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Let X ⊆ R be a bounded set; we emphasize that we are not assuming that X is compact
or Borel. We prove that for a typical (in the sense of Baire) uniformly continuous function
f on X , the lower box dimension of the graph of f is as small as possible and the upper
box dimension of the graph of f is as big as possible. We also prove a local version of
this result. Namely, we prove that for a typical uniformly continuous function f on X , the
lower local box dimension of the graph of f at all points x ∈ X is as small as possible and
the upper local box dimension of the graph of f at all points x ∈ X is as big as possible.

© 2012 Elsevier Inc. All rights reserved.

1. Statements of the main results

For a bounded subset X of R, we investigate the set Cu(X) of uniformly continuous functions on X equipped with the
uniform norm ‖ · ‖∞; we emphasize that the set X is completely arbitrary – for example, we are not assuming that X is
compact or Borel. For a typical (in the sense of Baire) function f ∈ Cu(X), we find the lower box dimension and the upper
box dimension of the graph of f (see Theorem 1). We also obtain a local version of this result, namely, for all x ∈ X , we
find the lower local box dimension and upper local box dimension of the graph of a typical function f ∈ Cu(X) at x (see
Theorem 2); recall that in a metric space X , a set E is called co-meagre if its complement is meagre, and we say that a
typical element x ∈ X has property P if the set E = {x ∈ X | x has property P} is co-meagre. We refer the reader to Oxtoby
[4] for more details.

We start by recalling the definition of the lower and upper box dimensions of subsets of Rd; we note that (with the
exception of Theorem 4.1) we will only be interested in the cases d = 1 and d = 2 – however, for the benefit of the reader,
we present the definitions for an arbitrary positive integer d ∈ N. For δ > 0, let

Qd
δ =

{
d∏

i=1

[
niδ, (ni + 1)δ

] ∣∣∣ n1, . . . ,nd ∈ Z

}
(1.1)

denote the standard δ-grid in Rd , and for a subset E of Rd write

Nδ(E) = ∣∣{Q ∈ Qd
δ

∣∣ Q ∩ E �= ∅}∣∣ (1.2)

for the number of cubes in Qd
δ that intersect E . The lower and upper box dimensions of E are now defined by
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dimB(E) = lim inf
δ→0

log Nδ(E)

− log δ
, (1.3)

and

dimB(E) = lim sup
δ→0

log Nδ(E)

− log δ
, (1.4)

respectively. The reader is referred to Falconer [1] for a thorough discussion of the properties of the box dimensions.
For f ∈ Cu(X), we will write graph( f ) for the graph of f , i.e.

graph( f ) = {(
x, f (x)

) ∣∣ x ∈ X
}
.

The purpose of this paper is to investigate the box dimensions of the graphs of typical functions in Cu(X).
We now state the first of our main results giving a complete description of the global behaviour of a typical function

f ∈ Cu(X).

Theorem 1 (Global results). Let X be a bounded subset of R.

(1) For all f ∈ Cu(X), we have

dimB(X) � dimB
(
graph( f )

)
� dimB(X) + 1.

(2) For a typical function f ∈ Cu(X), we have

dimB
(
graph( f )

) = dimB(X).

(3) For all f ∈ Cu(X), we have

dimB(X) � dimB
(
graph( f )

)
� dimB(X) + 1.

(4) (i) For a typical function f ∈ Cu(X), we have

dimB
(
graph( f )

) = sup
g∈Cu(X)

dimB
(
graph(g)

)
� dimB(X) + 1.

(ii) If, in addition, X only has finitely many isolated points, then for a typical function f ∈ Cu(X), we have

dimB
(
graph( f )

) = dimB(X) + 1.

We note that the statements in Theorem 1(1) and Theorem 1(3) follow immediately from the definitions, and it therefore
suffices to prove the statements in Theorem 1(2) and Theorem 1(4). The statement in Theorem 1(2) is proven in Section 2
and the statements in Theorem 1(4)(i) and Theorem 1(4)(ii) are proven in Section 3 and Section 4, respectively.

Theorem 1 says that for a typical f ∈ Cu(X), the lower and upper box dimensions are as small and as big as they can
be, respectively.

We note that since the lower box dimension is an upper bound for Hausdorff dimension, Theorem 1(2) strengthens a
result by Maudlin and Williams [3] saying the Hausdorff dimension of the graph of a typical function f ∈ C([0,1]) equals 1.
We also note that Humke and Petruska [2] proved that the packing dimension of a typical continuous function f ∈ C([0,1])
is 2.

While it is clear that

sup
g∈Cu(X)

dimB
(
graph(g)

)
� dimB(X) + 1 (1.5)

for any bounded subset X of R, we note that it follows from part (3) and part (4) of Theorem 1 that if X is a bounded
subset of R with only finitely many isolated points, then the inequality in (1.5) is, in fact, an equality, i.e.

sup
g∈Cu(X)

dimB
(
graph(g)

) = dimB(X) + 1.

However, if X has infinitely many isolated points, then the inequality in (1.5) may be strict; indeed, below we present an
example of a bounded subset X of R with countably many isolated points for which

sup
g∈Cu(X)

dimB
(
graph(g)

)
< dimB(X) + 1.

In particular, this shows that Theorem 1(4) cannot be extended to bounded sets with infinitely many isolated points.
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Example. We will now give an example of a bounded subset X of R with infinitely many isolated points such that

sup
g∈Cu(X)

dimB
(
graph(g)

)
< dimB(X) + 1.

