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a b s t r a c t

Let f∗ denote the lower function of a real function f . Assuming that f∗(c) ≥ 1 for all c > 1
and f∗(c0) > 1 for some c0 > 1 we prove that, if f is a pseudo-regularly varying function,
then f has an equivalent monotone version.
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1. Introduction

The early developments in the theory of regularly varying functions were often related to situations, in which mono-
tonicity was assumed. Such a preliminary assumption allows one to develop key aspects of the theory, particularly charac-
terizations, either more comprehensively or in a much simpler manner (see, e.g., Seneta [14], Section 1.8).

The simplest generalization of the monotonicity property is that the function possesses an (asymptotically) equivalent
monotone version. This weaker condition, nevertheless, leads to almost the same simplifications in the proofs of a number
of results for regularly varying functions. Thus a natural question to ask is, for a given function f (not necessarily regularly
varying), about conditions for f to have an equivalent monotone version. We give a partial answer to this question for the
so-called pseudo-regularly varying (PRV) functions (see the definitions below). The well-known statement that a regularly
varying function of nonzero index has an equivalent monotone version (see Seneta [14], Section 1.5) is a particular case of
our result. In contrast, a regularly varying function of zero index (a so-called slowly varying function) does not always have
an equivalent monotone version. We show this by constructing an example of such a function below (cf. Theorem 3.2).

The monotonicity of functions under consideration plays a crucial role in various problems of probability theory. To be
more specific we mention the following example. Let {ξn}n≥1 be a sequence of nondegenerate, nonnegative, independent,
identically distributed random variables and let {ζn}n≥1, ζ0 = 0, be their partial sums. Note that the sequence {ζn} is nonde-
creasingwith respect to n, since the summands ξn are nonnegative. Denote by {N(t)}t≥0 the corresponding renewal counting
process defined by

N(t) = max{n : ζn ≤ t}, t ≥ 0.
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Note that ζn →∞ almost surely as n→∞, since the distribution of ξ1 is non-degenerate, whenceN(t) <∞ almost surely
for all t ≥ 0. Assuming that

lim
n→∞

ζn

bn
= 1 almost surely

for a deterministic sequence of positive numbers {bn}n≥1, the problem studied in Klesov, Rychlik, and Steinebach [12] is to
find a normalizing function {c(t)}t≥0 such that

lim
t→∞

N(t)
c(t)
= 1 almost surely.

This problem has been solved in [12] if {bn} is an increasing sequence. It turned out that the function {c(t)} can be con-
structed from the sequence {bn} by applying the concept of generalized inverse functions. Moreover, the conclusion holds
if the sequence {bn} is not necessarily monotone but (asymptotically) equivalent to a monotone sequence and if a certain
additional restriction is imposed.

Karamata’s ideas about the notion of regular variation turned out to be very fruitful in many fields of mathematics and
have soon been generalized in various ways, keeping the main properties, however, in one way or another. Among those
generalizations is the notion of O-regularity, denoted here by OR, which, for a positive function f , means that

f ∗(c) = lim sup
t→∞

f (ct)
f (t)

<∞ for all c > 0

(see Avakumović [1] and Karamata [11]). The function f ∗ is called the upper function for f , while

f∗(c) = lim inf
t→∞

f (ct)
f (t)

, c > 0, (1.1)

is called its lower function. Karamata’s regularly varying functions are characterized by the property that f∗(c) = f ∗(c) for
all c > 0, in which case automatically the common value of f∗(c) and f ∗(c) equals cρ for some real ρ and all c > 0.

OR functions have many properties, which are similar to those of regularly varying functions, for example, they exhibit
similar uniform convergence properties, integral representations and characterizations, etc. Again, results for OR functions
f become simpler, if f is monotone or has an equivalent monotone version. Here are some selected examples of such
situations.

Independently of Avakumović [1] and Karamata [11], Bari and Stechkin in their memoir [2] also introduced the ORV
property for monotone functions. They used such a property to describe a relationship between the modulus of continuity
of a periodic function and its best approximation by trigonometric polynomials. In fact, their results also hold if just the
existence of an equivalent monotone version is assumed instead of monotonicity.

Feller [9] observed that some of Karamata’s [11] results do not require the full concept of regular variation. Instead he
introduced the notion of dominated variation formonotone functions and successfully applied it to some local limit theorems
in probability theory and to the tail behavior of infinitely divisible distribution functions. All his results on dominatedly
varying functions can easily be extended to the non-monotone case by assuming that the corresponding functions have an
equivalent monotone version.

