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1. Introduction

Solitons have been studied both theoretically and experimentally in such fields as fluid mechanics, solid state physics,
plasmas and nonlinear optics [ 1-5]. Recently, the higher-dimensional nonlinear evolution equations (NLEEs) have attracted
the attention of researchers due to their potential applications in science and engineering [4-7]. For example, the
Kadomtsev-Petviashvili equation, one of the integrable NLEEs in (2+1) dimensions, has been derived for plasmas and
fluids [8]. In plasma physics, the Davey-Stewartson equation has been shown to explain an electrostatic ion wave
propagating perpendicularly to an applied magnetic field [9]. More (2+1)-dimensional NLEEs have been constructed on
the basis of the relationship with the hierarchies of the (1+1)-dimensional NLEEs [10].

On the other hand, methods have been proposed for solving the NLEEs [3-5], e.g., the Darboux transformation [11],
inverse scattering transformation [12], Backlund transformation (BT) [13,14], Painlevé test [15] and Hirota method [16].
Among those methods, the Hirota method is the one that provides a tool for constructing an N-soliton solution which can
be expressed in the form of an Nth-order polynomial in N exponentials [16]. The BT can also be used to obtain a nontrivial
solution from a seed solution [13,14]. However, it is tedious to write out the derivatives of all the formulations of the N-
soliton solution obtained by the Hirota method, so the verification of the solution through the direct substitution into the
NLEEs becomes difficult [16]. Another representation of the N-soliton solution, namely, the Wronskian determinant, has
been employed to solve such problems [ 17,18]. Wronskian technique can help to verify the validity of the N-soliton solution,
and has been applied to such NLEEs as the KdV, modified KdV and KP equations [17].

In this paper, on the basis of symbolic computation [3-5], we will study the following Zakharov-Kuznetsov (ZK)
equation [19]:

ut+auux+,8uxxx+yuxyy:()s (1)
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where u is a function of the scaled spatial variables x, y and the temporal variable t, and represents the electrostatic wave
potential in plasmas, while «, 8 and y are the coefficients of the nonlinearity, dispersion, and disturbed wave velocity along
the y-direction, respectively. Eq. (1) describes the weakly nonlinear ion-acoustic waves in a strongly-magnetized lossless
plasma comprised of cold ions and hot isothermal electrons [19]. In Ref. [20], some solutions have been obtained and the
solutions are apparently inelastic. Painlevé analysis has been applied to investigate the integrability of Eq. (1) [21]. Three
polynomial conservation laws have been given for Eq. (1) [22]. By employing the multi-dimensional reductive perturbation
technique, Ref. [23] has derived Eq. (1) for the evolution of the electric potential perturbation in the electron-positron-ion
plasmas, with some solutions given and their characteristics studied. Traveling wave solutions have been obtained via the
homotopy perturbation method [24]. A special case of Eq. (1), witha = 1,8 = % and y = % has also been investigated
and some solutions have been obtained [25]. However, to our knowledge, the bilinear BT and N-soliton solutions in terms
of the Wronskian determinant for Eq. (1) have not been obtained, which will be the main objectives in the present paper.

This paper will be organized as follows: In Section 2, through the Hirota method, Eq. (1) will be transformed into a bilinear
form under a certain parametric constraint. Its N-soliton solutions will be constructed via the formal parameter expansion
technique. Explicit one- and two-soliton solutions will be given. In Section 3, the bilinear BT for Eq. (1) will be presented. By
means of the BT, a nontrivial solution will be obtained from a trivial solution. In Section 4, we will give the N-soliton solutions
in terms of the Wronskian determinant and verify it through direct substitution into the bilinear equations. Section 5 will
give our discussion on the soliton interactions. The last section will be our conclusions.

