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a b s t r a c t

An attractive feature of discontinuous Galerkin (DG) finite element schemes is that
this concept offers a unified and versatile discretization platform for various types of
partial differential equations. The locality of the trial functions not only supports local
mesh refinements but also offers a framework for comfortably varying the order of the
discretization. In this paper, we propose and analyze amixed-DG finite elementmethod for
a displacement–pressure model which describes swelling dynamics of polymer gels under
mechanical constraints. By introducing a flux variable we first present a reformulation
of the governing equations of polymer gels. We then approximate the pressure and flux
variables by a mixed finite element space and the displacement by DG finite element
method. Existence and uniqueness are proved and error estimates are derived for mixed-
DG finite element scheme. Finally, numerical experiments are presented to show the
performance of the mixed-DG approximation of polymer gels.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A gel is a soft material which consists of a solid network and a colloidal solvent. The solid network spans the volume of
the solventmedium. The solvent can permeate through the solid network, and the permeation can be controlled by external
forces. The phenomenon is important in various industrial processes such as coating and printing [1]. It is also important in
the study of gels as actuators and sensors [2,3].

Both by weight and volume, gels are mostly liquid in composition and thus exhibit densities similar to liquids. However,
they have the structural coherence of a solid and can be deformed. A gel network can be composed of a wide variety of
materials, including particles, polymers, and proteins, which then gives different types of gels such as hydrogels, organogels,
and xerogels (cf. [4,5]). Gels have some fascinating properties, in particular, they display thixotropy which means that they
become fluid when agitated but resolidify when resting. In general, gels are apparently solid, jelly-like materials, and they
exhibit an important state ofmatter found in awide variety of biomedical and chemical systems (cf. [6–9] and the references
therein).

Although themodels of gels have been proposed for a long time, proper theoretical framework to numerically analyze the
process is few. Our advisor, Feng and He in [10] presented the Taylor–Hoodmixed finite elementmethod to solve themodel,
which was proposed by Doi in [6] and Yamaue and Doi in [8,9], established optimal error estimates and provided numerical
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experiments. As we all know, discontinuous Galerkin (DG)methods [11–14] for the numerical solution of partial differential
equations have enjoyed considerable success because they are both flexible and robust: they allow arbitrary unstructured
geometries and easy control of accuracy without compromising simulation stability. And the DG finite element method is
also a good method to approximate the displacement–pressure model of kinetics and to alleviate numerical oscillations in
the stress field. But, to the best of our knowledge, there are no published results addressing the gel model by the DG finite
element method. In this paper, we develop a mixed-DG finite element method for a displacement–pressure model which
describes swelling dynamics of polymer gels under mechanical constraints, moreover, numerical results illustrate the fact
that the mixed-DG finite element method is better to approximate the gel model than the continuous Galerkin (CG) finite
element method [15–17].

Our paper continues in Section 2 with an overview of the swelling model of polymer gels. Section 3 includes a brief
description of notions for the DG finite element method, and we develop our mixed-DG finite element method. In Section 4,
we examine its existence and uniqueness properties and prove a rigorous proof of convergence results. Finally, Section 5
presents some of our numerical experiments to gauge the performance of the proposed mixed-DG finite element method,
and concludes with an examination of numerical results associated to a model that encounters locking when solved with
the CG finite element method.

2. The swelling model of polymer gels

First, we explain the displacement–pressure coupling model for polymer gels under mechanical constraints. Let Ω ⊂

Rd(d = 1, 2, 3) be a bounded domain and denote the initial region occupied by the gel. Let u(x, t) denote the displacement
of the gel at the point x ∈ Ω in the space and at the time t , let vs(x, t) and p(x, t)be the velocity and the pressure, respectively,
of the solvent at (x, t). Following [6,10], the governing equations for the swelling dynamics of polymer gels are given by

div(σ (u)− pI) = 0, (2.1)
ξ(vs − ut) = −(1 − φ)∇p, (2.2)
div(φut + (1 − φ)vs) = 0. (2.3)

Here, the first equation stands for the force balance, the second equation represents Darcy’s law for the permeation
of solvent through the gel network, and the third equation stands for the incompressibility condition. And ξ is the friction
constant associatedwith themotion of the polymer relative to the solvent,φ is the volume fraction of the polymer, I denotes
the unit tensor defined by the d× d identity matrix, and σ(u) stands for the stress tensor of the gel network, which is given
by a constitutive equation. In this paper, we use the following linearized form of the stress tensor:

σ(u) ≡ αdiv uI + βε(u), ϵ(u) ≡
1
2
(∇u + ∇uT ), (2.4)

α ≡ K −
2
3
G, β ≡ 2G, (2.5)

where K and G are, respectively, the bulk and shear modulus and α and β are Lamé constants of the gel (cf. [6,10]). In
addition, if we introduce the total stressσ(u, p) ≡ σ(u)− pI , then (2.1) becomes divσ(u, p) = 0.

Substituting (2.4) into (2.1) and (2.2) into (2.3) yields the following basic equations for swelling dynamics of polymer
gels (see [8]):

α +
β

2


∇div u +

β

2
1u = ∇p, (2.6a)

div ut = κ△p, κ =
(1 − φ)2

ξ
, (2.6b)

which hold in the space–time domainΩT = Ω × (0, T ) for some given T > 0.
To solve the set of equations, we need to prescribe boundary and initial conditions. Various sets of boundary conditions

are possible, and each of them describes a certain type of mechanical condition and solvent permeation condition (cf. [8,9]).
In this paper, we consider the following two distinct sets of boundary conditions, one corresponding to the pressure and
one corresponding to deformation:

p(t) = p1, on Γp1, (2.7a)

∂p
∂n

= ∇p · n = p2, on Γp2, (2.7b)

u(t) = c, on Γu1, (2.8a)σ(u, p)n = (σ (u)− pI)n = f, on Γu2, (2.8b)
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where ∂Ω = Γp1

Γp2 = Γu1


Γu2, (2.7a) implies that the solvent can permeate freely at the boundary Γp1 which stands

for a permeable boundary wall, (2.8b) means that the mechanical force f is applied on the boundary Γu2 which stands for a
deformable boundary, and n denotes the unit outward normal vector to the boundary ∂Ω .