De Haan and Stadtmüller [8] studied Abelian and Tauberian theorems for Laplace transforms under conditions of
dominated variation and related concepts. Again, their results only require the existence of an equivalentmonotone version.

Several subclasses of OR functions have been studied in the literature. A key role therein sets the question of whether,
given two functions f and g such that f ∼ g , it is true that f −1 ∼ g−1. (Examples from probability theory can be found in
Gut, Klesov, and Steinebach [10], Klesov, Rychlik and Steinebach [12] and Buldygin, Klesov and Steinebach [4–6].) Here f −1
and g−1 denote the inverse functions to f and g , respectively.

A more general problem is to obtain a similar conclusion if the inverse functions do not exist and are substituted by so-
called quasi-inverse or asymptotically quasi-inverse functions denoted by f inv, g inv, etc. A natural substitution for the inverse
functions suggested by the construction of the renewal process given above are the so-called generalized inverse functions
denoted by f←, g←, etc. An even larger class of functions, for which one can prove the above assertion, is the class of POV
functions. Here, a function f is defined to be of positive order of variation, denoted by POV, if

f∗(c) > 1 for all c > 1 (1.2)

and

lim inf
c↓1

f∗(c) = 1. (1.3)

The latter property characterizes the so-called pseudo-regularly varying functions, denoted by PRV. For general OR, PRV or
POV functions, the questions about the existence of equivalent monotone versions are not so obvious. For POV functions,
for example, the existence of an equivalent monotone version has been proved by Buldygin, Klesov and Steinebach [5].
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Our goal in this paper is to solve the problem on themonotonicity for a much larger class of functions. A related problem,
studying whether a function has an infinite limit, has been presented by Buldygin, Klesov, and Steinebach [7], where also a
motivation is given.

2. Some assumptions

Throughout the paper we assume that

f (t) > 0 for all t ≥ 0. (2.1)

Definition 2.1. Let f be a real function. We say that f has an equivalent monotone version if there exists a nondecreasing
function f ↑ such that

f ∼ f ↑ (t →∞), i.e., lim
t→∞

f (t)
f ↑(t)

= 1.

A necessary assumption for a function f to have an equivalent monotone version is that

f∗(c) ≥ 1 for all c ≥ 1, (2.2)

see Theorem 3.1 below. Moreover, the condition

f∗(c0) > 1 for some c0 > 1 (2.3)

is also necessary (in the sense that there is a function f for which (2.3) does not hold and f has no equivalent monotone
version, see Theorem 3.2).

We sometimes use a stronger condition than (2.2), namely

lim inf
n→∞

f (cntn)
f (tn)

≥ 1 for all sequences cn ↓ 1 and tn →∞. (2.4)

First we study the question under which condition an equivalent monotone version does not exist.

3. Condition under which no equivalent monotone version exists

Theorem 3.1. Let

f∗(c0) < 1 for some c0 > 1. (3.1)

Then f has no equivalent monotone version.

Proof. Assume the converse, i.e. that there is a monotone version f ↑. Condition (3.1) implies that there are some q ∈ (0, 1)
and a sequence {tn} such that tn →∞ and

f (c0tn)
f (tn)

≤ q for all n ≥ 1.

Thus

f ↑(tn)
f (tn)

≤
f ↑(c0tn)
f (tn)

≤
f ↑(c0tn)
f (c0tn)

·
f (c0tn)
f (tn)

≤ q
f ↑(c0tn)
f (c0tn)

.

Letting n→∞, we obtain the contradiction 1 ≤ q, which proves (3.1). �

Thus when finding conditions for the existence of an equivalent monotone version, one necessarily has to assume (2.2)
and also (2.3) as a companion. If (2.3) does not hold, then a monotone version may not exist. An example, where (2.2) holds
but (2.3) does not, is given by a slowly varying function for which f∗(c) = f ∗(c) = 1 for all c > 0.

Theorem 3.2. There is a slowly varying function f such that

lim sup
t→∞

f (t) = ∞ and lim inf
t→∞

f (t) = 0.

It will be obvious from the construction of the function f in Theorem 3.2 that it does not have an equivalent monotone
version. The proof of Theorem 3.2 is postponed to Section 6.
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4. Sufficient conditions for equivalent monotone versions to exist

Theorem 4.1. Let f be a function satisfying (2.1). Then, under conditions (2.2)–(2.4), there exists an equivalentmonotone version
f ↑.