2. The bilinear form and soliton solutions for Eq. (1)

Through the following transformation:
u=2(ogf)w+2 (Ing)xy,
where f (x, y, t) is a real differentiable function, the bilinear form for Eq. (1) can be obtained:
[(D«+Dy) (D + BD; 4y D Dy)] f -f =0, (2a)
(D} +3DyDy)f -f =0, (2b)
under the constraint — 98 — y = 0. Hereby, Dy, D, and D; are the bilinear derivative operators [16,26] defined by
a  aN/ o a\"/o 9\
1 _ /
D\DD (& - ¢) = (& - @> (@ - a—y,) (5 - @> EXY, )XY ) lwmx y=y. =t

By virtue of symbolic computation, the N-soliton solutions for Eq. (1) can be derived from bilinear form (2).
Firstly, f (x, y, t) is expanded in powers of a formal parameter ¢ as

f(xay’t):1+8f1(xay’t)+82f2(xvyvt)+'”7 (3)

where f;(x,y,t)’s (i = 1, 2, ...) are all real differentiable functions. Substituting expression (3) into bilinear form (2) and
collecting the coefficients of the same power of ¢, we have

% : (Dy+Dy) (D, + BD; +y DD} 1-1=0,
(D} +3D,D,)1-1=0,
' (Dy+D)) (D +BD; +y DD} (1-fi +f1- 1) =0,
(D; +3D,Dy) (1-fi +f- 1) =0,
e (Dy+Dy)) (D + D, +yDD) (1-fo+fi-fi+fo-1) =0,
(D2 +3DD)(A-fo+fi-fi+fr-1)=0,
e :(Dx+Dy) (D +BD, +yDD) (1-fs+fi-o+fo-fi+fi-1) =0,
(D} +3D,D)(1-fs+fi-fo+fo-fi+f-1) =0,

In order to obtain the one-soliton solutions for Eq. (1), let us choose
fi=e" withn=kx+Ily+wt+n°,

where k, I, w and 1° are all constants to be determined. We can truncate the expansion with fi(x, y, t) =0 (i= 2, 3, 4,...).
Consequently, without loss of generality, by setting ¢ = 1, f(x, y, t) can be reduced to

1
F=14e withn:kx—gky—(ﬁ—kg) 13t + .
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Thus the one-soliton solutions for Eq. (1) can be written as follows:
1 k k B y n°
=—klsech® |=x——y— S+ ) KBt+ =] 4
! 3 se¢ |:2X Sy (2—'_18>< +2 )

For constructing the two-soliton solutions, we choose

_ k)

— el 4 em, _
fi + f2 U T k)2

)

whereny = kix—1kiy— (B+ L kit +n n2 = ko x— T kay — (B + L) k3 t + 03 with ky, kz, n? and n9 all as constants.
So the two-soliton solutions for Eq. (1) can be written as follows:

(kv — ky)? ]} { |: (ky — ky)?
u=2{log|14+en +e” 4 ——"—ntn +2 {log|1+e"n e+ ——"—entm |} | 5
{ g[ (ks + k)2 " & (ks + k)2 Y ®)

The N-soliton solutions for Eq. (1) can be expressed in the following form:

u=2(ogf)xx+2 (lng)xyv (6)
N N
f=) exp {Z%mm+2wm}, (7)
£#=0.1 i~ =1
where

1 Y
ﬂj:ij—gkjy— (/34‘5) kj3f+7}]q,
while k; is the parameter characterizing the ith soliton, n;'s (G = 1,2,...,N) are all arbitrary constants, ) 1=0.1 denotes

the summation over all possible combinations of u; = 0,1(G = 1,2,...,N) and Z,{ij is the summation over all possible
pairs chosen from the N elements under the condition i > j.

3. The bilinear BT for Eq. (1)

In this section, we will derive the bilinear BT for Eq. (1). Supposing that f and f” are two different solutions for bilinear
form (2), we can consider the following expressions:

Q =[(D«+Dy) (Di+BD; +yD;) f-f'] f*=[(D«+Dy) (D: +BD; +¥D;) f-f]f*=0, (8a)

Q =[(D} +3DDy) f'-f'] f* = [(DZ+3DxDy) f -f] f* =0. (8b)
By using exchange formulas (A.1)-(A.5), the bilinear BT can be given from expressions (8) as follows:

(Dx+3D,) f'-f =0, (9a)