And Initial conditions

p(0) = p0, (2.9a)
u(0) = u0. (2.9b)

3. The mixed-DG finite element formulation

We first provide some notions important for the development of the mixed DG formulation. Let εh = {E1, E2, . . . , EN}

be a nondegenerate subdivision of Ω , where Ej is a triangle or quadrilateral for d = 2, or a tetrahedron if d = 3, and
hj = diam(Ej). Here, the nondegeneracy requires the existence of ρ > 0 such that Ej contains a ball of radius ρhj. Moreover,
we set h = max{hj, j = 1, 2, . . . ,N}.

We denote the set of interior edges (for d = 2, or faces for d = 3) of εh by Γint . For each interior edge (or face),
e = Ej ∩ Ek(j < k), associate a fixed unit normal vector n pointing from Ej into Ek, and to each boundary edge (or face)
e = Ej ∩ ∂Ω , let n be the unit outward pointing normal.

The development of a DG formulation to solve the displacement u, needs the following spaces. For s ≥ 0, define

Hs(εh) ≡ {υ ∈ L2(Ω) : υ|Ej ∈ Hs(Ej),∀j},

Hs(εh) ≡ [Hs(εh)]
d.

And set

Vs
0 ≡ Hs(εh) ∩ {v; v|Γu1 = 0}.

For s ≥
1
2 , we define the average and the jump for v ∈ Hs(εh). Let e ∈ Γint such that e = Ej ∩ Ek(j < k) and set

{v} ≡
1
2
(v|Ej)|e +

1
2
(v|Ek)|e,

[v] ≡ (v|Ej)|e − (v|Ek)|e.

The usual Sobolev norm of Hn on E ⊂ Rd is denoted by ∥ · ∥n,E . We thus define the following broken norms for positive
integer n:

|||v|||n ≡


N
j=1

∥v∥2
n,Ej

 1
2

, ∀v ∈ Hn(εh),

|||v|||n ≡


N
j=1

∥v∥2
m,Ej

 1
2

, ∀v ∈ Hn(εh).

The finite element space Vh to approximate displacement u is the discontinuous piecewise polynomial space

Vh ≡ {v; v|Ej ∈ [Pr(Ej)]d,∀Ej ∈ εh},

where Pr(Ej) is the set of polynomials of degree less than or equal to r on Ej. And define

V0h ≡ Vh ∩ {v; v|Γu1 = 0}.

By Babuska and Suri [18], for every v ∈ Hs(εh), an interpolant operator P Iv ∈ Vh exists and satisfies the following
properties:

∥v − P Iv∥n,Ej ≤ Chν−n
j ∥u∥s,Ej , 0 ≤ m ≤ s, (3.1)

∥v − P Iv∥0,e ≤ Ch
ν− 1

2
j ∥u∥s,Ej , s ≥

1
2
, (3.2)

with ν = min{r + 1, s} and e ∈ ∂Ej for any element Ej ∈ εh. We can readily obtain a global estimate for (3.1) by summing
all elements of εh. Additionally, for triangles or tetrahedra, a continuous interpolant satisfying (3.1) and (3.2) can be found.

In order to derive the discontinuousGalerkin variational scheme, plug the solutionu and p into (2.6a) and (2.6b) (assumed
to be sufficiently regular) and write the momentum equation in terms of the total stress σ(u, p). Next, multiplying the
equation by a test function v ∈ V3/2

0 and integrating over a single element E to find
E
v · divσ(u, p)dE = 0. (3.3)
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Integrating by parts,
∂E

v ·σ(u, p)nds −


E
σ(u, p) : (∇v)dE = 0. (3.4)

Sinceσ is symmetric, we have
∂E

v ·σ(u, p)nds −


E
σ(u, p) : (∇v)TdE = 0. (3.5)

Adding the above two equations together, we get
∂E

v ·σ(u, p)nds −


E
σ(u, p) : ϵ(v)dE = 0. (3.6)

Summing over all elements yields
E∈εh


∂E

v ·σ(u, p)nds −


E∈εh


E
σ(u, p) : ϵ(v)dE = 0. (3.7)

Consider that n is the normal vector from Ei to Ej(i < j), e = Ei ∩ Ej, and use the equality [ab] = [a]{b} + {a}[b], then the
first item of (3.7) can be written as

E∈εh


∂E

v ·σ(u, p)nds =


e∈E


Γu2


e
v · fds +


e∈Γint


e
(v|Ei ·σ |Eini + v|Ej ·σ |Ejnj)ds

=


e∈E


Γu2


e
v · fds +


e∈Γint


e
(v|Ei ·σ |Ein − v|Ej ·σ |Ejn)ds

=


e∈E


Γu2


e
v · fds +


e∈Γint


e
[v ·σn]ds

=


e∈E


Γu2


e
v · fds +


e∈Γint


e
[v] · {σ(u, p)n}ds; (3.8)

here, the term


e∈Γint


e{v} · [σ(u, p)n]ds is zero by regularity of u and p.

Taking the above equation into (3.7), we get
E∈εh


E
σ(u, p) : ϵ(v)dE −


e∈Γint


e
[v] · {σ(u, p)n}ds =


e∈E


Γu2


e
v · fds. (3.9)

Substitutingσ(u, p)with σ(u)− pI in (3.9), then
E∈εh


E
σ(u) : ϵ(v)dE −


E∈εh


E
pdiv vdE −


e∈Γint


e
[v] · {σ(u)n}ds +


e∈Γint


e
[v] · {pn}ds =


e∈E


Γu2


e
v · fds, (3.10)

where


E∈εh


E pdiv (v)dE =


E∈εh


E pI : ϵ(v)dE.

