjectivity, let M be in M0. Then FI + I(M, M) is a maximal
commutative Lie ideal and so is ψ−1(FI + I(M, M)). It follows that there is an N in N 0 such that

ψ−1(
FI + I(M, M)

) = FI + I(N , N)

and then

ψ
(
FI + I(N , N)

) = FI + I(M, M).

So ψ̂(N) = M by the definition. �
For A ∈ I(N , E) with E ∈N 0, there is a unique operator B ∈ I(M, ψ̂(E)) such that ψ(A) − B ∈ FI . We define a map

ψ̄ :
⋃{

I(N , E): E ∈ N 0} →
⋃{

I(M, F ): F ∈ M0}
by

ψ(A) − ψ̄(A) ∈ FI.

Lemma 4.2. ψ̄ is bijective. Furthermore, ψ̄(I(N , E)) = I(M, ψ̂(E)) for every E ∈N 0 .

Proof. Let A and B be in
⋃{I(N , E): E ∈N 0} and suppose that ψ̄(A) = ψ̄(B). Then ψ(A) − λA I = ψ̄(A) = ψ̄(B) = ψ(B) −

λB I for some λA, λB ∈ F and hence ψ(A − B) ∈ FI . So A − B = λI for some λ ∈ F. Since (A − B)4 = 0, we have λ = 0 and
then A = B . This proves that ψ̄ is injective.

Let E be in N 0. By the definition of ψ̂ , we know that ψ(FI + I(N , E)) = FI + I(M, ψ̂(E)). Then for S ∈ I(M, ψ̂(E)),
there are a scalar λ and an operator T ∈ I(N , E) such that ψ(λI + T ) = S . Hence μI + ψ(T ) = S for some μ ∈ F. Thus
ψ̄(T ) = S by the definition. So ψ̄(I(N , E)) = I(M, ψ̂(E)). This together with the surjectivity of ψ̂ shows the surjectivity
of ψ̄ . �
Lemma 4.3. Let E1 , E2 , E3 be in N 0 such that E1 < E2 < E3 . Suppose that one of ψ̂(E1) < ψ̂(E2), ψ̂(E1) < ψ̂(E3) and ψ̂(E2) <

ψ̂(E3) holds. Then ψ̂(E1) < ψ̂(E2) < ψ̂(E3).

Proof. For i ∈ {1,2,3}, take xi in Ei and f i in E⊥
i such that f1(x2) = f2(x3) = 1. Then xi ⊗ f i ∈ I(N , Ei) and hence ψ̄(xi ⊗

f i) ∈ I(M, ψ̂(Ei)). So for each case of ψ̂(E1) < ψ̂(E2), ψ̂(E1) < ψ̂(E3) and ψ̂(E2) < ψ̂(E3), there holds ψ̄(x3 ⊗ f3)ψ̄(x2 ⊗
f2)ψ̄(x1 ⊗ f1) = 0. Thus we have

ψ(x1 ⊗ f3) = ψ
([

x1 ⊗ f1, [x2 ⊗ f2, x3 ⊗ f3]
])

= [
ψ̄(x1 ⊗ f1),

[
ψ̄(x2 ⊗ f2), ψ̄(x3 ⊗ f3)

]]
= ψ̄(x1 ⊗ f1)ψ̄(x2 ⊗ f2)ψ̄(x3 ⊗ f3)

− ψ̄(x1 ⊗ f1)ψ̄(x3 ⊗ f3)ψ̄(x2 ⊗ f2) − ψ̄(x2 ⊗ f2)ψ̄(x3 ⊗ f3)ψ̄(x1 ⊗ f1) (4.1)

and

ψ(x1 ⊗ f3) = ψ
([

x3 ⊗ f3, [x2 ⊗ f2, x1 ⊗ f1]
])

= [
ψ̄(x3 ⊗ f3),

[
ψ̄(x2 ⊗ f2), ψ̄(x1 ⊗ f1)

]]
= ψ̄(x1 ⊗ f1)ψ̄(x2 ⊗ f2)ψ̄(x3 ⊗ f3)

− ψ̄(x3 ⊗ f3)ψ̄(x1 ⊗ f1)ψ̄(x2 ⊗ f2) − ψ̄(x2 ⊗ f2)ψ̄(x1 ⊗ f1)ψ̄(x3 ⊗ f3). (4.2)

If ψ̄(x1 ⊗ f1)ψ̄(x3 ⊗ f3)ψ̄(x2 ⊗ f2) �= 0, then ψ̂(E1) < ψ̂(E3) < ψ̂(E2) and hence ψ(x1 ⊗ f3) = 0 by Eq. (4.2), a con-
tradiction; If ψ̄(x2 ⊗ f2)ψ̄(x3 ⊗ f3)ψ̄(x1 ⊗ f1) �= 0, then ψ̂(E2) < ψ̂(E3) < ψ̂(E1) and hence ψ(x1 ⊗ f3) = 0 by Eq. (4.2),
a contradiction. Consequently, ψ̄(x1 ⊗ f1)ψ̄(x2 ⊗ f2)ψ̄(x3 ⊗ f3) = ψ(x1 ⊗ f3) �= 0 by Eq. (4.1). This implies that ψ̂(E1) <

ψ̂(E2) < ψ̂(E3). �
Proposition 4.4. ψ̂ is either order-preserving or order-reversing.