Let X = {0} ∪ { 1
n | n ∈ N}. Then X is a bounded set with infinitely many isolated points. It is well known that dimB(X) =

dimB(X) = 1
2 (see, for example, [1, p. 35]), and below we prove that supg∈Cu(X) dimB(graph(g)) � 1. It therefore follows that

sup
g∈Cu(X)

dimB
(
graph(g)

)
� 1 <

3

2
= dimB(X) + 1.

We will now prove that supg∈Cu(X) dimB(graph(g)) � 1. To prove this, fix a function f ∈ Cu(X). Since f is uniformly contin-
uous and X is bounded, we conclude that f is bounded, i.e. there is a real number M > 0 such that | f (x)| � M for all x ∈ X .
Next, fix δ > 0 and note that Nδ(graph( f )) � Nδ(graph( f |X∩[0,δ])) + Nδ(graph( f |X∩(δ,1])) � 2�M
� 1

δ

 + Nδ({( 1

n , f ( 1
n )) | n =

1, . . . , � 1
δ

}) � 2�M
� 1

δ

 + � 1

δ

 = c� 1

δ

 where c = 2�M
 + 1. This implies that dimB(graph( f )) = lim supδ→0

log Nδ(graph( f ))
− log δ

�

lim supδ→0
log(c� 1

δ

)

− log δ
= 1. Since f ∈ Cu(X) was arbitrary, we conclude from this inequality that supg∈Cu(X) dimB(graph(g)) � 1.

Motivated by the above discussion we ask the following question.

Question. If X is a bounded subset of the real line R with infinitely many isolated points, is it true that
supg∈Cu(X) dimB(graph(g)) is either equal to 1 or to dimB(X) + 1?

We now turn towards our second main result. Our second result gives a complete description of the local behaviour of
the graph of a typical function f ∈ Cu(X). We begin by introducing the following definitions. For E ⊆ Rd and x ∈ Rd , we
define the lower local box dimension of x at E

dimloc,B(x; E) = lim
r→0

dimB
(

B(x, r) ∩ E
)
,

and we define the upper local box dimension of x at E

dimloc,B(x; E) = lim
r→0

dimB
(

B(x, r) ∩ E
)
.

The lower local and upper local box dimensions represent how erratically the set E behaves around the particular point x.
We now present our second main result computing the local box dimensions of a typical function f ∈ Cu(X). Below we

use the following notation, namely, if E ⊆ R, then 1E : R → R denotes the indicator function on E (i.e. 1E (x) = 1 for x ∈ E
and 1E (x) = 0 for x ∈ R \ E).

Theorem 2 (Local results). Let X be a bounded subset of R. Write I(X) for the set of isolated points of X .

(1) For all f ∈ Cu(X), we have

dimloc,B(x; X) � dimloc,B
((

x, f (x)
);graph( f )

)
� dimloc,B(x; X) + 1X\I(X)(x)

for all x ∈ X.
(2) For a typical function f ∈ Cu(X), we have

dimloc,B
((

x, f (x)
);graph( f )

) = dimloc,B(x; X)

for all x ∈ X.
(3) For all f ∈ Cu(X), we have

dimloc,B(x; X) � dimloc,B
((

x, f (x)
);graph( f )

)
� dimloc,B(x; X) + 1X\I(X)(x)

for all x ∈ X.
(4) (i) For a typical function f ∈ Cu(X), we have

dimloc,B
((

x, f (x)
);graph( f )

) = sup
g∈Cu(X)

dimloc,B
((

x, g(x)
);graph(g)

)
� dimloc,B(x; X) + 1X\I(X)(x)

for all x ∈ X.
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(ii) If, in addition, X only has finitely many isolated points, then for a typical function f ∈ Cu(X), we have

dimloc,B
((

x, f (x)
);graph( f )

) = dimloc,B(x; X) + 1X\I(X)(x)

for all x ∈ X.

The proof of Theorem 2 is given in Section 5.
Theorem 2 says that for a typical f ∈ Cu(X) and for any point (x, f (x)) on the graph of f , the upper local box dimension

of (x, f (x)) at graph( f ) is as big as possible, and that the lower local box dimension of (x, f (x)) at graph( f ) is as small
as possible. This strengthens the statements in Theorem 1, in the sense that it shows that a typical uniformly continuous
function is as irregular as possible not only globally, but also locally.

Observe that if the set X is compact, then continuity and uniform continuity are the same, and Theorem 1 and Theorem 2
therefore hold for the set C(X) of continuous functions on X .

2. Proof of Theorem 1(2)

The purpose of this section is to prove Theorem 1(2). We begin by proving three auxiliary lemmas.

Lemma 2.1. Fix a bounded subset X of R and real numbers a and b with X ⊆ [a,b]. Let f ∈ Cu(X). Then there is a continuous function
F ∈ C([a,b]) such that

F |X = f .

Proof. Let X denote the closure of X in R. Since f is uniformly continuous on X , it follows from [5, p. 78] that there
is a continuous function Φ : X → R such that Φ|X = f . Finally, since X is closed, it now follows from Tietze’s Extension
Theorem that there is a continuous function F : [a,b] → R such that F |X = Φ , whence F |X = (F |X )|X = Φ|X = f . �
Lemma 2.2. Fix a bounded subset X of R. Let f ∈ Cu(X) and let p : R→R be a polynomial. Let λ ∈ R with λ �= 0.

(1) We have

dimB
(
graph(p|X + λ f )

) = dimB
(
graph( f )

)
and

dimB
(
graph(p|X + λ f )

) = dimB
(
graph( f )

)
.

(2) We have

dimB
(
graph(p|X )

) = dimB(X)

and

dimB
(
graph(p|X )

) = dimB(X).