The proof of this result is based on the two lemmas below. Moreover, in what follows we deal with a special equivalent
monotone version, that is with

f ↑(t) = inf
s≥t

f (s). (4.1)

Lemma 4.1. Let f be a function satisfying (2.1). Then, under conditions (2.2) and (2.3), there is a t0 > 0 such that

f ↑(t) ≥ inf
t≤s≤c0t

f (s) for all t ≥ t0. (4.2)

Remark 4.1. Inequality (4.2), in fact, is an equality, since the upper bound is obvious.

Proof of Lemma 4.1. Due to conditions (2.2)–(2.3), there are numbers r > 1 and t0 > 0 such that

f (c0t) ≥ rf (t) for all t ≥ t0.

Moreover, for t ≥ t0,

f ↑(t) = min


inf
t≤s≤c0t

f (s), inf
s≥c0t

f (s)

= min


inf

t≤s≤c0t
f (s), inf

s≥t
f (c0s)


= min


inf

t≤s≤c0t
f (s), inf

s≥t
f (s)

f (c0s)
f (s)


≥ min


inf

t≤s≤c0t
f (s), r inf

s≥t
f (s)


= min


inf

t≤s≤c0t
f (s), rf ↑(t)


= inf

t≤s≤c0t
f (s).

Therefore,

f ↑(t) ≥ inf
t≤s≤c0t

f (s) for all t ≥ t0,

which completes the proof. �

Lemma 4.2. Let f be a function satisfying (2.1). Then, under conditions (2.2) and (2.4),

lim inf
t→∞

inf
1≤c≤C

f (ct)
f (t)
≥ 1 (4.3)

for all C ≥ 1.

Proof of Lemma 4.2. If the required property does not hold, then there are a constant C ≥ 1 and two sequences {cn} and
{tn} such that 1 ≤ cn ≤ C , tn →∞, and

lim
n→∞

f (cntn)
f (tn)

< 1. (4.4)

Choose a monotone convergent subsequence of {cn} and denote its limit by c ′. Without loss of generality we assume that
the whole sequence {cn} converges to c ′. Then

lim inf
n→∞

f (cntn)
f (tn)

≥ lim inf
n→∞

f (cntn)
f (c ′tn)

· lim inf
n→∞

f (c ′tn)
f (tn)

≥ lim inf
n→∞

f (cntn)
f (c ′tn)

by condition (2.2). On setting τn = c ′tn and dn = cn/c ′, we have τn →∞ and dn ↓ 1. Thus condition (2.4) implies that

lim inf
n→∞

f (cntn)
f (tn)

≥ lim inf
n→∞

f (dnτn)
f (τn)

≥ 1.

This contradicts (4.4) and completes the proof. �
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Proof of Theorem 4.1. By Lemma 4.1, there is a t0 > 0 such that

f ↑(t)
f (t)

≥ inf
t≤s≤c0t

f (s)
f (t)
= inf

1≤c≤c0

f (ct)
f (t)

for all t ≥ t0,

where f ↑ is defined by (4.1). Passing to the lim inf as t → ∞ and then applying Lemma 4.2 we complete the proof, since
the upper bound

lim sup
t→∞

f ↑(t)
f (t)

≤ 1

is obvious. �

Corollary 4.1. Let f be a PRV function, that is, let (1.2) and (1.3) hold. Then an equivalent monotone version f ↑ exists.

Corollary 4.2. Let f be a regularly varying function of positive index. Then an equivalent monotone version f ↑ exists.

5. Equivalent monotone versions

In this section, we study the role of an asymptotic form of (4.3) for the existence of an equivalent monotone version to a
given positive function f . Let

χf = lim
c↓1

lim inf
t→∞

inf
1≤λ≤c

f (λt)
f (t)

. (5.1)

We want to decide about the existence of an equivalent monotone version just via the single number χf . Note that χf ≤ 1
for any positive function f and

χf = 1 (5.2)

if f is increasing. Moreover, (5.2) is necessary for f to have an equivalent monotone version.

Theorem 5.1. If χf < 1, then there is no equivalent monotone version f ↑.

Proof of Theorem 5.1. Since χf < 1, there are a number q ∈ (0, 1) and two sequences {λn} and {tn} such that λn ↓ 1,
tn →∞, and

f (λntn)
f (tn)

≤ q for all n ≥ 1.

If a monotone version f ↑ exists, then, in particular,

f (tn) ∼ f ↑(tn) and f (λntn) ∼ f ↑(λntn).

On the other hand,

f ↑(λntn)
f (λntn)

=
f ↑(λntn)
f (tn)

·
f (tn)

f (λntn)
≥

1
q
·
f ↑(λntn)
f (tn)

≥
1
q
·
f ↑(tn)
f (tn)

for all n ≥ 1

in view of the monotonicity of f ↑. Letting n→∞, we have a contradiction, which completes the proof. �

It turns out that one can drop condition (2.4) if f is measurable and the (necessary) condition (5.2) holds.