To develop the DG formulation, the following three terms are added to the left-hand side (lhs) of (3.10), which are all
equal to zero due to the assumed regularity of u:

ϵ

e∈0int


e
[u] · {σ(v)n}ds, (3.11)

Jδ,β0 (u, v) ≡


e∈Γint

δ

|e|β


e
[u] · [v]ds, (3.12)

J
δ,β
0 (ut , v) ≡


e∈Γint

δ
|e|β


e
[ut ] · [v]ds, (3.13)

where, the bilinear form in (3.11) characterizes the DG scheme by its value of ε, which affects the overall symmetry of the
formulation. The penalty terms in (3.12)–(3.13) contain the parameters δ andδ, which are discrete, positive functions taking
a constant value on each edge or face e (with |e| its Lebesgue measure).
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Plugging the above items (3.11)–(3.13) into (3.10), we obtain
E∈εh


E
σ(u) : ϵ(v)dE + ϵ


e∈Γint


e
[u] · {σ(v)n}ds −


e∈Γint


e
[v] · {σ(u)n}ds + Jδ,β0 (u, v)+ J

δ,β
0 (ut , v)

−


E∈εh


E
pdiv vdE +


e∈Γint


e
[v] · {pn}ds =


e∈E


Γu2


e
v · fds. (3.14)

The DG variational formulation uses (3.14) to model the momentum conservation equation (2.6a). In order to model the
mass conservation equation (2.6b), we use a mixed finite element method, and so we introduce the flux variable q = −∇p.
Then, (2.6b) can be rewritten as

∂

∂t
(div u)+ κdiv q = 0,

q + ∇p = 0.
(3.15)

Now, we choose L2(Ω) ≡ {p;

Ω

|p|2dx < +∞} as the appropriate function space for the pressure p, and H(div ) ≡ {s ∈

[L2(Ω)]d : div s ∈ L2(Ω)} as the space used for the flux variable q. For H(div), we can define the following subset

M0 ≡ {q ∈ H(div); q · n|Γp2 = 0}.

The corresponding finite dimensional approximating spaces are defined as follows. Let (Wh,Mh) ⊂ L2(Ω) × H(div)
denote a standard mixed finite element space (see [12,13]) defined on εh. Let

M0h ≡ {q ∈ Mh; q · n|Γp2 = 0},

and k refer to the order of this space.
In order to complete ourmixed finite element variational scheme,wemultiply (3.15) by (w, s) ∈ L2×M0. The formulation

is completed by integrating each of the equations overΩ and integrating by parts when necessary. The essential boundary
conditions for the displacement and flux variables are allowed to be inhomogeneous, so for each t ≥ 0, select some
ū(t, x) ∈ H3/2(εh) such that ū(t, x)|Γu1 = c, and choose some q̄(t, x) ∈ H(div) such that q̄(t, x)n|Γp2 = p2. Then, the
mixed-DG variational scheme becomes the following:

Problem I. Find u satisfying u − ū ∈ H1([0, T ];V
3
2
0 ), p ∈ H1([0, T ]; L2), and q satisfying q − q̄ ∈ L2([0, T ];M0) such that

(a) A(u, v)+ J
δ,β
0 (ut , v)− (p, div v)+


e∈Γint


e
[v] · {pn}ds =


e∈E


Γu2


e
v · fds, ∀v ∈ V

3
2
0 ,

(b) (div ut , w)+ κ(div q, w) = 0, ∀w ∈ L2,
(c) (q, s)− (p, div s) = 0, ∀s ∈ M0,

(3.16)

hold for every t ∈ [0, T ]; here (·, ·) represents the inner product in space L2, and the bilinear form

A(u, v) ≡


E∈εh


E
σ(u) : ϵ(v)dE + ϵ


e∈Γint


e
[u] · {σ(v)n}ds −


e∈Γint


e
[v] · {σ(u)n}ds + Jδ,β0 (u, v). (3.17)

The mixed-DG finite element formulation is based on the above variational form restricted to the finite dimensional
spaces Vh,Wh and Mh. Now, for each t ≥ 0, let ūh(t, x) = P I ū(t, x) ∈ Vh and q̄h(t, x) = Qhq̄(t, x) ∈ Mh. Then the
mixed-DG finite element formulation is as follows.

Problem II. Find uh satisfying uh − ūh ∈ H1([0, T ];V0h), ph ∈ H1([0, T ];Wh), and qh satisfying qh − q̄h ∈ L2([0, T ];M0h)
such that

(a) A(uh, vh)+ J
δ,β
0 (uht , vh)− (ph, div vh)+


e∈Γint


e
[vh] · {phn}ds =


e∈E


Γu2


e
vh · fds, ∀vh ∈ V0h,

(b) (div uht , wh)+ κ(div qh, wh) = 0, ∀wh ∈ Wh,

(c) (qh, sh)− (ph, div sh) = 0, ∀sh ∈ M0h,

(3.18)

hold for every t ∈ [0, T ]. In addition, initial conditions can be given in the following way,

A(uh|t=0, vh) = Au(u0, vh), ∀vh ∈ V0h, (3.19)
(ph|t=0, wh) = (p0, wh), ∀wh ∈ Wh. (3.20)
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4. Convergence analysis

The mixed-DG finite element formulation (Problem II) is a differential algebraic equation (DAE), and we first discuss its
existence and uniqueness.