Proof. (1) Define F : graph( f ) → graph(p|X + λ f ) by F (x, f (x)) = (x, p(x) + λ f (x)) and note that F is bijective
with F −1(x, p(x) + λ f (x)) = (x, f (x)). Also, an easy calculation shows that both F and F −1 are Lipschitz maps,
whence dimB(F (graph( f ))) = dimB(graph( f )) and dimB(F (graph( f ))) = dimB(graph( f )). Since clearly F (graph( f )) =
graph(p|X + λ f ), we therefore immediately conclude that dimB(graph(p|X + λ f )) = dimB(F (graph( f ))) = dimB(graph( f ))
and dimB(graph(p|X + λ f )) = dimB(F (graph( f ))) = dimB(graph( f )).

(2) This statement follows from (1) by putting f = 0. �
Lemma 2.3. Fix a bounded subset X of R. For a typical f ∈ Cu(X), we have

dimB
(
graph( f )

) = dimB(X).

Proof. Let

L = {
f ∈ Cu(X)

∣∣ dimB
(
graph( f )

) = dimB(X)
}
.

We must now prove that L is co-meagre. Since Cu(X) is a complete metric space when equipped with the uniform norm, it
suffices to show that there is a countable family (Ln)n of open and dense subsets of Cu(X) such that

L =
⋂

Ln.
n
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For n ∈ N, define

Ln =
{

f ∈ Cu(X)

∣∣∣ there is δ > 0 with δ <
1

n
such that

log Nδ(graph( f ))

− log δ
� dimB(X) + 1

n

}

(here graph( f ) denotes the closure of graph( f )).
We first note that it follows from the definition of the lower box dimension that

L =
⋂

n

Ln.

Next, we prove that the set Ln is open and dense.

Claim 1. The set Ln is open in Cu(X).

Proof. Let f ∈ Ln . Since f ∈ Ln , we can choose δ > 0 with δ < 1
n such that

log Nδ(graph( f ))

− log δ
� dimB(X) + 1

n
.

Let

r = 1

2
inf

Q ′∈Q2
δ

Q ′∩graph( f )�=∅

inf
Q ′′∈Q2

δ

Q ′′∩graph( f )=∅

dist
(

Q ′ ∩ graph( f ), Q ′′)

(recall, that for δ > 0, the family Qd
δ of δ-cubes in Rd is defined in (1.1)).

First observe that since graph( f ) is compact, we conclude that r > 0.
Next, we claim that

B( f , r) ⊆ Ln. (2.1)

We now prove (2.1). Therefore fix g ∈ B( f , r). Since ‖ f − g‖∞ < r, the definition of r implies that

{
Q ∈ Q2

δ

∣∣ Q ∩ graph(g) �= ∅} ⊆ {
Q ∈ Q2

δ

∣∣ Q ∩ graph( f ) �= ∅}
.

This clearly implies that Nδ(graph(g)) � Nδ(graph( f )), whence

log Nδ(graph(g))

− log δ
� log Nδ(graph( f ))

− log δ
� dimB(X) + 1

n
.

We conclude from the above inequality that g ∈ Ln . This completes the proof of Claim 1. �
Claim 2. The set Ln is dense in Cu(X).

Proof. Let f ∈ Cu(X) and let r > 0. We must now find g ∈ Ln such that ‖g − f ‖∞ < r. Since X is bounded, there
exists an interval [a,b] such that X ⊆ [a,b]. It now follows from Lemma 2.1 that the function f can be extended
to a continuous function F on [a,b], and by Weierstrass’ Approximation Theorem there exists a polynomial p such
that supx∈[a,b] |F (x) − p(x)| < r. Put g = p|X . It is clear that g is uniformly continuous and Lemma 2.2 shows that

dimB(graph(g)) = dimB(graph(g)) = dimB(graph(p|X )) = dimB(X). We conclude from this that g ∈ Ln . Also ‖p|X − f ‖∞ =
‖p|X − F |X‖∞ � supx∈[a,b] |p(x) − F (x)| < r. This completes the proof of Claim 2. �

Claim 1 and Claim 2 show that L is the intersection of a countable family (Ln)n of open and dense sets, and we therefore
conclude that L is co-meagre. �

We can now prove Theorem 1(2).

Proof of Theorem 1(2). This statement follows immediately from Lemma 2.3. �
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3. Proof of Theorem 1(4)(i)

The purpose of this section is to prove Theorem 1(4)(i). We start by providing an alternative characterization of the box
dimension (see Lemma 3.1) based on open cubes (as opposed to the usual definition (1.1)–(1.4) based on closed cubes).
The motivation for introducing this characterization is the following. Namely, the proof of Theorem 1(4)(i) requires a lower
bound for the upper box dimension of the graph of a typical function, and methods for establishing good lower bounds for
the box dimension of subsets E of Rd are often sensitive to the number of cubes from the grid Qd

δ who only intersect E by
their boundaries. It is to overcome this problem that we provide an alternative characterization of the box dimension based
on open cubes. We first introduce some notation. For δ > 0 and u ∈ Rd write

Q◦,d
u,δ =

{
d∏

i=1

(
niδ, (ni + 1)δ

) ∣∣∣ (n1, . . . ,nd) ∈ u +Zd

}
.

Also, for a subset E of Rd , we will write N◦
u,δ(E) for the number of open boxes from Q◦,d

u,δ that intersect E , i.e.

N◦
u,δ(E) = ∣∣{Q ∈ Q◦,d

u,δ

∣∣ Q ∩ E �= ∅}∣∣.
Finally, we write

Ud =
{
(u1, . . . , ud)

∣∣∣ ui = 0,
1

2

}
,

and put

N◦
δ (E) =

∑
u∈Ud

N◦
u,δ(E).

