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a b s t r a c t

The initial value problem of the cometary flow equation with a given external force is
investigated. By assuming that the initial microscopic density has finite mass and finite
momentumandbelongs to Lp for some p > 1, three existence results ofweak solutionswith
mass conservation and local estimates for the kinetic energy are established for different
external forces, each of which is assumed to be divergence free with respect to particle
velocities. The first result deals with a bounded smooth force and a Lorentz force with
bounded smooth electric and magnetic intensities, and the second one concerns a force
belonging to Lq with 1

p +
1
q = 1. In the third theorem, we discuss a force that can be

divided into two parts: one is in Lq and the other is linearly growing at infinity; in this case
we need to assume further that the initial density has finite first order spatial moment.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the Cauchy problem for a kinetic equation of the form
∂t f + ξ · ∇xf + F(t, x, ξ) · ∇ξ f = Quf (f ),
f (0, x, ξ) = f0(x, ξ) ≥ 0. (1.1)

This nonlinear partial differential equation is an important mathematical model derived from the theory of astrophysical
plasmas, and provides a statistical description of a cometary flow in light of its microscopic density f (t, x, ξ) depending
upon position x ∈ R3, velocity ξ ∈ R3 and time t ≥ 0 (see, e.g., [12,22–24]). In this connection, (1.1) is commonly known as
the cometary flow equation.

Here F(t, x, ξ) stands for an external force imposed on the cometary flow, and the collision operator Quf (f ) describing
wave–particle interactions in the cometary flow, is nonlinearly related to the unknown f through its velocity moments,
namely

Quf (f ) = Puf (f )(t, x, ξ)− f (t, x, ξ),

Puf (f ) =


1
4π


S2

f (t, x, uf + |ξ − uf |ω)dω, ρf ≠ 0,

0, ρf = 0,

where S2 designates the unit sphere of R3, and where the macroscopic density ρf (t, x) and the bulk velocity uf (t, x)
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corresponding to f are defined by
ρf
ρf uf


(t, x) =


R3


1
ξ


f (t, x, ξ)dξ, t ≥ 0, x ∈ R3

respectively. It is not to hard to see that the nonlinear part Puf (f ) of the collision operator is in fact a nonlinear projection, so
the mathematical structure of Eq. (1.1) is quite similar to that of the Boltzmann–BGK equation which is widely used in gas
dynamics (see, e.g., [2,20,26]). Nevertheless, the nonlinearity of Quf (f ) is obviously much stronger than that of the classical
Boltzmann–BGK collision operator. Again, there is a significant difference between the wave–particle interaction Quf (f ) and
the Boltzmann–BGK collision operator: the former has infinitely many collision invariants (see, e.g., [7,5]), while the latter
possesses exactly five [2]. This means that they have different sets of equilibria which possibly lead to different large time
asymptotic behaviors. As for fundamental properties of the wave–particle interaction operator Quf (f ) and their proofs, we
refer the readers to [7,5,6,14,13,15] (see also Section 3).

Due to the significance of this kinetic equation in the theory of astrophysics, some researchers have been devoted
themselves to establishing its rigorous theory. In the absence of an external field (i.e., F(t, x, ξ) ≡ 0), qualitative treatments
in terms of nonnegative weak solutions have been received a great deal of attention both for Cauchy problems and for
initial boundary value problems, various results including global existence with conservation laws and entropy dissipation,
propagation of higher ordermoments, perturbation theory of global equilibria and large timebehavior,werewell established
(see, e.g., [6,14,13,15]).

Recently, the Cauchy problem (1.1) with a force field satisfying certain integrability conditions was discussed in Ref. [3].
Specifically, assuming that the external force F(t, x, ξ) belongs to Lq((0, T ) × R3

x × R3
ξ ) and is divergence free with

respect to the velocity variable ξ , assuming further that the initial density verifies (1 + |ξ |2)f0(x, ξ) ∈ L1(R3
x × R3

ξ ) and
f0(x, ξ) ∈ Lp(R3

x × R3
ξ ), finally assuming that the integrability exponents verify p, q > 1 and 1

p +
1
q < 1, then it was shown

in [3] that the Cauchyproblem (1.1) has a nonnegativeweak solution f (t, x, ξ) such that∥f (t)∥1 = ∥f0∥1 and∥f (t)∥p ≤ ∥f0∥p
for t ∈ [0, T ]. An important case was also treated in Ref. [3] namely F(t, x, ξ) = E(t, x)+ ξ × B(t, x) being a Lorentz field,
where E(t, x) and B(t, x) are given electric and magnetic intensities respectively. Then, (1.1) can be written as

∂t f + ξ · ∇xf + [E(t, x)+ ξ × B(t, x)] · ∇ξ f = Quf (f ),
f (0, x, ξ) = f0(x, ξ) ≥ 0. (1.2)