Proof. Let E and F be in N 0 with E < F and suppose that ψ̂(E) < ψ̂(F ). Let L and N be in N 0 with L < N . We shall show
that ψ̂(L) < ψ̂(N). Consider twelve possible comparison relations of E , F , L, N:

(1) E = L < F = N ,
(2) E < F = L < N ,
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(3) E = L < F < N ,
(4) E = L < N < F ,
(5) L < E < N = F ,
(6) L < E = N < F ,
(7) E < F < L < N ,
(8) E < L < F < N ,
(9) E < L < N < F ,

(10) L < E < N < F ,
(11) L < N < E < F ,
(12) L < E < F < N .

If the case (1) occurs, then the desired result is clear. If one of cases (2)–(5) occurs, then the desired result immediately
follows from Lemma 4.3. If one of cases (7)–(12) occurs, one can get the desired result by using Lemma 4.3 twice. For
example, suppose that E < F < L < N . Then ψ̂(E) < ψ̂(F ) < ψ̂(L) by Lemma 4.3. Hence ψ̂(F ) < ψ̂(L) < ψ̂(N) by Lemma 4.3
again. �
5. The behavior on idempotent operators

Recall that idem(N ) and idem(M) denote sets of all idempotent operators in AlgN and AlgM, respectively. By
Lemma 2.2(1), we can define the map

ψ̃ : idem(N ) → idem(M)

by

ψ(P ) − ψ̃(P ) ∈ FI, P ∈ idem(N ).

It is easily seen that ψ̃ is bijective.
We shall characterize special elements in idem(N ) and idem(M). To do this, we define, for E ∈N 0, that

Ω1(N , E) = {
P ∈ idem(N ): P E = 0, P∗E⊥ �= 0

}
and

Ω2(N , E) = {
P ∈ idem(N ): P E �= 0, P∗E⊥ = 0

}
.

For F ∈ M0, the sets Ω1(M, F ) and Ω2(M, F ) are analogously defined. If E ∈ N 0 with E < E+ , then the typical elements
in Ω1(N , E) are rank-one operators of the form x ⊗ f with x ∈ E+ , f ∈ E⊥ and f (x) = 1; If E ∈ N 0 with E− < E , then the
typical elements in Ω2(N , E) are rank-one operators of the form x ⊗ f with x ∈ E , f ∈ E⊥− and f (x) = 1.

For simplicity, we shall say that N is incomplemented if AlgN has no non-trivial idempotents whose ranges belong to N .
Thus by Lemma 2.2, N is incomplemented if and only if M is incomplemented.

Remark 5.1. Suppose that N is incomplemented. Let P be in idem(N ) and E in N 0.

(1) If P E = 0 then (I − P )∗E⊥ �= 0. Otherwise the range of the idempotent operator I − P would be E .
(2) If P∗E⊥ = 0 then (I − P )E �= 0. Otherwise the range of the idempotent operator P would be E .

In the following, we write Ê = ψ̂(E) for E ∈N 0.

Lemma 5.2. Suppose thatN is incomplemented. Let E be in N 0 . Then ψ̃(Ω1(N , E)) ⊆ Ω1(M, Ê) or I −ψ̃(Ω1(N , E)) ⊆ Ω2(M, Ê).

Proof. Let P be in Ω1(N , E) and write P̃ = ψ̃(P ). For any C ∈ I(N , E), we have
[

P , [P , C]] = [P ,−C P ] = C P = [C, P ].
It follows, for any D ∈ I(M, Ê), that

[
P̃ , [ P̃ , D]] = [D, P̃ ].

So we have that

P̃ D P̃ = P̃ D

for all D ∈ I(M, Ê). Hence either P̃ Ê = 0 or (I − P̃ )∗ Ê⊥ = 0.
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If P̃ Ê = 0, then P̃∗ Ê⊥ �= 0 since P̃ 2 = P̃ �= 0. So P̃ ∈ Ω1(M, Ê) in this case.
If (I − P̃ )∗ Ê⊥ = 0, then (I − P̃ )Ê �= 0 since (I − P̃ )2 = I − P̃ �= 0. So I − P̃ ∈ Ω2(M, Ê) in this case.
Let P and Q be in Ω1(N , E), and suppose that P̃ ∈ Ω1(M, Ê) and I − Q̃ ∈ Ω2(M, Ê). For any C ∈ I(N , E), we have

[
P , [Q , C]] = P Q C − P C Q − Q C P + C Q P = C Q P = [C, Q P ].