(6D +4BD; +3yDyD;+5481 D) f-f =0, (9b)

(2D —6yD) + yD.D, + 1884 D)) f'-f =0, (9¢c)

[(iy—G,B) DXDy—MDX—3OﬁA]f’-f=O (9d)

with the constraint 68 + y = 0.
Assuming that u = 0 and A = 2, substituting the seed solution f = 1, i.e., u = 0, into Eq. (9), we obtain

fl=el+et, (10)

where ¢ = —3Ix+1y+36 B I t+¢° with ¢° an arbitrary constant. Substituting (10) into transformation (6), the one-soliton
solutions for Eq. (1) in explicit form can be expressed as

u=12F sech? ¢. (11)
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4. The N-soliton solutions in terms of the Wronskian determinant for Eq. (1)

Assuming that u = 0, A = ljz,f = 1and f' = ¢, where ¢;(x, y, t) is a real differentiable function, we can get the
following results from Egs. (9):

$i.x = =3y, (12a)
Py =L ¢, (12b)
@it =36 B yyy- (12¢)
Using the Wronskian technique, we assume that Eq. (1) admits the following N-soliton solutions in the Wronskian form:
1 2 N—1
o1 @) @ g
o @ . (N-D _
FO =W(pr, 0, ...,00) = |92 92 @2 2 I =IN-1] (13)
1 2 N—1
o o e ey )

with ¢f = il—;'? g =e¥+ (=1YTeGandg = =3Lix+Ly+36Pt+¢ (i=1,2,...,N— 1). The entries ¢'s

G =1, 2,...,N) satisfy Egs. (12). In order to show a brief heuristic description of the Wronskian determinants through
using Eq. (13), we take the following example:
(1) (2) (N=3) (N-1) (N)
1 1 1 ¢ 1 1
. M @ . (N=3) _(N-1) _(N)
IN=3.N—1,N|=W(@1, 0. ....on-2. on. ons1) = |2 P2 &2 ¥2 2 2
on (pl(\ll) (p[(vz) o g0[(\11\173) (pIEINfl) (p;\;v)

Because the Wronskian determinant has the property that each column in the Wronskian determinant is the derivative of
the former column, something about the derivative of a determinant can be found by differentiating each column separately
and taking the sum of the determinant, and for most terms the determinant is zero since two columns are identical.
Therefore, based on the identities of the given ¢; and the property of the Wronskian determinant, the derivatives of F ™
with respect to x, y and t can be computed:

FO= N1, BV =IN-2. N,
M =|N=3,N—1,N|+|N-2 N+1|,
FM —2IN—3, N—1,N+1/+|N—2, N+2|+|[N—4, N—2, N—1, N|,

yyy

EM = IN—2,N+3[+IN-5 N—-3,N-2, N—1,N[+2[N =3, N, N+1]
+3IN—-3,N—1, N+2/+3N—4,N—2, N—1, N+ 1].

FV = -3IN-2, N, FM=-3(N-2,N+1+|N-3,N—1,N|),

FV =36 B(N—4,N—2,N—1,N|—[N—3, N—1, N+ 1|+ |N =2, N+2]),
FY =36B(N—2,N+3|—IN-3, NN+ 1/+|N—5 N—-3 N—-2, N—1,N|).
Substituting the derivatives of F™ into bilinear form (2), we obtain

’N/—\B 0 N—-2 N—1 N N+1

Dy +Dy) (D + BD; +y D) FV . FV = 512 —
(Dx +Dy) D + B Dy +v D) p N—3 N-2 N—1 N N+1

= 07
2
(D +3D D) FNM . FNV = 2 [F,f,ﬂ“ F™ — (EV) ] +6 (Fy) F™ — FV FV)
= 0.

Therefore, the N-soliton solutions in the Wronskian form is verified to be the solutions for Eq. (1).

5. Discussion of the soliton interactions for Eq. (1)

From solutions (4), the width A and amplitude A of the soliton can be expressed as
1 3410
A= -k, A= ,
3 5|k|
which are only related to the parameter k from (14).