Lemma 3.1. For a bounded subset E of Rd, we have

dimB(E) = lim inf
δ→0

log N◦
δ (E)

− log δ

and

dimB(E) = lim sup
δ→0

log N◦
δ (E)

− log δ
.

Proof. This follows from standard arguments and the proof is therefore omitted. �
We can now prove Theorem 1(4)(i). However, we first introduce the following notation. For a set X ⊆ R, we define the

lower graph box dimension of X by

dimgr,B(X) = inf
g∈Cu(X)

dimB
(
graph(g)

)
.

Similarly, we define the upper graph box dimension of X by

dimgr,B(X) = sup
g∈Cu(X)

dimB
(
graph(g)

)
.

We now turn towards the proof of Theorem 1(4)(i).

Proof of Theorem 1(4)(i). We must prove that for a typical f ∈ Cu(X) we have

dimB
(
graph( f )

) = dimgr,B(X).

Let

L = {
f ∈ Cu(X)

∣∣ dimB
(
graph( f )

) = dimgr,B(X)
}
.

We must now prove that L is co-meagre. Since Cu(X) is a complete metric space when equipped with the uniform norm, it
suffices to show that there is a countable family (Ln)n of open and dense subsets of Cu(X) such that

L =
⋂

Ln.
n
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For n ∈N, define the set Ln by

Ln =
{

f ∈ Cu(X)

∣∣∣ there is δ > 0 with δ <
1

n
such that

log N◦
δ (graph( f ))

− log δ
+ 1

n
� dimgr,B(X)

}
.

We first note that it follows from the definition of the upper box dimension that

L =
⋂

n

Ln.

Next, we prove that the set Ln is open and dense.

Claim 1. The set Ln is open in Cu(X).

Proof. Let f ∈ Ln . Since f ∈ Ln , we can choose δ > 0 with δ < 1
n such that

log N◦
δ (graph( f ))

− log δ
+ 1

n
� dimgr,B(X).

For each u = (u1, u2) ∈ U2, write

Eu,δ =
⋃

m∈u2+Z

(
R× {mδ}),

i.e. Eu,δ denotes the horizontal lines that outline the grid Q◦,2
u,δ . For each Q ∈Q◦,2

u,δ with Q ∩ graph( f ) �= ∅, choose

xQ ∈ Q ∩ graph( f ).

Next, put

r = 1

2
min
u∈U2

min
Q ∈Q◦,2

u,δ

Q ∩graph( f ) �=∅

dist(xQ , Eu,δ).

We claim that

r > 0.

Indeed, for all u ∈ U2 and Q ∈ Q◦,2
u,δ with Q ∩ graph( f ) �= ∅ we have xQ ∈ Q ∩ graph( f ) ⊆ Q , whence xQ /∈ Eu,δ . We

conclude from this that dist(xQ , Eu,δ) > 0, and so r > 0.
Next we claim that

B( f , r) ⊆ Ln. (3.1)

We now prove (3.1). Therefore fix g ∈ B( f , r). Since ‖ f − g‖∞ < r, the definition of r implies that if u ∈ U , then{
Q ∈ Q◦,2

u,δ

∣∣ Q ∩ graph( f ) �= ∅} ⊆ {
Q ∈ Q◦,2

u,δ

∣∣ Q ∩ graph(g) �= ∅}
.

This clearly implies that N◦
u,δ(graph( f )) � N◦

u,δ(graph(g)), and so N◦
δ (graph( f )) � N◦

δ (graph(g)), whence

log N◦
δ (graph(g))

− log δ
+ 1

n
� log N◦

δ (graph( f ))

− log δ
+ 1

n
� dimgr,B(X).

We conclude from the above inequality that g ∈ Ln . This completes the proof of Claim 1. �
Claim 2. The set Ln is dense in Cu(X).

Proof. Let f ∈ Cu(X) and let r > 0. We must now find g ∈ Ln such that ‖g − f ‖∞ < r.
Without loss of generality, we may assume r

2 � 1
n . Since X is bounded, we can find real numbers a and b with X ⊆ [a,b].

It follows from Lemma 2.1 that there is a continuous function F : [a,b] → R such that F |X = f . Next, it follows from
Weierstrass’ Approximation Theorem that we can find a polynomial p satisfying supx∈[a,b] |p(x) − F (x)| < r

4 .

Note, that the definition of dimgr,B(X) implies that there is a function ϕ ∈ Cu(X) such that

dimB
(
graph(ϕ)

)
� dimgr,B(X) − r

. (3.2)

4
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Also, since ϕ is bounded (because X is bounded and ϕ : X →R is uniformly continuous), we can find a positive real number
c > 0 such that

c � r

4(‖ϕ‖∞ + 1)
.

Now define g : X →R by

g = p|X + cϕ.

Clearly g ∈ Cu(X).
We now claim that g ∈ Ln and ‖ f − g‖∞ < r.
We first show that ‖ f − g‖∞ < r. Indeed, we have

‖ f − g‖∞ = ‖ f − p|X − cϕ‖∞
� ‖ f − p|X‖∞ + c‖ϕ‖∞
= ‖F |X − p|X‖∞ + c‖ϕ‖∞
� sup

x∈[a,b]
∣∣F (x) − p(x)

∣∣ + c‖ϕ‖∞

� r

4
+ r

4(‖ϕ‖∞ + 1)
‖ϕ‖∞

< r.