It follows, for any D ∈ I(M, Ê), that

[
P̃ , [Q̃ , D]] = [

D,ψ(Q P )
]
.

Then we have

P̃ Q̃ D − P̃ D Q̃ − Q̃ D P̃ + D Q̃ P̃ = D B − B D,

where B = ψ(Q P ). Since P̃ Ê = 0 and (I − Q̃ )∗ Ê⊥ = 0, the above equation becomes

(I − Q̃ )D P̃ = D B − B D

for all D ∈ I(M, Ê). Since (I − P̃ )∗ Ê⊥ �= 0, we can take f ∈ Ê⊥ and z ∈ Y such that f ( P̃ z) = 1 and f (z) = 0. For any y ∈ Ê ,
we have

(I − Q̃ )(y ⊗ f ) P̃ = (y ⊗ f )B − B y ⊗ f .

Applying this equation to z, we get a scalar λ such that (I − Q̃ )y = λy for all y ∈ Ê . Since I − Q̃ is idempotent and
(I − Q̃ )Ê �= 0, it follows that λ = 1. Hence Q̃ Ê = 0, a contradiction by Remark 5.1.

The proof is complete. �
Similarly, we have

Lemma 5.3. Suppose that N is incomplemented. Let E be in N 0 . Then ψ̃(Ω2(N , E)) ⊆ Ω2(M, Ê) or I −ψ̃(Ω2(N , E)) ⊆ Ω1(M, Ê).

Lemma 5.4. Suppose that N is incomplemented. Let E be in N 0 .

(1) Suppose that Ω1(N , E) is not empty and ψ̃(Ω1(N , E)) ⊆ Ω1(M, Ê). Then ψ̃(Ω2(N , E)) ⊆ Ω2(M, Ê).
(2) Suppose that Ω2(N , E) is not empty and ψ̃(Ω2(N , E)) ⊆ Ω2(M, Ê). Then ψ̃(Ω1(N , E)) ⊆ Ω1(M, Ê).

Proof. We only prove (1); the proof of (2) is similar.
Applying Lemma 5.2 to ψ−1, we get ψ̃(Ω1(N , E)) = Ω1(M, Ê). If Ω2(N , E) is empty, then the lemma is trivial. Now

suppose that Ω2(N , E) is not empty. Let Q be in Ω2(N , E). If I − Q̃ ∈ Ω1(M, Ê), then I − Q = ψ̃−1(I − Q̃ ) ∈ Ω1(N , Ê).
So (I − Q )E = 0. But Q ∗E⊥ = 0, a contradiction by Remark 5.1. �
Lemma 5.5. Suppose that N is incomplemented. Let E and F be in N 0 such that F < E. Suppose that Ω1(N , E) is not empty and
ψ̃(Ω1(N , E)) ⊆ Ω1(M, Ê). Then ψ̃(Ω2(N , F )) ⊆ Ω2(M, F̂ ).

Proof. Fix an element P in Ω1(N , E). Let Q be in Ω2(N , F ) and suppose on the contrary that I − Q̃ ∈ Ω1(M, F̂ ). For any
C ∈ I(N , F ) ∩ I(N , E) we have

ψ(Q C P ) = ψ
([

Q , [C, P ]]) = [
Q̃ , [D, P̃ ]] = Q̃ D P̃ − Q̃ P̃ D − D P̃ Q̃ + P̃ D Q̃ = Q̃ D P̃ − D P̃ Q̃

= D P̃ − D P̃ Q̃ = [D, P̃ − P̃ Q̃ ],
where D = ψ(C). Applying ψ−1 to this equation and writing A = ψ−1( P̃ − P̃ Q̃ ), we get Q C P = C A − AC for all C ∈
I(N , F ) ∩ I(N , E). Thus for all x ∈ F and f ∈ E⊥ , we have

Q x ⊗ P∗ f = x ⊗ A∗ f − Ax ⊗ f .

Hence there exists a scalar λ such that Q x = λx for all x ∈ F (cf. the proof of Lemma 5.2). Since Q is idempotent, either
λ = 0 or λ = 1. If λ = 0, then Q F = 0 and hence Q = Q 2 = 0, a contradiction; If λ = 1, then I − Q = 0, a contradiction. �
Lemma 5.6. Suppose that N is incomplemented and that N 0 has at least two elements and X− < X.