Theorem 4.1. The mixed-DG finite element formulation (3.18) has a unique solution.
Proof. For simplicity, we write (3.18) in the matrix form. First, we denote the functions uh(t, x), ph(t, x), and qh(t, x)
as components in their respective basis functions, which are 8 = [φ1, φ2, . . . , φm],2 = [θ1, θ2, . . . , θn] and 9 =

[ψ1, ψ2, . . . , ψk], then

uh(t, x) =


i

ui(t)φi(x)+


i

ūi(t)φi(x) = U(t) · 8(x)+ U(t) · 8(x),

ph(t, x) =


i

pi(t)θi(x) = P(t) · 2(x),

qh(t, x) =


i

qi(t)ψi(x)+


i

q̄i(t)ψi(x) = Q(t) · 9(x)+ Q(t) · 9(x),

where U(t) = [u1(t), u2(t), . . . , um(t)]T , P(t) = [p1(t), p2(t), . . . , pn(t)]T ,Q(t) = [q1(t), q2(t), . . . , qk(t)]T .U(t) =

[ū1(t), ū2(t), . . . , ūm(t)]T , and Q(t) = [q̄1(t), q̄2(t), . . . , q̄k(t)]T are the components of known functions ūh and q̄h,
respectively, which come from the inhomogeneous essential conditions. Taking the representations for uh(t, x), ph(t, x)
and qh(t, x) into (3.18), and using each basis function as a test function, we get

A
∂Γ (t)
∂t

+ BΓ (t) = F(t), (4.1)

where

A =

Ae
uu 0 0

AT
up 0 0
0 0 0

 , B =

Auu [−Aup + Ae
up] 0

0 0 AT
qp

0 −Aqp Aqq

 ,
Γ (t) = [U(t)P(t)Q(t)]T , F(t) = [f1(t)f2(t)f3(t)]T (herein, f1(t), f2(t), f3(t) are suitablymodified to include inhomogeneous
essential conditions), and the subscript e represents those matrices coming from bilinear forms that are completely defined
on edges/faces.

According to theories in [19–21], if sA + B is invertible for some s ≠ 0, then (4.1) is uniquely solvable (there is also a
requirement involving sufficient time-differentiability of F(t)). So our goal is to find an s ≠ 0 such that (sA + B)Λ = 0
implies thatΛ = 0.

First, we decomposeΛ = [UΛPΛQΛ]. From the first row of sA+B, we can get that (Auu + sAe
uu)UΛ = [Aup −Ae

up]PΛ, and
letδ = 0. Since Auu contains a penalty item with parameter δ, for any s, if we make the substitutions δ →

1
2δ andδ →

1
2sδ,

then Auu + sAe
uu → Auu, and Auu + sAe

uu is also invertible and independent of s. we can arrive at

UΛ = (Auu + sAe
uu)

−1
[Aup − Ae

up]PΛ. (4.2)

Second, from the third row of sA + B, since Aqq is symmetric and positive definite, we can similarly get:

QΛ = A−1
qq AqpPΛ. (4.3)

Finally, plugging (4.2) and (4.3) into the second row of sA + B, we deduce

(AT
qpA

−1
qq Aqp + sAT

upA
−1
uu [Aup − Ae

up])PΛ = 0, (4.4)

where AT
qpA

−1
qq Aqp is invertible because Aqp has full column rank. By the theory in [22], the set of invertible matrices forms

an open and dense set, if s is chosen sufficiently small in (4.3), therefore we can get AT
qpA

−1
qq Aqp + sAT

upA
−1
uu [Aup − Ae

up] is still
invertible, that is, PΛ = 0, thus from (4.2) and (4.3), we have UΛ = 0 and QΛ = 0. Therefore, Eq. (4.1) is uniquely solvable.
The proof is completed. �

From now on, we discuss error estimates for themixed-DG finite element scheme (3.18). First, we introduce some useful
lemmas (cf. [23–25]).

Lemma 4.2. The following component term in A(, ) satisfies the properties:

(a)

E∈εh


E
σ(u) : ϵ(v)dE ≤ C |||u|||1|||v|||1, ∀u, v ∈ H1(εh),

(b) CK |||u|||
2
1 ≤


E∈εh


E
σ(u) : ϵ(u)dE + Jδ,β0 (u,u), ∀u ∈ H1(εh),
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where CK > 0 is a constant, the inequality (b) is called Korn’s inequality, C in this context indicates a positive constant which is
possibly different at different occurrences, being independent of the spatial and temporal mesh sizes.

Lemma 4.3. For ∀v ∈ Pr(Ej)d, w ∈ Pr(Ej) and any χ in Sobolev spaces, the following trace inequalities hold:

(a) ∥σ(u)n∥
2
L2(e) ≤ Ch−1

j


Ej
σ(v) : ϵ(v)dE,

(b) ∥w∥L2(e) ≤ Ch
−

1
2

j ∥w∥L2(Ej),

(c) ∥χ∥L2(e) ≤ C

h

−
1
2

j ∥χ∥L2(Ej) + h
1
2
j ∥χ∥H1(Ej)


.

Lemma 4.4. The mixed finite element spaces are required to be endowed with two linear operators, Qh : H(div) → Mh and the
L2 projection Ph : L2 → Wh, which satisfy the following properties:

(a) (div(q − Qhq), wh) = 0, ∀wh ∈ Wh,

(b) ∥q − Qhq∥L2 ≤ Chr
∥q∥Hr , 1 ≤ r ≤ k + 1,

(c) div Qh = Phdiv,
(d) (div qh, p − Php) = 0, ∀qh ∈ Mh,

(e) ∥p − Php∥L2 ≤ Chr
∥p∥Hr , 0 ≤ r ≤ k + 1.

Note that not all mixed space operators satisfy each of the above properties, in particular, (b), where the upper bound for r is
sometimes only k.

For convenience, define the error functions

u − uh = (u − P Iu)+ (P Iu − uh) ≡ ηu + ξu, (4.5a)
p − ph = (p − Php)+ (Php − ph) ≡ ηp + ξp, (4.5b)

q − qh = (q − Qhq)+ (Qhq − qh) ≡ ηq + ξq. (4.5c)
To obtain the proof of optimal convergence rates for the mixed DG finite element method, it is again useful to prove the

following lemma.