This shows that g ∈ B( f , r).
Next, we show that g ∈ Ln . By the definition of upper box dimension we can find δ < 1

n , such that

log Nδ(graph(g))

− log δ
+ r

4
� dimB

(
graph(g)

)
. (3.3)

Since r
4 + r

4 = r
2 � 1

n , we conclude from (3.3) that

log Nδ(graph(g))

− log δ
+ 1

n
� log Nδ(graph(g))

− log δ
+ r

4
+ r

4

� dimB
(
graph(g)

) + r

4

= dimB
(
graph(p|X + cϕ)

) + r

4
. (3.4)

Also, observe that it follows from Lemma 2.2 that dimB(graph(p|X + cϕ)) = dimB(graph(ϕ)), and we therefore conclude
from (3.4) that

log Nδ(graph(g))

− log δ
+ 1

n
� dimB

(
graph(ϕ)

) + r

4
. (3.5)

Finally, combining (3.2) and (3.5) yields

log Nδ(graph(g))

− log δ
+ 1

n
� dimgr,B(X).

This shows that g ∈ Ln , and completes the proof of Claim 2. �
Claim 1 and Claim 2 show that L is the intersection of a countable family (Ln)n of open and dense sets, and we therefore

conclude that L is co-meagre. �
4. Proof of Theorem 1(4)(ii)

The purpose of this section is to prove Theorem 1(4)(ii). However, we first prove a slightly more general result.

Theorem 4.1. Let X be a bounded subset of Rd with only finitely many isolated points.

(1) We have

sup
f ∈Cu(X)

dimB
(
graph( f )

) = dimB(X) + 1.
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(2) We have

sup
f ∈Cu(X)

dimB
(
graph( f )

) = dimB(X) + 1.

Proof. Observe that if a set has finitely many isolated points, we may remove these without changing the lower and the
upper box dimensions of the set. Hence we may suppose that X has no isolated points.

Let ε > 0. We must now show that there is a uniformly continuous function f : X → R such that dimB(graph( f )) �
dimB(X) + 1 − ε and dimB(graph( f )) � dimB(X) + 1 − ε.

Fix a positive integer n and write

Vn = {
Q ∈ Qd

2−n

∣∣ Q ∩ X �= ∅}
(recall, that for δ > 0, the family Qd

δ of δ-cubes in Rd is defined in (1.1)). Since X does not have isolated points there is a
subfamily Wn of Vn with |Wn| � 1

2d |Vn| such that if Q ∈Wn , then none of the points in the set X ∩ Q is isolated in X ∩ Q .
For each integer n with n � 0, we will now define a uniformly continuous function fn : X → [0,∞) and a finite set

En = {xQ ,n | Q ∈ Wn} ∪ {
y Q ,n,i

∣∣ Q ∈ Wn, i = 1, . . . ,
⌈

2n(1−ε)
⌉}

such that the following properties are satisfied

xQ ,n, y Q ,n,i ∈ X ∩ Q , (4.1)∣∣∣∣∣
n−1∑
j=0

f j(xQ ,n) −
n−1∑
j=0

f j(y Q ,n,i)

∣∣∣∣∣ � 2−n, (4.2)

‖ fn‖∞ � 5
⌈

2n(1−ε)
⌉

2−n, (4.3)

fn(xQ ,n) = 0, (4.4)

fn(y Q ,n,i) = 5i2−n, (4.5)

fk(y Q ,n,i) = 0 for k > n. (4.6)

Below we construct the functions fn and the sets En inductively as follows.
First we put f0 = 0 and E0 = ∅. Next assume that the functions f0, f1, . . . , fn−1 and the sets E0, E1, . . . , En−1 have been

constructed such that properties (4.1)–(4.6) are satisfied. We will now construct fn and En . Fix Q ∈Wn . It follows from the
definition of Wn that we can choose xQ ,n ∈ (Q ∩ X) \ (E0 ∪ E1 ∪ · · · ∪ En−1). It also follows from the definition of Wn and
the fact that the functions f0, f1, . . . , fn−1 are (uniformly) continuous that we can choose points y Q ,n,i ∈ (Q ∩ X) \ (E0 ∪
E1 ∪ · · · ∪ En−1) with i = 1, . . . , �2n(1−ε)
 such that the points xQ ,n, y Q ,n,1, . . . , y Q ,n,�2n(1−ε)
 are distinct and

∣∣∣∣∣
n−1∑
j=0

f j(xQ ,n) −
n−1∑
j=0

f j(y Q ,n,i)

∣∣∣∣∣ � 2−n.

Now define gn : E0 ∪ E1 ∪ · · · ∪ En−1 ∪ En → R by

gn(x) =
⎧⎨
⎩

0 if x ∈ E0 ∪ E1 ∪ · · · ∪ En−1;

0 if x = xQ ,n;

5i2−n if x = y Q ,n,i for i = 1, . . . , �2n(1−ε)
.

Next, observe that since the set E0 ∪ E1 ∪ · · · ∪ En−1 ∪ En is finite, we can find a uniformly continuous function fn :
X → [0,∞) such that fn|E0∪E1∪···∪En−1∪En = gn and 0 = minx∈E0∪E1∪···∪En−1∪En gn(x) � f (x) � maxx∈E0∪E1∪···∪En−1∪En gn(x) =
5�2n(1−ε)
2−n for all x ∈ X . It is clear that the function fn and the set En = {xQ ,n | Q ∈ Wn} ∪ {y Q ,n,i | Q ∈ Wn, i =
1, . . . , �2n(1−ε)
} satisfy the properties in (4.1)–(4.6). This completes the construction of the functions fn and the sets En .