(1) If ψ̃(Ω1(N , X−)) ⊆ Ω1(M, X̂−), then ψ̂ is order-preserving.
(2) If ψ̃(Ω1(N , X−)) ⊆ I − Ω2(M, X̂−), then ψ̂ is anti-order-preserving.
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Proof. We only prove (1). The proof of (2) is similar.
For convenience, we write E1 = X− . Take E2 in N 0 such that E2 < E1. Fix an idempotent P in Ω1(N , E1). Then P̃ ∈

Ω1(N , Ê1), where P̃ = ψ̃(P ). For any Di ∈ I(N , Ê i), write Ci = ψ̄−1(Di). Then Ci ∈ I(N , Ei), i = 1,2.
Suppose on the contrary that ψ̂ is anti-order-preserving. Then Ê1 < Ê2. Thus we have

0 = ψ
([

C1, [C2, P ]]) = [
D1, [D2, P̃ ]] = [D1, D2 P̃ − P̃ D2] = D1 D2 P̃ − D1 P̃ D2.

Taking Di = yi ⊗ gi in the above equation for yi ∈ Ê i and gi ∈ Ê⊥
i , i = 1,2, we get

g1(y2)y1 ⊗ P̃∗g2 = g1( P̃ y2)y1 ⊗ g2.

Choosing y2 ∈ Ê2 and g1 ∈ Ê⊥
1 such that g1(y2) �= 0, we see that there is a scalar λ such that P̃∗ g2 = λg2 for all g2 ∈ Ê⊥

2 .
Since P̃∗ is idempotent, either λ = 0 or λ = 1.

If λ = 0, then g1( P̃ y2) = 0 for all g1 ∈ Ê⊥
1 and y2 ∈ Ê2. This implies that P̃∗ Ê⊥

1 ⊆ Ê⊥
2 . Hence

P̃∗ Ê⊥
1 = P̃∗( P̃∗ Ê⊥

1

) ⊆ P̃∗ Ê⊥
2 = 0.

This conflicts with the fact P̃ ∈ Ω1(N , Ê1).
If λ = 1, then g1( P̃ y2) = g1(y2) for all g1 ∈ Ê⊥

1 and y2 ∈ Ê2. This implies that (̃I − P )∗ Ê⊥
1 ⊆ Ê⊥

2 . Hence

(I − P̃ )∗ Ê⊥
1 = (I − P̃ )∗

(
(I − P̃ )∗ Ê⊥

1

) ⊆ (I − P̃ )∗ Ê⊥
2 = 0.

This together with P̃ Ê1 = 0 implies that P̃ is an idempotent operator onto Ê1, a contradiction. �
6. Preserving rank-oneness

Throughout this section we assume that N is incomplemented and write Ê = ψ̂(E) for E ∈ N 0. Then M is incomple-
mented, either. Moreover, every non-zero subspace in N and M is infinite-dimensional.

Proposition 6.1. Suppose that (0)+ = (0) and X− = X. Let E be in N 0 . Suppose that x ∈ E and f ∈ E⊥ . Then ψ̄(x ⊗ f ) is of rank one.

Proof. It follows from Proposition 4.4 that M is also continuous at (0) and Y . Let D = ψ̄(x⊗ f ). Then D ∈ I(M, Ê). Suppose
on the contrary that D is of rank greater than one. Then there exist a subspace M in M0 and two vectors u and v in M
such that and Du and D v are linearly independent. Hence there are a subspace L in M0 and a functional g in L⊥ such that
g(Du) = 0 and g(D v) �= 0. Obviously, L < Ê < M . Let z be in L and h be in M⊥ . Let A = ψ̄−1(z ⊗ g) and B = ψ̄−1(u ⊗ h).
Then A ∈ I(N , ψ̂−1(L)) and B ∈ I(N , ψ̂−1(M)).

To get a contradiction, we consider some cases.
Case 1. ψ̂ is order-preserving. Then ψ̂−1(L) < E < ψ̂−1(M). So we have

ψ
(

A(x ⊗ f )B
) = ψ

([
A, [x ⊗ f , B]]) = [

z ⊗ g, [D, u ⊗ h]] = (z ⊗ g)D(u ⊗ h) = 0.

It follows from the injectivity of ψ that A(x ⊗ f ) = 0 or (x ⊗ f )B = 0. If A(x ⊗ f ) = 0, then

0 = ψ
([A, x ⊗ f ]) = [z ⊗ g, D] = (z ⊗ g)D,

a contradiction; If (x ⊗ f )B = 0, then

0 = ψ
([x ⊗ f , B]) = [D, u ⊗ h] = D(u ⊗ h),

a contradiction.
Case 2. ψ̂ is anti-order-preserving. Then ψ̂−1(M) < E < ψ̂−1(L). So

ψ
(

B(x ⊗ f )A
) = ψ

([
B, [x ⊗ f , A]]) = [

u ⊗ h, [D, z ⊗ g]] = (z ⊗ g)D(u ⊗ h) = 0.