Lemma 4.5. Let (u, p, q) be the solution to Problem I, and (uh, ph, qh) be the solution to Problem II. Then, there is a positive
constant Cq such that, for bounded h, the following inequality holds:

∥ξp∥0 = ∥Php − ph∥0 ≤ Cq∥q − qh∥0. (4.6)

Proof. In (3.16)(c), taking s = sh ∈ Mh, and subtracting (3.18)(c) from (3.16)(c), we get:

(q − qh, sh)− (p − ph, div sh) = 0,

by (4.5b),

(q − qh, sh)− (ξp, div sh)− (ηp, div sh) = 0,

from Lemma 4.4(d), we obtain

(ξp, div sh) = (q − qh, sh).
We now apply Nitsche technique or duality argument to obtain ∥ξp∥0. Let −1ψ = ξp with boundary conditions

compatible with the pressure boundary conditions, and for φ ∈ L2(Ω), let φ = −∇ψ , and there is the regularity estimate
∥φ∥1 ≤ C∥ξp∥0. Then, by Lemma 4.4(a) and (b), we deduce

∥ξp∥
2
0 = (ξp, ξp) = (ξp,−1ψ)

= (ξp, div φ) = (ξp, div Qhφ)

= (q − qh,Qhφ)

= (q − qh,Qhφ − φ)+ (q − qh, φ)

≤ ∥q − qh∥0∥Qhφ − φ∥0 + ∥q − qh∥0∥φ∥0

≤ ∥q − qh∥0∥Qhφ − φ∥0 + ∥q − qh∥0∥φ∥1

≤ (Ch + 1)∥q − qh∥0∥φ∥1

≤ (Ch + 1)∥q − qh∥0∥ξp∥0.

If we assume that h is bounded, and take Cq = Ch + 1, then (4.6) holds. The proof is completed. �
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In order to deduce the error estimates, we also need the following Gronwall Lemma.

Lemma 4.6 (Gronwall Lemma). Let g(t) be a positive and integrable function on [0, T ], c > 0 be a constant. If ψ(t) ∈ C0([0, T ])
satisfies

0 ≤ ψ(t) ≤ c +

 t

0
g(s)ψ(s)ds, ∀t ∈ [0, T ],

then, ψ(t) also satisfies

0 ≤ ψ(t) ≤ c · exp
 t

0
g(s)ds


, ∀t ∈ [0, T ].

Especially, if c = 0, then ψ(t) ≡ 0.

In order to discuss error estimates, the following minimal regularity requirements are necessary:

u ∈ L∞


0, T ;H

3
2 (εh)


, p ∈ L2(0, T ;H1),

where, the factor 3
2 is to ensure that the first order derivatives have well-defined traces along boundary edges.

In addition, let s, t, q and r be the largest positive real numbers, such that

u ∈ L2(0, T ;Hs(εh)), ut ∈ L2(0, T ;Ht(εh)),

p ∈ L2(0, T ;Hq), pt ∈ L2(0, T ;Hr), q ∈ H(div).

For simplicity, we assume the null initial conditions (u0 = 0 and p0 = 0) and homogeneous essential boundary
conditions (c = 0 and p2 = 0) in the following theorem.

Theorem 4.7. Let r1 ≥ 0 be the order of the mixed finite element space (Wh,Mh), and r2 > 0 be the order of the DG finite
element space Vh. Under the above hypotheses, if β = (d − 1)−1, δ andδ are large enough, and (u, p, q) and (uh, ph, qh) are
solutions of Problems I and II, respectively, then

|||u − uh|||L∞(H1) + ∥p − ph∥L2(L2) + ∥q − qh∥L2(L2) ≤ ChR,

where C is a constant independent of mesh size h, and R = min{r1 + 1, r2, r, q − 1, s − 1, t − 1}.

Proof. In (3.16), taking v = vh ∈ V0h, p = ph ∈ Wh, s = sh ∈ M0h, and subtracting (3.18) from (3.16), we get the error
equation

(a) A(u − uh, vh)+ J
δ,β
0 (ut − uht , vh)− (p − ph, div vh)+


e∈Γint


e
[vh] · {p − ph}nds = 0, ∀vh ∈ V0h,

(b) (div (u − uh)t , wh)+ κ(div(q − qh), wh) = 0, ∀wh ∈ Wh,

(c) (q − qh, sh)− (p − ph, div sh) = 0, ∀sh ∈ M0h.

(4.7)

Taking vh = ξu,t , wh = ξp and sh = κξq, then by (4.5), (4.7) can be rewritten as

(a) A(ηu, ξu,t)+ A(ξu, ξu,t)+ J
δ,β
0 (ηu,t , ξu,t)+ J

δ,β
0 (ξu,t , ξu,t)− (ηp, div ξu,t)− (ξp, div ξu,t)

+


e∈Γint


e
{ξp + ηp}n · [ξu,t ]ds = 0

(b) (div ηu,t , ξp)+ (div ξu,t , ξp)+ κ(div ηq, ξp)+ κ(div ξq, ξp) = 0,
(c) κ(ξq, ξq)+ κ(ηq, ξq)− κ(ηp, div ξq)− κ(ξp, div ξq) = 0.

(4.8)

By Lemma 4.4(a) and (d), summing the three equations, we get

A(ξu, ξu,t)+ J
δ,β
0 (ξu,t , ξu,t)+ κ(ξq, ξq) = −Au(ηu, ξu,t)− J

δ,β
0 (ηu,t , ξu,t)

+


e∈Γint


e
{ξp + ηp}n · [ξu,t ]ds + (ηp, div ξu,t)

− (div ηu,t , ξp)− κ(ηq, ξq).

Integrating the above equation from 0 to T ,
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0
A(ξu, ξu,t)dt +

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt +

 T

0
κ∥ξq∥

2
0dt

= −

 T

0
A(ηu, ξu,t)dt −

 T

0
J
δ,β
0 (ηu,t , ξu,t)dt +

 T

0


e∈Γint


e
{ξp + ηp}n · [ξu,t ]dsdt

+

 T

0
(ηp, div ξu,t)dt −

 T

0
(div ηu,t , ξp)dt −

 T

0
κ(ηq, ξq)dt.