Theorem 5.2. Assume that f is a measurable and positive real function satisfying conditions (2.2) and (2.3). Then, if χf = 1,
there exists an equivalent monotone version f ↑. Moreover, one can choose

f ↑(t) = inf
s≥t

f (s).

For the proof of Theorem 5.2 we need the following result whose proof is postponed to Section 7.

Lemma 5.1. If f is measurable and (2.2) holds, then, for all 1 < a < b <∞,

lim inf
t→∞

inf
a≤c≤b

f (ct)
f (t)
≥ 1. (5.3)
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Proof of Theorem 5.2. By Lemma 4.1, there is a t0 > 0 such that

f ↑(t) ≥ inf
t≤s≤c0t

f (s) for all t ≥ t0.

Thus, for all 1 < c < c0 and t ≥ t0,

f ↑(t) ≥ min


inf
t≤s≤ct

f (s), inf
ct≤s≤c0t

f (s)


.

Hence, by Lemma 5.1,

lim inf
t→∞

f ↑(t)
f (t)

≥ min

lim inf
t→∞

inf
1≤λ≤c

f (λt)
f (t)

, 1


.

Letting c ↓ 1, we get

lim inf
t→∞

f ↑(t)
f (t)

≥ min

χf , 1


= 1,

since χf = 1. On the other hand, by the definition of f ↑,

lim sup
t→∞

f ↑(t)
f (t)

≤ 1,

which completes the proof. �

6. Proof of Theorem 3.2

Let t1 = 1 and set, for k ≥ 1,

tk+1 = e2k
2
tk,

τk = ek
2
tk.

Define the function β on (0,∞) as follows: for 0 < s < 1, β is such that 1

0

β(s)
s

ds = 1,

e.g., β(s) = s on (0, 1). Otherwise the function β is defined by

β(s) =


β

(1)
k , for tk ≤ s < τk,

β
(2)
k , for τk ≤ s < tk+1,

k ≥ 1,

where the sequences {β(1)
k } and {β

(2)
k } are determined by the conditions tk

0

β(s)
s

ds = k,
 τk

0

β(s)
s

ds = −k, k ≥ 2.

This immediately implies that τk

tk

β(s)
s

ds = −2k,
 tk+1

τk

β(s)
s

ds = 2k+ 1,

or, equivalently,

β
(1)
k ln

τk

tk
= −2k, β

(2)
k ln

tk+1
τk
= 2k+ 1,

whence

β
(1)
k = −

2
k
, β

(2)
k =

2k+ 1
k2

.

Thus

lim
s→∞

β(s) = 0.

Finally, set

f (t) = exp
 t

0

β(s)
s

ds


, t ≥ t1.
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By the integral representation theorem for slowly varying functions, f is slowly varying (see Theorem 1.2 in Seneta [14]).
Moreover,

lim
k→∞

f (tk) = ∞ and lim
k→∞

f (τk) = 0,

but obviously f does not have an equivalent monotone version, since, by monotonicity, one would necessarily have that
limk→∞ f ↑(τk) = ∞, so there can be no equivalence with f for this subsequence. �

7. Proof of Lemma 5.1

In order to prove Lemma 5.1 we need a more general result, i.e. Lemma 7.1 below. In the modern theory of regular vari-
ation, analogs of Lemma 7.1 are used in the proofs of two fundamental results of this theory, namely for the proof of the
uniform convergence theorem and the representation theorem. The classical variant of Lemma 7.1 dealswith the casewhere
the limit of the corresponding ratio exists, while we require only a lower bound for the lim inf. Several proofs of the classi-
cal result are known (see, e.g., Bingham, Goldie, and Teugels [3], Section 1.2). We follow an idea of an earlier proof due to
Korevaar, Ardenne-Ehrenfest and de Bruijn [13] and apply it to a more general case.

Lemma 7.1. Let f be a measurable function. Assume that, for some 0 < ℓ <∞,

lim inf
t→∞

f (ct)
f (t)
≥ ℓ for all c > 1. (7.1)

Then

lim inf
n→∞

f (cntn)
f (tn)

≥ ℓ2 (7.2)

for every sequence {tn} such that tn →∞ and every sequence {cn} such that lim infn→∞ cn > 1 and lim supn→∞ cn <∞.
Moreover, if

lim inf
t→∞

f (ct)
f (t)
= ∞ for all c > 1, (7.3)

then

lim inf
t→∞

f (cntn)
f (tn)

= ∞ (7.4)

for all sequences {tn} and {cn} possessing the same properties as in the case of ℓ < ∞. (Of course, if (7.3) holds, then ‘‘lim inf’’
can be replaced by ‘‘lim’’ in both equations (7.3) and (7.4)).