Hence either B(x ⊗ f ) = 0 or (x ⊗ f )A = 0. If B(x ⊗ f ) = 0, then

0 = ψ
([B, x ⊗ f ]) = [u ⊗ h, D] = −D(u ⊗ g),

a contradiction; If (x ⊗ f )A = 0, then

0 = ψ
([x ⊗ f , A]) = [D, z ⊗ g] = −(z ⊗ g)D,

a contradiction. �
Lemma 6.2. Suppose that (0) < E = X− < X. Suppose that x ∈ E and f ∈ E⊥ . Then ψ(x ⊗ f ) is of rank one.
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Proof. Let D = ψ(x ⊗ f ). Then D ∈ I(M, Ê).
Case 1. ψ̃(Ω1(N , E)) ⊆ Ω1(M, Ê).
Suppose on the contrary that D is of rank at least two. Then there are two vectors u and v in Y such that Du and D v

are linearly independent. Moreover u and v are not in Ê .
By Lemma 5.6, ψ̂ is order-preserving. Then (0) < Y− = Ê < Y . Take h in Ê⊥ such that h(u) = 1. Then u ⊗ h ∈ Ω1(M, Ê).

Let B = ψ̃−1(u ⊗ h). Then B ∈ Ω1(N , E). Let A = ψ−1(z ⊗ g). Here z and g are chosen as follows.
If (0)+ = (0) in N , then (0)+ = (0) in M. Hence there are M in M0 and g in M⊥ such that g(Du) = 0 and g(D v) = 1.

Obviously M < Ê , and hence ψ̂−1(M) < E . Take a non-zero vector z in M . Then A ∈ I(N , ψ̂−1(M)).
If (0)+ > (0) in N , then (0)+ > (0) in M. Let M = ψ̂((0)+). Then (0) < M = (0)+ � Ê . Since M is infinite-dimensional,

there are a vector z in M and a functional g in Y ∗ such that g(Du) = 0 and g(z) = g(D v) = 1. Then A ∈ Ω2(N , (0)+).
Note that in both cases we have A∗ψ̂−1(M)⊥ = 0 and g(Du) = 0 and g(D v) = 1. Thus we have

ψ
(

A(x ⊗ f )B
) = ψ

([
A, [x ⊗ f , B]]) = [

z ⊗ g, [D, u ⊗ h]] = (z ⊗ g)D(u ⊗ h) = 0.

So, A(x ⊗ f ) = 0 or (x ⊗ f )B = 0. If A(x ⊗ f ) = 0, then

0 = ψ
([A, x ⊗ f ]) = [z ⊗ g, D] = (z ⊗ g)D,

a contradiction; If (x ⊗ f )B = 0, then

0 = ψ
([x ⊗ f , B]) = [D, u ⊗ h] = D(u ⊗ h),

a contradiction.
Case 2. ψ̃(Ω1(N , E)) ⊆ I − Ω2(M, Ê).
By Lemma 5.6, ψ̂ is anti-order-preserving. Then (0) < (0)+ = Ê < Y .
Suppose on the contrary that D is of rank at least two. We shall get a contradiction by considering two subcases.
Case 2.1. Y = Y− . Then there are an element M in M0 and vectors u and v in M such that Du and D v are linearly

independent. Let h be in M⊥ and set B = ψ−1(u ⊗ h). Then B ∈ I(N , ψ̂−1(M)). Choose g in Y ∗ such that g(Du) = 0
and g(D v) = 1. Let z = D v . Then z ∈ Ê . Let A = ψ̃−1(z ⊗ g). Then I − A ∈ Ω1(N , E). Obviously Ê < M . It follows that
ψ̂−1(M) < E . We therefore have

ψ
(

B(x ⊗ f )(I − A)
) = ψ

([
B, [x ⊗ f , I − A]]) = [

u ⊗ h, [D,−z ⊗ g]] = 0.

This implies that either B(x ⊗ f ) = 0 or (x ⊗ f )(I − A) = 0.
If B(x ⊗ f ) = 0, then

0 = ψ
([B, x ⊗ f ]) = [u ⊗ h, D] = −D(u ⊗ h),

a contradiction; If (x ⊗ f )(I − A) = 0, then

0 = ψ
([x ⊗ f , I − A]) = [D,−z ⊗ g] = (z ⊗ g)D,

a contradiction.
Case 2.2. Y− < Y . Then there are two vectors u and v such that Du and D v are linearly independent. If both u and v are

in Y− , we can get a contradiction by an argument similar to that in Case 2.1. Now without loss of generality, we can assume
that u is not in Y− . Choose a functional h in Y ⊥− such that h(u) = 1. Set B = ψ̃−1(u ⊗ h). Then I − B ∈ Ω2(N , ψ̂(Y−))

by Lemma 5.4. Take a functional g in Y ∗ such that g(Du) = 0 and g(D v) = 1. Let z = D v . Then z ∈ Ê = (0)+ . Let A =
ψ̃−1(z ⊗ g). Then I − A ∈ Ω1(N , E). Obviously Ê � Y− . It follows that ψ̂−1(Y−) � E . We therefore have

ψ
(
(I − B)(x ⊗ f )(I − A)

) = ψ
([

I − B, [x ⊗ f , I − A]]) = [−u ⊗ h, [D,−z ⊗ g]] = 0.