(14)
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—60 60 -60 60 -60 60
@rt=—4 (b)t = 0.2. ©t=17.

Fig. 1. Interaction of two solitons via solutions (5). The parameters adopted here are: « = 10,8 = 1,y = 1,k; = 1.5,k; = 08,7, = 0,1, = 0, at
x=1

(@y=o0. (b)t = —10.

Fig. 2. Interaction of the two solitons via solutions (13). The parameters are:« =6, 8 =2,y = —12,1; = 0.15,, = —0.2, ;1” =0, ;20 =0.

(@y=2 (b)y =0.

Fig. 3. Interaction of the three solitons via solutions (13). The parameters are: « = 3,8 = 1,y = —6,¢) = 0,4 = 0,4 = 0.(a)l; = 0.15,1, =
0.25,13=10.3;(b)l; =0.35,1, = 0.25,13 = 0.2.

Additionally, in order to show the interactions of the solitons, we will analyze the two- and three-soliton solutions
through the graphical analysis via solutions (5) and (13) by making some choices of parameters. Fig. 1 illustrates the
overtaking interaction of two solitons. After the interaction, the two solitons maintain their original shapes and amplitudes
except for the phase shifts. We have also observed that the direction of the propagation can be changed when we adjust the
sign of 8. More on the solitonic interactions can be seen in [27,28].

Fig. 2(a) illustrates an overtaking elastic interaction of two solitons in the x-t plane which is similar to that plotted in
Fig. 1. The soliton with the larger amplitude travels faster, and catches up with the other one with the smaller amplitude.
After the interaction, the two solitons retain their original shapes and amplitudes except for the phase shifts. Fig. 2(b) shows
the two parallel solitons in the x-y plane at the fixed time t. It can also be seen from solutions (11) that the solitons are
parallel at the fixed time t, because they possess the same slope dy/dx in the x-y plane.

With respect to the three solitons, we can also obtain similar behavior of the interaction by modifying the parameters.
Fig. 3 displays the elastic interactions of the three solitons with different amplitudes and velocities. The three solitons
interact among themselves without exhibiting any change in the properties except for the small phase shifts after the
interaction. In Fig. 3(a), the three solitons interact at the same spot in the x-t plane at y = 2. However, the interactions
among the three solitons at different positions can be shown in Fig. 3(b) with the choices of the parameters. We can depict
the analogous interactions in the y-t plane by choosing some parameters.
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6. Conclusions

With the aid of symbolic computation, we have investigated Eq. (1) which describes the propagation of the electrostatic
excitations in a magnetized, rotating and collisionless three-component plasma. By use of the Hirota method, we have
obtained the bilinear form and BT for Eq. (1). Furthermore, N-soliton solutions in terms of the Wronskian determinant
has been constructed and proved via the direct substitution into bilinear form (2). In addition, propagation characteristics
and interaction behaviors of the solitons have been discussed through the graphical analysis. We have found that the width
and amplitude of the one soliton described by solutions (4) are both unchanged and the direction of propagation is related
to the sign of B, while the soliton interactions are elastic.
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Appendix. Hirota bilinear operator identities

The following identities are used for (9) in the derivation of the bilinear Bicklund transformation [16,26]:

DuDyf" - ) - (f'f) = Dy(Dxf" - ) - (F'f). (A1)
D3f" - Y — O -HE)? =2D3Dxf" - ) - (F'f). (A2)
(DxDef" - fY(F)? — (DxDef - )(F)? = 2Dx(Def" - ) - (F'f). (A3)
DI(Dyf' - f) - (f'f) = Dy(DYf' - ) - (F'f) — 3Dy(Df' - f) - (D" - ), (A4)
(DD - () — (DIDYf - H)(F')* = Du(DDY' - f) - (F'f) + Dy(D;Dyf" - ) - (f'f)

- 2Dx(Dnyf/ f) : (Dyf/ f) - ZDy(Dnyf/ f)

- (Df" - f) = D(D}f" - ) - (Duf" - ) = Dy(Df" - f) - (Dyf" - f). (A5)
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