Plugging (3.17) into the left hand side of the above equation, and noting that ξu(0) = 0 and ξp(0) = 0, we can obtain

1
2


E∈εh


E
(σ (ξu) : ϵ(ξu))t=TdE +

1
2
Jδ,β0 (ξu, ξu)t=T +

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt + κ

 T

0
∥ξq∥

2
0dt

= −

 T

0
Au(ηu, ξu,t)dt −

 T

0
J
δ,β
0 (ηu,t , ξu,t)dt +

 T

0


e∈Γint


e
{ξp + ηp}n · [ξu,t ]dsdt

+

 T

0
(ηp, div ξu,t)dt −

 T

0
(div ηu,t , ξp)dt −

 T

0
κ(ηq, ξq)dt +

 T

0


e∈Γint


e
[ξu,t ] · {σ(ξu)n}dsdt

− ϵ

 T

0


e∈Γint


e
[ξu] · {σ(ξu,t)n}dsdt ≡ E1 + E2 + · · · + E8. (4.9)

Integrating by parts in time for E1,

E1 = −

 T

0
A(ηu, ξu,t)dt =

 T

0
A(ηu,t , ξu)dt − A(ηu, ξu)t=T ≡ E1a + E1b.

For E1a and E1b, by using the projection properties (3.1)–(3.2), Lemmas 4.2(a) and 4.3(a), and the Cauchy–Schwarz and Young
inequalities, we get

E1a =

 T

0


E∈εh


E
(σ (ηu,t) : ϵ(ξu))dEdt −

 T

0


e∈Γint


e
[ξu] · {σ(ηu,t)n}dsdt

+ ϵ

 T

0


e∈Γint


e
[ηu,t ] · {σ(ξu)n}dsdt +

 T

0
Jδ,β0 (ηu,t , ξu)dt

≤ C
 T

0
|||ηu,t |||1|||ξu|||1dt +

 T

0


e∈Γint


δ

|e|β

 1
2

∥[ξu]∥0,e ×


|e|β

δ

 1
2

∥{σ(ηu,t)n}∥0,edt

+

 T

0


e∈Γint


δ

|e|β

 1
2

∥[ηu,t ]∥0,e ×


|e|β

δ

 1
2

∥{σ(ξu)n}∥0,edt

+

 T

0


e∈Γint


δ

|e|β

 1
2

∥[ηu,t ]∥0,e ×


δ

|e|β

 1
2

∥[ξu]∥0,edt

≤ C
 T

0
|||ηu,t |||

2
1dt + C

 T

0
|||ξu|||

2
1dt + C

 T

0


e∈Γint

δ

he
∥[ηu,t ]∥

2
0,edt

+

 T

0


e∈Γint

he

δ
∥{σ(ηu,t)n}∥

2
0,edt +

1
8

 T

0
Jδ,β0 (ξu, ξu)dt +

 T

0


e∈Γint

he

δ
∥{σ(ξu)n}∥

2
0,edt

≤ Chmin{2r2,2t−2}
 T

0
∥ut∥

2
min{r2+1,t}dt + C

 T

0
|||ξu|||

2
1dt +

1
8

 T

0
Jδ,β0 (ξu, ξu)dt,

and

E1b = −


E∈εh


E
(σ (ηu) : ϵ(ξu))|t=TdE +


e∈Γint


e
[ξu] · {σ(ηu)n}|t=Tds

− ϵ

e∈Γint


e
[ηu] · {σ(ξu)n}|t=Tds − Jδ,β0 (ηu, ξu)|t=T
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≤ |||ηu(T )|||1|||ξu(T )|||1 +


e∈Γint


δ

|e|β

 1
2

∥[ξu(T )]∥0,e ×


|e|β

δ

 1
2

∥{σ(ηu(T ))n}∥0,e

+


e∈Γint


δ

|e|β

 1
2

∥[ηu(T )]∥0,e ×


|e|β

δ

 1
2

∥{σ(ξu(T ))n}∥0,e

+


e∈Γint


δ

|e|β

 1
2

∥[ηu(T )]∥0,e ×


δ

|e|β

 1
2

∥[ξu(T )]∥0,e

≤ C |||ηu(T )|||21 + ϵ|||ξu(T )|||21 + C

e∈Γint

δ

he
∥[ηu(T )]∥2

0,e

+


e∈Γint

he

δ
∥{σ(ηu(T ))n}∥

2
0,e +

1
8
Jδ,β0 (ξu(T ), ξu(T ))+ ϵ


e∈Γint

he

δ
∥{σ(ξu(T ))n}∥

2
0,e

≤ Chmin{2r2,2t−2}
∥u(T )∥2

min{r2+1,t} + ϵ1|||ξu(T )|||21 +
1
8
Jδ,β0 (ξu(T ), ξu(T )),

where ϵ1 > 0 is an arbitrarily small parameter. For E2, by virtue of (3.2), (3.13), and the Cauchy–Schwarz and Young
inequalities, we deduce

E2 = −

 T

0
J
δ,β
0 (ηu,t , ξu,t)dt

= −

 T

0


e∈Γint


e

 δ
|e|β

 1
2

[ηu,t ] ·

 δ
|e|β

 1
2

[ξu,t ]dsdt

≤

 T

0


e∈Γint

 δ
|e|β

 1
2

∥[ηu,t ]∥0,e ·

 δ
|e|β

 1
2

∥[ξu,t ]∥0,edt

≤ C
 T

0


e∈Γint

δ
|e|β

∥[ηu,t ]∥
2
0,edt +

1
4

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt

≤ Chmin{2r2,2t−2}
 T

0
∥ut∥

2
min{r2+1,t}dt +

1
4

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt.

E3 can be written as

E3 =

 T

0


e∈Γint


e
{ξp + ηp}n · [ξu,t ]dsdt

=

 T

0


e∈Γint


e
{ξp}n · [ξu,t ]dsdt +

 T

0


e∈Γint


e
{ηp}n · [ξu,t ]dsdt

≡ E3a + E3b.