This implies that either (I − B)(x ⊗ f ) = 0 or (x ⊗ f )(I − A) = 0.
If (I − B)(x ⊗ f ) = 0, then

0 = ψ
([I − B, x ⊗ f ]) = [−u ⊗ h, D] = D(u ⊗ h),

a contradiction; If (x ⊗ f )(I − A) = 0, then

0 = ψ
([x ⊗ f , I − A]) = [D,−z ⊗ g] = (z ⊗ g)D,

a contradiction. �
Lemma 6.3. Suppose that (0) < X− < X. Suppose that P is an idempotent operator of rank one in Ω1(N , X−). Then ψ(P ) is a sum
of a scalar operator and a rank-one operator.
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Proof. By Lemma 6.2, ψ maps X− ⊗ X⊥− onto X̂− ⊗ ( X̂−)⊥ . Let P̃ = ψ̃(P ).
Case 1. ψ̃(Ω1(N , X−)) ⊆ Ω1(M, X̂−). Then X̂− = Y− by Lemma 5.6. Therefore, ψ maps FI + X− ⊗ X⊥− onto FI + Y− ⊗ Y ⊥−

by Lemma 6.2. We now consider two subcases according to Proposition 2.4.
Case 1.1. There are a bilinear map γ : X− × X⊥− → F, and linear bijective maps C : X− → Y− and D : X⊥− → Y ⊥− such that

ψ(x ⊗ f ) = γ (x, f )I + Cx ⊗ D f for all x ∈ X− and f ∈ X⊥− .
Then

ψ
([x ⊗ f , P ]) = ψ

(
x ⊗ P∗ f

) = γ
(
x, P∗ f

)
I + Cx ⊗ D P∗ f

and

ψ
([x ⊗ f , P ]) = [Cx ⊗ D f , P̃ ] = Cx ⊗ P̃∗D f

and so

Cx ⊗ P̃∗D f = γ
(
x, P∗ f

)
I + Cx ⊗ D P∗ f

for all x ∈ X− and f ∈ X⊥− . Since I is of infinite rank, it follows that γ (x, P∗ f ) = 0 and then Cx ⊗ P̃∗D f = Cx ⊗ D P∗ f for all
x ∈ X− and f ∈ X⊥− . Hence P̃∗D f = D P∗ f for all f ∈ X⊥− . Since P is of rank one, it follows that the restriction of P̃∗ to Y ⊥−
is of rank one. Note that P̃∗Y ∗ ⊆ Y ⊥− and hence P̃∗Y ∗ = P̃∗( P̃∗Y ∗) ⊆ P̃∗Y ⊥− . So P̃∗ is of rank one and so is P̃ .

Case 1.2. There are a bilinear map γ : X− × X⊥− → F, and linear bijective maps C : X− → Y ⊥− and D : X⊥− → Y− such that
ψ(x ⊗ f ) = γ (x, f )I + D f ⊗ Cx for all x ∈ X− and f ∈ X⊥− .

Then

ψ
([x ⊗ f , P ]) = ψ

(
x ⊗ P∗ f

) = γ
(
x, P∗ f

)
I + D P∗ f ⊗ Cx

and

ψ
([x ⊗ f , P ]) = [D f ⊗ Cx, P̃ ] = D f ⊗ P̃∗Cx

and so

D f ⊗ P̃∗Cx = γ
(
x, P∗ f

)
I + D P∗ f ⊗ Cx

for all x ∈ X− and f ∈ X⊥− . Since I is of infinite rank, it follows that γ (x, P∗ f ) = 0 and then D f ⊗ P̃∗Cx = D P∗ f ⊗ Cx for
all x ∈ X− and f ∈ X⊥− . Since P is of rank one, it follows that D is also of rank one, which conflicts with that fact that X⊥−
is infinite-dimensional.

Case 2. ψ̃(Ω1(N , X−)) ⊆ I − Ω2(M, X̂−). Then X̂− = (0)+ by Lemma 5.6. Therefore, ψ maps X− ⊗ X⊥− onto (0)+ ⊗
((0)+)⊥ . We now consider two subcases according to Proposition 2.4.