We now construct f ∈ Cu(K ) as follows. Namely, note that it follows from (4.3) that∑
n

‖ fn‖∞ �
∑

n

5
⌈

2n(1−ε)
⌉

2−n

� 5
∑

n

(
2−nε + 2−n)

< ∞. (4.7)
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We conclude from (4.7) that the function f defined by

f =
∑

n

fn

is a well-defined, real-valued, uniformly continuous function.
Below we prove that dimB(graph( f )) � dimB(X) + 1 − ε and dimB(graph( f )) � dimB(X) + 1 − ε. In order to prove this

we first prove the following 2 claims.

Claim 1. If n is a positive integer and Q ∈Wn, then N2−n (graph( f |Q ∩X )) � 2n(1−ε) .

Proof. We first show that if i, j = 1, . . . , �2n(1−ε)
, then∣∣ f (y Q ,n,i) − f (y Q ,n, j)
∣∣ > 2−n. (4.8)

Indeed, we have

∣∣ fn(y Q ,n,i) − fn(y Q ,n, j)
∣∣ =

∣∣∣∣∣
(

n∑
k=0

fk(y Q ,n,i) −
n∑

k=0

fk(y Q ,n, j)

)
−

(
n−1∑
k=0

fk(y Q ,n,i) −
n−1∑
k=0

fk(y Q ,n, j)

)∣∣∣∣∣
�

∣∣∣∣∣
n∑

k=0

fk(y Q ,n,i) −
n∑

k=0

fk(y Q ,n, j)

∣∣∣∣∣
+

∣∣∣∣∣
n−1∑
k=0

fk(y Q ,n,i) −
n−1∑
k=0

fk(xQ ,n)

∣∣∣∣∣ +
∣∣∣∣∣

n−1∑
k=0

fk(xQ ,n) −
n−1∑
k=0

fk(y Q ,n, j)

∣∣∣∣∣,
whence

∣∣ f (y Q ,n,i) − f (y Q ,n, j)
∣∣ =

∣∣∣∣∣
n∑

k=0

fk(y Q ,n,i) −
n∑

k=0

fk(y Q ,n, j)

∣∣∣∣∣ [
by (4.6)

]
�

∣∣ fn(y Q ,n,i) − fn(y Q ,n, j)
∣∣

−
∣∣∣∣∣

n−1∑
k=0

fk(y Q ,n,i) −
n−1∑
k=0

fk(xQ ,n)

∣∣∣∣∣ −
∣∣∣∣∣

n−1∑
k=0

fk(xQ ,n) −
n−1∑
k=0

fk(y Q ,n, j)

∣∣∣∣∣
�

∣∣5i2−n − 5 j2−n
∣∣ − 2−n − 2−n [

by (4.2) and (4.5)
]

= 5|i − j|2−n − 2−n − 2−n

� 5 · 2−n − 2−n − 2−n

> 2−n.

This completes the proof of (4.8).
It follows from (4.8) that distinct points in the set {(y Q ,n,i, f (y Q ,n,i)) | i = 1, . . . , �2n(1−ε)
} are at most 2−n close, whence

N2−n
(
graph( f |Q ∩X )

)
�

∣∣{(y Q ,n,i, f (y Q ,n,i)
) ∣∣ i = 1, . . . ,

⌈
2n(1−ε)

⌉}∣∣ = ⌈
2n(1−ε)

⌉
� 2n(1−ε).

This completes the proof of Claim 1. �
Claim 2. If n is a positive integer, then N2−n (graph( f )) � 1

2d N2−n (X)2n(1−ε) .

Proof. It follows from Claim 1 that

N2−n
(
graph( f |Q ∩X )

) =
∑

Q ∈Vn

N2−n
(
graph( f |Q ∩X )

)
�

∑
Q ∈Wn

N2−n
(
graph( f |Q ∩X )

)
�

∑
Q ∈Wn

2n(1−ε)

= |Wn|2n(1−ε)
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� 1

2d
|Vn|2n(1−ε)

= 1

2d
N2−n(X)2n(1−ε).

This completes the proof of Claim 2. �
We conclude from Claim 2 that

log N2−n(graph( f ))

− log 2−n
� log N2−n(X)

− log 2−n
+ 1 − ε − d

n
(4.9)

for all positive integers n. The desired result follows immediately from (4.9). �
We can now prove Theorem 1(4)(ii).

Proof of Theorem 1(4)(ii). The statement in Theorem 1(4)(ii) follows immediately by combining Theorem 1(4)(i) and Theo-
rem 4.1. �
5. Proof of Theorem 2

The purpose of this section is to prove Theorem 2. We begin by proving three auxiliary lemmas.

Lemma 5.1. Let (X ,dX ) and (Y,dY ) be metric spaces and let Φ :X →Y be a map. Assume that

Φ
(

B(x, r)
) = B

(
Φ(x), r

)
for all x ∈X and all r > 0. Then the following hold.

(1) If N is a nowhere dense subset of Y , then Φ−1(N) is a nowhere dense subset of X .
(2) If M is a meagre subset of Y , then Φ−1(M) is a meagre subset of X .
(3) If E is a co-meagre subset of Y , then Φ−1(E) is a co-meagre subset of X .

Proof. (1) Let x ∈X and r > 0. We must now find y ∈X and s > 0 such that B(y, s) ⊆ B(x, r) \ Φ−1(N).
Since N is nowhere dense, we can find u ∈ Y and δ > 0 such that

B(u, δ) ⊆ B
(
Φ(x), r

) \ N.