For E3a, using Lemmas 4.5 and 4.3(b),

E3a ≤

 T

0


e∈Γint


e
|{ξp}| · |[ξu,t ]|dsdt

≤

 T

0


e∈Γint


|e|βδ

 1
2

∥{ξp}∥0,e

 δ
|e|β

 1
2

∥[ξu,t ]∥0,edt

≤ C
 T

0


e∈Γint

|e|βδ ∥{ξp}∥
2
0,edt +

1
4

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt

≤ C
 T

0


e∈Γint

|e|βδ

∥ξp|Eei

∥
2
0,e + ∥ξp|Eej

∥
2
0,e


dt +

1
4

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt

≤ C
 T

0


e∈Γint

|e|βδ

h−1
ie ∥ξp|Eei

∥
2
0,Eei

+ h−1
je ∥ξp|Eej

∥
2
0,Eej


dt +

1
4

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt
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≤
Cδmin

 T

0
∥ξp∥

2
0dt +

1
4

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt

≤
CC2

qδmin

 T

0
(∥ηq∥

2
0 + ∥ξq∥

2
0)dt +

1
4

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt

≤ Chmin{2r1+2,2q−2}
 T

0
∥q∥

2
min{r1+1,q−1}dt +

CC2
qδmin

 T

0
∥ξq∥

2
0dt +

1
4

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt.

By Lemma 4.3(c), similar to the deduction of E3a, we can get

E3b ≤ C
 T

0


e∈Γint

|e|βδ

∥ηp|Eei

∥
2
0,e + ∥ηp|Eej

∥
2
0,e


dt +

1
4

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt

≤ C
 T

0


e∈Γint

|e|βδ

h−1
ie ∥ηp∥

2
0,Eei

+ hie∥ηp∥
2
1,Eei

+ h−1
je ∥ηp∥

2
0,Eej

+ hje∥ηp|∥
2
1,Eej


dt

+
1
4

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt

≤
Cδmin

 T

0


E∈εh


∥ηp∥

2
0,E + h2

e∥ηp∥
2
1,E


dt +

1
4

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt

≤
Cδmin

hmin{2r1+2,2q}
 T

0
∥p∥2

min{r1+1,q}dt +
1
4

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt.

The bound for E4 follows by integrating by parts and using the initial time assumption div ξu|t=0 = 0,

E4 =

 T

0
(ηp, div ξu,t)dt = −

 T

0
(ηp,t , div ξu)dt + (ηp, div ξu)|t=T

≤

 T

0


E∈εh


∥ηp,t∥0,E∥div ξu∥0,E + ∥ηp(T )∥0,E∥div ξu(T )∥0,E


dt

≤ C
 T

0
∥ηp,t∥

2
0dt +

1
2

 T

0
|||ξu|||

2
1dt + C∥ηp(T )∥2

0 + ϵ2|||ξu(T )|||21

≤ Chmin{2r1+1,2r}
 T

0
∥pt∥2

min{r1+1,r}dt +
1
2

 T

0
∥ξu∥

2
1dt

+ Chmin{2r1+1,2q}
∥p(T )∥2

min{r1+1,q} + ϵ2|||ξu(T )|||21,

where ϵ2 > 0 is an arbitrarily small parameter. For E5, by Lemma 4.5 and the Young inequality with ϵ =
κ

4C2
q
, we get

E5 = −

 T

0
(div ηu,t , ξp)dt ≤

 T

0


E∈εh

∥ξp∥0,E∥div ηu,t∥0,Edt

≤ C
 T

0
|||ηu,t |||

2
1dt +

κ

4C2
q

 T

0
∥ξp∥

2
0dt

≤ C
 T

0
|||ηu,t |||

2
1dt +

κ

4

 T

0
(∥ηq∥

2
0 + ∥ξq∥

2
0)dt

≤ Chmin{2r1+2,2q−2}
 T

0
∥q∥

2
min{r1+1,q−1} +

κ

4

 T

0
∥ξq∥

2
0dt + Chmin{2r2,2t−2}

 T

0
∥ut∥

2
min{r2+1,t}.

To bound E6, applying the Cauchy–Schwarz and Young inequalities

E6 = −

 T

0
κ(ηq, ξq)dt ≤ κ

 T

0
∥ξq∥0∥ηq∥0dt

≤ C
 T

0
∥ηq∥

2
0dt +

κ

4

 T

0
∥ξq∥

2
0dt

≤ Chmin{2r1+2,2q−2}
 T

0
∥q∥

2
min{r1+1,q−1}dt +

κ

4

 T

0
∥ξq∥

2
0dt.

Integrate by parts in time for E8, then we get



22 H. Li, Y. Li / J. Math. Anal. Appl. 398 (2013) 11–25

E7 + E8 =

 T

0


e∈Γint


e
[ξu,t ] · {σ(ξu)n}dsdt − ϵ

 T

0


e∈Γint


e
[ξu] · {σ(ξu,t)n}dsdt

= (1 + ϵ)

 T

0


e∈Γint


e
{σ(ξu)n} · [ξu,t ]dsdt − ϵ


e∈Γint


e
{σ(ξu)n} · [ξu]t=Tds

≡ E7′ + E8′ .