Case 2.1. There are a bilinear map γ : X− × X⊥− → F, and bijective linear maps C : X− → ((0)+)⊥ and D : X⊥− → (0)+ such
that ψ(x ⊗ f ) = γ (x, f )I + D f ⊗ Cx for all x ∈ X− and f ∈ X⊥− .

Then

ψ
([x ⊗ f , P ]) = ψ

(
x ⊗ P∗ f

) = γ
(
x, P∗ f

)
I + D P∗ f ⊗ Cx

and

ψ
([x ⊗ f , P ]) = −[D f ⊗ Cx, I − P̃ ] = (I − P̃ )D f ⊗ Cx

and so

(I − P̃ )D f ⊗ Cx = γ
(
x, P∗ f

)
I + D P∗ f ⊗ Cx

for all x ∈ X− and f ∈ X⊥− . Since I is of infinite rank, it follows that (I − P̃ )D f = D P∗ f for all f ∈ X⊥− . Since P is of rank
one, it follows that the restriction of I − P̃ to (0)+ is of rank one. Hence I − P̃ is of rank one.

Case 2.2. There are a bilinear map γ : X− × X⊥− → F, and linear bijective maps C : X− → (0)+ and D : X⊥− → ((0)+)⊥ such
that ψ(x ⊗ f ) = γ (x, f )I + Cx ⊗ D f for all x ∈ X− and f ∈ X⊥− .

Then

ψ
([x ⊗ f , P ]) = ψ

(
x ⊗ P∗ f

) = γ
(
x, P∗ f

)
I + Cx ⊗ D P∗ f

and

ψ
([x ⊗ f , P ]) = −[Cx ⊗ D f , I − P̃ ] = (I − P̃ )Cx ⊗ D f
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and so

(I − P̃ )Cx ⊗ D f = Cx ⊗ D P∗ f

for all x ∈ X− and f ∈ X⊥− . Since P is of rank one, it follows that D is also of rank one, which conflicts with the fact that
X⊥− is infinite-dimensional. �
Proposition 6.4. Suppose that (0) < X− < X. Let x be in X and f be in X⊥− . Then ψ(x ⊗ f ) is a sum of a scalar operator and a
rank-one operator.

Proof. If f (x) �= 0, the conclusion follows from Lemma 6.3 and the linearity of ψ . Now suppose f (x) = 0. Take x1 in X such
that f (x1) = 1. Let x2 = x − 2x1 and x3 = x − x1. Noting f (xi) �= 0, by Lemma 6.3 we can suppose that

ψ(xi ⊗ f ) = λi I + ui ⊗ hi

for i = 1,2,3. Since

ψ(x ⊗ f ) = ψ
(
(x1 + x3) ⊗ f

) = (λ1 + λ3)I + u1 ⊗ h1 + u3 ⊗ h3,

it is sufficient to show that u1 ⊗ h1 + u3 ⊗ h3 is of rank one. To this end, we observe that

(λ1 + λ2)I + u1 ⊗ h1 + u2 ⊗ h2 = ψ
(
(x1 + x2) ⊗ f

) = ψ(x3 ⊗ f ) = λ3 I + u3 ⊗ h3.

Since I is of infinite rank, it follows that u1 ⊗ h1 + u2 ⊗ h2 = u3 ⊗ h3. This forces that {u1, u3} or {h1,h3} is a linearly
dependent set. Consequently, u1 ⊗ h1 + u3 ⊗ h3 is of rank one. �

Similarly we have

Proposition 6.5. Suppose that (0) < (0)+ < X. Let x be in (0)+ and f be in X∗ . Then ψ(x ⊗ f ) is a sum of a scalar operator and
a rank-one operator.

7. Proof of Theorem 1.1

If N = {(0), X}. Then M= {(0), Y }. So ψ is a Lie isomorphism of B(X) onto B(Y ). Now our result follows from [13].
If N is complemented, so is M. Thus AlgN can be written as

(A1 C1
0 B1

)
with respect to the decomposition X = E ⊕ E ′

for some E ∈ N 0; and AlgM can be written as
(A2 C2

0 B2

)
with respect to the decomposition Y = F ⊕ F ′ for some F ∈ M0.

Now our result follows from [2] (in particular, cf. [2, Corollary 4.5]).
In the sequel, we assume that N is non-trivial and incomplemented. Then M is non-trivial and incomplemented, either.
We distinguish some cases.
Case 1. (0) = (0)+ and X− = X . Then (0) = (0)+ and Y− = Y .
Let E be in N 0. Then by Proposition 6.1, ψ maps FI + E ⊗ E⊥ onto FI + ψ̂(E) ⊗ ψ̂(E)⊥ . Further by Proposition 2.4 and

a standard argument (see, for example, [17]), one of the following holds

(a) there exist a bilinear map γ : span{E × E⊥: E ∈ N 0} → F, and bijective linear maps C : span{x ∈ E: E ∈ N 0} →
span{y ∈ F : F ∈M0} and D : span{ f ∈ E⊥: E ∈N 0} → span{g ∈ F ⊥: F ∈M0} such that