Next, observe that since u ∈ B(u, δ) ⊆ B(Φ(x), r) \ N ⊆ B(Φ(x), r), we conclude that dY (u,Φ(x)) < r, and we can therefore
choose ρ > 0 with

dY
(
u,Φ(x)

)
< ρ < r.

Now note that u ∈ B(Φ(x),ρ) = Φ(B(x,ρ)). We conclude from this that there is a point

y ∈ B(x,ρ)

with

Φ(y) = u.

Finally, put

s = min
(
r − dX (x, y), δ

)
.

We will now prove that s > 0 and B(y, s) ⊆ B(x, r) \ Φ−1(N).
We first show that s > 0. Indeed, since y ∈ B(x,ρ), we deduce that dX (x, y) < ρ < r, whence r − dX (x, y) > 0. This

shows that s > 0.
Next, we show that B(y, s) ⊆ B(x, r). Indeed, if z ∈ B(y, s), then dX (x, z) � dX (x, y) + dX (y, z) < dX (x, y) + s �

dX (x, y) + r − dX (x, y) = r. This shows that z ∈ B(x, r).
Finally, we show that B(y, s) ∩ Φ−1(N) = ∅. Assume, in order to reach a contradiction, that there is a point z ∈ B(y, s) ∩

Φ−1(N). Since z ∈ Φ−1(N), we conclude that

Φ(z) ∈ N. (5.1)
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On the other hand, since z ∈ B(y, s), we also conclude that

Φ(z) ∈ Φ
(

B(y, s)
)

= B
(
Φ(y), s

)
= B(u, s)

⊆ B(u, δ)

⊆ B
(
Φ(x), r

) \ N. (5.2)

The desired contradiction follows immediately from (5.1) and (5.2).
(2) Let M be a meagre subset of Y . We can therefore choose nowhere dense subsets N1, N2, . . . of Y with M = ⋃

n Nn .
Since Φ−1(Nn) is nowhere dense for all n (by part (1)), we conclude that Φ−1(M) = Φ−1(

⋃
n Nn) = ⋃

n Φ−1(Nn) is meagre.
(3) This follows easily from (2). �

Lemma 5.2. Fix E ⊆ Rd. Let x ∈ X. Let Un ⊆ Rd for n ∈N. Assume that

(i) U1 ⊇ U2 ⊇ · · ·;
(ii) x ∈ U ◦

n for all n (here U ◦
n denotes the interior of Un);

(iii) diam(Un) → 0.

Then

dimloc,B(x; E) = lim
n

dimB(E ∩ Un)

and

dimloc,B(x; E) = lim
n

dimB(E ∩ Un).

Proof. This follows easily from the definitions and the proof is therefore omitted. �
Lemma 5.3. Fix X ⊆ R. Let f ∈ Cu(X) and x ∈ X. Let pn,qn ∈R for n ∈N. Assume that

(i) [p1,qn] ⊇ [p2,q2] ⊇ · · ·;
(ii) x ∈ (pn,qn) for all n;

(iii) qn − pn → 0.

Then

dimloc,B
((

x, f (x)
);graph( f )

) = lim
n

dimB
(
graph( f |X∩[pn,qn])

)
and

dimloc,B
((

x, f (x)
);graph( f )

) = lim
n

dimB
(
graph( f |X∩[pn,qn])

)
.

Proof. This follows easily from Lemma 5.2 and the proof is therefore omitted. �
We can now prove Theorem 2.
However, we first introduce the following notation. Namely, for X ⊆ R, we define the lower local graph box dimension

of a point x in X by

dimgr,loc,B(x; X) = inf
g∈Cu(X)

dimloc,B
((

x, g(x)
);graph(g)

)
,

and we define the upper local graph box dimension of a point x in X by

dimgr,loc,B(x; X) = sup
g∈Cu(X)

dimloc,B
((

x, g(x)
);graph(g)

)
.

Also, recall that we define the lower graph box dimension of X by

dimgr,B(X) = inf dimB
(
graph(g)

)
,

g∈Cu(X)
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and that we define the upper graph box dimension of X by

dimgr,B(X) = sup
g∈Cu(X)

dimB
(
graph(g)

)
.

We now turn towards the proof of Theorem 2.

Proof of Theorem 2. (1) This statement follows easily from the definitions.
(2) For p,q ∈ Q with (p,q) ∩ X �= ∅, let

Lp,q = {
f ∈ Cu(X)

∣∣ dimB
(
graph( f |X∩[p,q])

) = dimgr,B
(

X ∩ [p,q])},
and put

L =
⋂

p,q∈Q
(p,q)∩X �=∅

Lp,q.

We now prove the following three claims.

Claim 1. The set L is co-meagre in Cu(X).

Proof. It clearly suffices to show that if p,q ∈ Q with (p,q) ∩ X �= ∅, then the set L p,q is co-meagre in Cu(X).
We therefore fix p,q ∈Q with (p,q) ∩ X �= ∅. Now put

E p,q = {
g ∈ Cu

(
X ∩ [p,q]) ∣∣ dimB

(
graph(g)

) = dimgr,B
(

X ∩ [p,q])}.
It follows from Theorem 1(2) that the set E p,q is co-meagre in Cu(X ∩ [p,q]). Next, applying Lemma 5.1 with X = Cu(X),
Y = Cu(X ∩ [p,q]) and Φ : Cu(X) → Cu(X ∩ [p,q]) defined by Φ( f ) = f |X∩[p,q] shows that Φ−1(E p,q) is meagre in Cu(X).
Finally, since clearly

Lp,q = Φ−1(E p,q),

we therefore conclude that L p,q is co-meagre in Cu(X). This completes the proof of Claim 1. �
Claim 2. We have

L ⊆ {
f ∈ Cu(X)

∣∣ ∀x ∈ X: dimloc,B
((

x, f (x)
);graph( f )

) = dimgr,loc,B(x; X)
}
.