Remark 7.1. If ℓ > 1 in (7.1), then f∗(c) = ∞ for all c > 1. Indeed, (7.1) can be rewritten as f∗(c) ≥ ℓ for all c > 1.
Lemma 7.1 implies (7.2) and one can use ℓ2 instead of ℓ on the right-hand side of (7.1), i.e. f∗(c) ≥ ℓ2 for all c > 1. Repeating
this argument we arrive at the conclusion that f∗(c) = ∞.

Proof of Lemma 7.1. Put ν = infc>1 f∗(c). Note that either ν = ∞ or 0 ≤ ν ≤ 1. Indeed, assume that 0 ≤ ν < ∞. Since
f∗(c1)f∗(c2) ≤ f∗(c1c2) for all c1 > 1 and c2 > 1, we have ν2

≤ ν, whence ν ≤ 1.
First we consider the case of 0 < ℓ < ∞. In what follows, we switch to an ‘‘additive’’ notation instead of the ‘‘mul-

tiplicative’’ one above. Namely we set h(t) = ln f (et) and deal with h rather than f in the following. The assumptions of
Lemma 7.1 can be reformulated as follows: h is measurable and

lim inf
x→∞


h(x+ u)− h(x)


≥ ln ℓ for all u > 0.

We want to prove that

lim inf
n→∞


h(xn + un)− h(xn)


≥ 2 ln ℓ

for every sequence {xn} such that xn →∞ and every sequence {un} such that lim infn→∞ un > 0 and lim supn→∞ un <∞.
Fix sequences {xn} and {un}with the above properties. Note that there are numbers δ > 0 and ∆ <∞ for which

δ ≤ un ≤ ∆ for all sufficiently large n.

Without loss of generality we assume that this holds for all n ≥ 1. Let 0 < ~ < δ and

δ1 = δ − ~, δ2 = ∆−
~

2
, ε1 = ~, ε2 =

~

2
.
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Obviously δ1 < δ2 and ε1 > ε2. Fix−∞ < γ < ln ℓ and define the sets

An = {u ∈ [δ1, δ2] : h(xk + u)− h(xk) ≥ γ for all k ≥ n},
Bn = {v ∈ [−ε1,−ε2] : h(xk + uk)− h(xk + uk + v) ≥ γ for all k ≥ n}.

It is obvious that An ⊆ An+1 and Bn ⊆ Bn+1. Moreover
∞
n=1

An = [δ1, δ2],

∞
n=1

Bn = [−ε1,−ε2],

whence

|An| → δ2 − δ1, |Bn| → ε1 − ε2

as n→∞, where | · | stands for the Lebesgue measure. Now we introduce the sets B′n = Bn + un and note that |B′n| = |Bn|

for each n ≥ 1. Moreover,

An ⊆ [δ1, δ2], B′n ⊆ [−ε1 + δ,−ε2 +∆],

so that

An ∪ B′n ⊆ [δ1, δ2].

Since

|An| + |B′n| → δ2 − δ1 + ε1 − ε2 > δ2 − δ1,

we get that An ∩ B′n ≠ ∅ for sufficiently large n. For such an integer n, let u0 ∈ An ∩ B′n. According to the definition of the set
B′n, this means that there is a v0 ∈ Bn such that v0 = u0 − un for some u0 ∈ An. Therefore, with this n,

h(xn + u0)− h(xn) ≥ γ , h(xn + un)− h(xn + un + v0) ≥ γ ,

or, equivalently,

h(xn + u0)− h(xn) ≥ γ , h(xn + un)− h(xn + u0) ≥ γ ,

whence

h(xn + un)− h(xn) ≥ 2γ

and

lim inf
n→∞


h(xn + un)− h(xn)


≥ 2γ .

Since γ < ln ℓ is arbitrary, the lemma is proved for the case of 0 < ℓ <∞. To prove that (7.3) implies (7.4),we note that (7.1)
holds for every ℓ > 1, which results in (7.2) by the first part of the proof. So, since ℓ is arbitrary, (7.4) follows from (7.3). �

Proof of Lemma 5.1. If (5.3) does not hold for some 1 < a < b < ∞, then there exist sequences tn ↑ ∞ and a ≤ cn ≤ b
such that

lim inf
t→∞

f (cntn)
f (tn)

< 1,

which contradicts Lemma 7.1. �
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