ψ(x ⊗ f ) = γ (x, f )I + Cx ⊗ D f (7.1)

holds for all x ∈ E and f ∈ E⊥ with E ∈N 0;
(b) there exist a bilinear map γ : span{E × E⊥: E ∈ N 0} → F, and bijective linear maps C : span{x ∈ E: E ∈ N 0} →

span{g ∈ F ⊥: F ∈M0} and D : span{ f ∈ E⊥: E ∈N 0} → span{y ∈ F : F ∈M0} such that

ψ(x ⊗ f ) = γ (x, f )I + D f ⊗ Cx (7.2)

holds for all x ∈ E and f ∈ E⊥ with E ∈N 0.

First suppose that (a) holds. For A ∈ AlgN , x ∈ E and f ∈ E⊥ with E ∈ N 0, from ψ([A, x ⊗ f ]) = [ψ(A),ψ(x ⊗ f )] and
Eq. (7.1) it follows that

ψ(A)Cx ⊗ D f − Cx ⊗ ψ(A)∗D f = (
γ (Ax, f ) − γ

(
x, A∗ f

))
I + C Ax ⊗ D f − Cx ⊗ D A∗ f ,

and hence
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C Ax ⊗ D f − Cx ⊗ D A∗ f = ψ(A)Cx ⊗ D f − Cx ⊗ ψ(A)∗D f

since I is infinite-rank. So there exists a scalar operator τ (A) such that

ψ(A)Cx = C Ax + τ (A)Cx

for all x ∈ span{x ∈ E: E ∈ N 0}. Evidently, τ is linear. Define φ = ψ − τ . Then for any A, B ∈ AlgN and x ∈ E with E ∈ N 0,
we have

φ(AB)Cx = C ABx = φ(A)C Bx = φ(A)φ(B)Cx.

Since {Cx: x ∈ E, E ∈ N 0} is dense in Y , we know that φ is an isomorphism. Since isomorphisms between nest algebras
are spatial, the statement (1) holds.

Now suppose that (b) holds. For A ∈ AlgN , x ∈ E and f ∈ E⊥ with E ∈ N 0, from ψ([A, x ⊗ f ]) = [ψ(A),ψ(x ⊗ f )] and
Eq. (7.2) it follows that

ψ(A)D f ⊗ Cx − D f ⊗ ψ(A)∗Cx = (
γ (Ax, f ) − γ

(
x, A∗ f

))
I + D f ⊗ C Ax − D A∗ f ⊗ Cx,

and hence

D f ⊗ C Ax − D A∗ f ⊗ Cx = ψ(A)D f ⊗ Cx − D f ⊗ ψ(A)∗Cx.

So there exists a scalar operator τ (A) such that

ψ(A)∗Cx = −C Ax + τ (A)∗Cx

for all x ∈ span{x ∈ E: E ∈N 0}. Evidently, τ is linear. Define φ = −ψ + τ . Then for any A, B ∈ AlgN and x ∈ E with E ∈N 0,
we have

φ(AB)∗Cx = C ABx = φ(A)∗C Bx = φ(A)∗φ(B)∗Cx.

Since {Cx: x ∈ E, E ∈ N 0} is dense in Y , we have φ(AB)∗ = (φ(B)φ(A))∗ and then φ(AB) = φ(B)φ(A). So φ is an anti-
isomorphism. Hence the statement (2) holds.

Case 2. (0) < X− < X .
By Proposition 6.4, ψ maps FI + X ⊗ X⊥− onto FI + Y ⊗ Y ⊥− or onto FI + (0)+ ⊗ Y ∗ . Hence by Proposition 2.4 and the

argument in the proof of Lemma 6.3, one of the following holds.

(a) For the case ψ̃(Ω1(N , X−)) ⊆ Ω1(M, X̂−), there are linear bijective maps C : X → Y and D : X⊥− → Y ⊥− and a func-
tion γ : X × X⊥− → FI such that

ψ(x ⊗ f ) = γ (x, f ) + Cx ⊗ D f

holds for all x ∈ X and f ∈ X⊥− .
(b) For the case ψ̃(Ω1(N , X−)) ⊆ I − Ω2(M, X̂−), there are linear bijective maps C : X → Y ∗ and D : X⊥− → (0)+ and a

function γ : X × X⊥− → FI such that

ψ(x ⊗ f ) = γ (x, f ) + D f ⊗ Cx

holds for all x ∈ X and f ∈ X⊥− .

Now repeating the argument in Case 1, we see that the statement (1) holds if (a) holds, and that the statement (2) holds
if (b) holds.

Case 3. (0) < (0)+ < X .
Arguing as that in Case 2.
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