Proof. Let f ∈ L and x ∈ X . We must now prove that

dimloc,B
((

x, f (x)
);graph( f )

) = dimgr,loc,B(x; X).

Indeed, it is clear that

dimloc,B
((

x, f (x)
);graph( f )

)
� dimgr,loc,B(x; X),

and it therefore suffices to show that

dimloc,B
((

x, f (x)
);graph( f )

)
� dimgr,loc,B(x; X). (5.3)

Below we prove (5.3). First, note that we can choose sequences (pn)n and (qn)n from Q with [p1,q1] ⊇ [p2,q2] ⊇ · · ·,
such that x ∈ (pn,qn) for all n and qn − pn → 0. Next, we have

dimloc,B
((

x, f (x)
);graph( f )

) = lim
n

dimB
(
graph( f |X∩[pn,qn])

) [by Lemma 5.3]
= lim

n
dimgr,B

(
X ∩ [pn,qn]) [since f ∈ L ⊆ Lpn,qn ]

= lim
n

inf
g∈Cu(X∩[pn,qn]) dimB

(
graph(g)

)
. (5.4)

However, for ϕ ∈ Cu(X), we have ϕ|X∩[pn,qn] ∈ Cu(X ∩ [pn,qn]), and from this we deduce that

inf
g∈Cu(X∩[pn,qn]) dimB

(
graph(g)

)
� dimB

(
graph(ϕ|X∩[pn,qn])

)
.

This inequality clearly implies that

inf dimB
(
graph(g)

)
� inf dimB

(
graph(ϕ|X∩[pn,qn])

)
,

g∈Cu(X∩[pn,qn]) ϕ∈Cu(X)



580 J. Hyde et al. / J. Math. Anal. Appl. 391 (2012) 567–581
whence

lim
n

inf
g∈Cu(X∩[pn,qn]) dimB

(
graph(g)

)
� lim

n
inf

ϕ∈Cu(X)
dimB

(
graph(ϕ|X∩[pn,qn])

)
. (5.5)

Combining (5.4) and (5.5) now shows that

dimloc,B
((

x, f (x)
);graph( f )

)
� lim

n
inf

ϕ∈Cu(X)
dimB

(
graph(ϕ|X∩[pn,qn])

)
. (5.6)

Next, observe that for ψ ∈ Cu(X), we have

inf
ϕ∈Cu(X)

dimB
(
graph(ϕ|X∩[pn,qn])

)
� dimB

(
graph(ψ |X∩[pn,qn])

)
,

and so

lim
n

inf
ϕ∈Cu(X)

dimB
(
graph(ϕ|X∩[pn,qn])

)
� lim

n
dimB

(
graph(ψ |X∩[pn,qn])

)
.

Taking infimum over all ψ ∈ Cu(X) now gives

lim
n

inf
ϕ∈Cu(X)

dimB
(
graph(ϕ|X∩[pn,qn])

)
� inf

ψ∈Cu(X)
lim

n
dimB

(
graph(ψ |X∩[pn,qn])

)
. (5.7)

Finally, combining (5.6) and (5.7) shows that

dimloc,B
((

x, f (x)
);graph( f )

)
� lim

n
inf

ϕ∈Cu(X)
dimB

(
graph(ϕ|X∩[pn,qn])

)
� inf

ψ∈Cu(X)
lim

n
dimB

(
graph(ψ |X∩[pn,qn])

)
= inf

ψ∈Cu(X)
dimloc,B

((
x,ψ(x)

);graph(ψ)
) [by Lemma 5.3]

= dimgr,loc,B(x; X).

This completes the proof of Claim 2. �
Claim 3. We have

dimgr,loc,B(x; X) = dimloc,B(x; X)

for all x ∈ X.

Proof. Let x ∈ X .
We first prove that dimgr,loc,B(x; X) � dimloc,B(x; X). Indeed, if O denotes the zero-function on X , then clearly

dimgr,loc,B(x; X) � dimloc,B
((

x,O(x)
);graph(O)

)
= dimloc,B

(
(x,0); X × {0})

= dimloc,B(x; X).

Next, we prove that dimgr,loc,B(x; X) � dimloc,B(x; X). It follows from part (1) that there is a function f ∈ Cu(X) such that

dimgr,loc,B(x; X) = dimloc,B
((

x, f (x)
);graph( f )

)
. (5.8)

Note that we can choose sequences (pn)n and (qn)n from Q with [p1,q1] ⊇ [p2,q2] ⊇ · · ·, such that x ∈ (pn,qn) for all n and
qn − pn → 0. It now follows from (5.8) that

dimgr,loc,B(x; X) = dimloc,B
((

x, f (x)
);graph( f )

)
= lim

n
dimB

(
graph( f |X∩[pn,qn])

) [by Lemma 5.3]
� lim

n
dimB

(
X ∩ [pn,qn]

)
= dimloc,B(x; X) [by Lemma 5.2].

This completes the proof of Claim 3. �
The proof of part (2) now follows immediately from Claims 1, 2 and 3.
(3) This statement follows easily from the definitions.
(4) Above we deduced the statement in part (2) from Theorem 1(2) (and the auxiliary Lemmas 5.1–5.3). A very similar

argument (which we omit) shows that the statement in part (4) follows from Theorem 1(4) (and the auxiliary Lem-
mas 5.1–5.3). �
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