The bound for E7′ uses Lemma 4.3(a), the Cauchy–Schwarz and Young inequalities

E7′ = (1 + ϵ)

 T

0


e∈Γint


|e|βδ

 1
2

{σ(ξu)n} ·

 δ
|e|β

 1
2

[ξu,t ]dt

≤ C
 T

0


e∈Γint


|e|βδ

 1
2

∥{σ(ξu)n}∥0,e ·

 δ
|e|β

 1
2

∥[ξu,t ]∥0,edt

≤ Chβ(d−1)
 T

0


e∈Γint

∥{σ(ξu)n}∥
2
0,edt +

1
4

 T

0


e∈Γint

δ
|e|β

∥[ξu,t ]∥
2
0,edt

≤ Chβ(d−1)−1
 T

0


e∈Γint


Ee
(σ (ξu) : ϵ(ξu))dt +

1
4

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt

≤ C
 T

0
|||ξu|||

2
1dt +

1
4

 T

0
J
δ,β
0 (ξu,t , ξu,t)dt.

Similarly, we can get

E8′ ≤ C

e∈Γint


e


|e|β

δ

 1
2

{σ(ξu)n}t=T ·


δ

|e|β

 1
2

[ξu]t=Tds

≤ C

e∈Γint


|e|β

δ

 1
2

∥{σ(ξu)n}t=T∥0,e ·


δ

|e|β

 1
2

∥[ξu(T )]∥0,e

≤
C
δmin

hβ(d−1)

e∈Γint

∥{σ(ξu)n}t=T∥
2
0,e +

1
8


e∈Γint

δ

|e|β
∥[ξu(T )]∥2

0,e

≤
C
δmin


e∈Γint


Ee
(σ (ξu) : ϵ(ξu))t=TdE +

1
8
Jδ,β0 (ξu, ξu)t=T

≤
C
δmin


E∈εh


E
(σ (ξu) : ϵ(ξu))t=TdE +

1
8
Jδ,β0 (ξu(T ), ξu(T )).

Combining the estimates of E1 through E8 with (4.9), we obtain that
1
2

−
C
δmin


E∈εh


E
(σ (ξu) : ϵ(ξu))t=TdE +


1
2

−
1
8

−
1
8


Jδ,β0 (ξu(T ), ξu(T ))

+


κ −

κ

4
−
κ

4
−

CC2
qδmin

 T

0
∥ξq∥

2
0dt − (ϵ1 + ϵ2)|||ξu(T )|||21

≤ C


hmin{2r2,2t−2}

 T

0
∥ut∥

2
min{r2+1,t}dt + hmin{2r2,2t−2}

∥u(T )∥2
min{r2+1,t}

+hmin{2r1+2,2q−2}
 T

0
∥q∥

2
min{r1+1,q−1}dt + hmin{2r1+2,2q}

 T

0
∥p∥2

min{r1+1,q}dt

+ hmin{2r1+1,2r}
 T

0
∥pt∥2

min{r1+1,r}dt + hmin{2r1+1,2q}
∥p(T )∥2

min{r1+1,q}



+ C
 T

0
|||ξu|||

2
1dt +

 T

0
Jδ,β0 (ξu, ξu)dt


. (4.10)
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Fig. 1. Arrow plot of the force function and the mesh.

Let δ andδ be chosen so that 1
2 −

C
δmin

=
1
8 and κ

2 −
CC2

qδmin
> 0; then by Lemma 4.2(b), the left-hand side of (4.10) can be

written as

lhs ≥


1
8
CK − ϵ1 − ϵ2


|||ξu(T )|||21 +

1
8
Jδ,β0 (ξu(T ), ξu(T ))+


κ

2
−

CC2
qδmin

 T

0
∥ξq∥

2
0dt

≥ C ′


|||ξu(T )|||21 + Jδ,β0 (ξu(T ), ξu(T ))+

 T

0
∥ξq∥

2
0dt

, (4.11)

where C ′ is the positiveminimum coefficient of the three terms of (4.11). By virtue of (4.10) and (4.11), we can first eliminate
the last two terms from the right-hand side of (4.10) using Gronwall Lemma 4.6, then drop the inessential positive term
Jδ,β0 (ξu(T ), ξu(T )), so we can get

|||ξu|||
2
L∞(H1)

+ ∥ξq∥
2
L2(L2) ≤ Ch2R. (4.12)

The theorem readily follows from (4.12), (3.2), Lemma 4.4(b) and (d), and Lemma 4.5. The proof is completed. �

5. Numerical examples

In this section, one two-dimensional numerical experiment of swelling model is conducted to gauge the performance of
the mixed-DG finite element method developed in this paper. The gel used in the test is the Poly hydrogel (cf. [10,19] and
the references therein). The material constants, which were reported in [10,26], are given:

Young’s modulus E = 6000, Poisson’s ratio ν = 0.43, bulk modulus K =
E

3(1−2ν) = 14285.7, shear modulus
G =

E
2(1+ν) = 2097.9, friction constant ξ = 100, Lamé constants α = K −

2G
3 = 12887.1 and β = 2G = 4195.8,

volume fraction φ = 0.15, and κ =
(1−φ)2

ξ
= 7.225 × 10−3.

LetΩ = [0, 1] × [0, 1]. The external force f = (f1, f2) on the boundary is taken as follows for the test:

f1(x, y) =


−1, x = 1,
0, others, f2(x, y) = 0.

Fig. 1 shows the computational domain, the arrowplot of the force function fon ∂Ω , and themeshonwhich thenumerical
solution is computed.1t = 0.0001 is used in the test.

Figs. 2 and 3 display snapshots of the computed solution at time t = 0.001. Each graph in Fig. 2 contains the color plots
of the displacement, and each graph in Fig. 3 contains not only the color plots of the pressure, but also the arrow plots of the
displacement, which show the deformation of the square gel under the mechanical force f on the boundary. As expected,
the gel is moved to the left a little when the right-hand-side force is applied.

At the same time, Figs. 2–4 show a comparison of the pressure and displacement produced by the CG and mixed DG
algorithms, respectively. The three graphs denoted by (a) are computed by the CG finite element method, while three
graphs denoted by (b) are the corresponding plots by the mixed DG finite element method. Figs. 2–4 show that the scheme
using continuous elements for displacements clearly suffers from nonphysical pressure oscillations, whereas the one using
discontinuous elements has virtually eliminated the problem.
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Fig. 2. The profile of x-axis displacement u at time t = 0.001.
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Fig. 3. The profile of pressure p and displacement u at time t = 0.001.
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Fig. 4. The profile of pressure p(x = 0.2, 0.5, 0.8) at time t = 0.001.
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