It was shown that if E(t, x) ∈ Lq((0, T ) × R3), B(t, x) ∈ Lp
′

((0, T ) × R3) and f0 ∈ Lp(R3
x × R3

x) with p > 1 and
q > 3 + p′ and if (1 + |ξ |2)f0 ∈ L1(R3

× R3), then there exists a nonnegative weak solution to (1.2) in the function space
L∞((0, T ); Lp(R3

x ×R3
ξ )). Here and in the following of this paper, we denote the conjugate exponent of p by p′, i.e., p′

=
p

p−1
for 1 < p ≤ ∞ and p′

= ∞ for p = 1.
Scrutinizing those results, one can find from a mathematical point of view that they are far from optimal and may be

improved at least in twoways. First, the definition of the equation do not require finiteness of second order velocitymoment,
as a matter of fact, the finiteness of velocity moment of order one is sufficient for the description of the wave–particle
collision operatorQuf (f ). Second, to define the nonlinear terms F(t, x, ξ)·∇ξ f and [E(t, x)+ξ×B(t, x)]·∇ξ f in distributional

sense, it is sufficient, for example, to ask for f (t, x, ξ) ∈ L∞

loc((0, T ); Lploc(R
3
x ×R3

ξ )) and F(t, x, ξ) ∈ Lp
′

loc((0, T )×R3
x ×R3

ξ ) or

E(t, x), B(t, x) ∈ Lp
′

loc((0, T )× R3). These observations directly motivate our present discussion. In fact, we shall establish
in this paper three global existence results, each of which only requires that the first order velocity (space) moment of the
initial density is finite. The first one concerns a general smooth force and a smooth Lorentz field (Theorem 2.1), the rest two
are aimed at improving global existence results concerning integrable force fields described above (see also Theorems 3.2
and 3.3 in Ref. [3]), especially, we shall prove the critical case 1

p +
1
q = 1 and also consider force fields growing linearly

at infinity (Theorems 2.2 and 2.3). As a consequence, we obtain a new existence theorem for the Cauchy problem (1.2)
concerning a different kind of Lorentz field (Corollary 2.4).

Concerning the cometary flow equation (1.1), there is another kind of interesting problem, namely the Cauchy or the
initial boundary value problem with a self-consistent force field F(t, x, ξ). The Cauchy problem with a self-generated
electrostatic field and the Cauchy problem with a self-consistent Lorentz field were studied carefully in [25,3] and in [4]
respectively. Nevertheless, the corresponding initial boundary value problem has not been investigated so far. Before going
further, we first present the definition of weak solutions.

Definition 1.1. Let T be a given positive constant, a nonnegative function f (t, x, ξ) ∈ L∞((0, T ); L1(R3
× R3)) is said to be

a weak solution on [0, T ] to (1.1) if the product fF is well-defined in distributional sense, e.g., fF ∈ L1loc((0, T )× R3
× R3),

and if f (t, x, ξ) verifies T

0
dt


R3×R3
f

∂tφ + ξ · ∇xφ + F · ∇ξφ


dxdξ +


R3×R3

f0φ|t=0dxdξ = −

 T

0
dt


R3×R3
Quf (f )φdxdξ (1.3)

for any test function φ(t, x, ξ) ∈ C1
c ([0, T )× R3

× R3).
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Weak solutions to the Cauchy problem (1.2) can be defined in the same way. As explained above our goal in this paper
is to establish various existence results of weak solutions for the Cauchy problems (1.1) and (1.2). Nevertheless, whether
there is a classical solution to the Cauchy problem (1.1) or (1.2) has not been known so far, even if the initial density and the
force field are sufficiently smooth.

The outline of the remainder of this paper is as follows. In Section 2, we present the main results of this paper and prove
a corollary concerning global existence of weak solutions to the Cauchy problem (1.2). In Section 3, we summarize main
properties of the collision operator Quf (f ) and some auxiliary tools including a L1 velocity averaging lemma, all of which are
standard and can be found in literature. Then, we discuss a linear problem and a nonlinear approximate problem, the main
results are global existence of weak solutions to the approximate problem and their desired estimates. Section 4 contains
the proof of the main Theorems.

2. Main results

In the rest of this paper, we shall denote by C1
b (R

N) the set consisting of all functions having bounded continuous deriva-
tives on RN up to order one, the symbol Kx ⊂⊂ R3

x means that Kx is a compact subset of R3
x . Again, in order to simplify our

presentation, we shall use the following shorthand notations for various norms:

∥f (t)∥p = ∥f (t, ·, ·)∥Lp(R3
x×R3

ξ )
, ∥f0∥p = ∥f0(·, ·)∥Lp(R3

x×R3
ξ )
,

∥F(t)∥p = ∥F(t, ·, ·)∥Lq(R3
x×R3

ξ )
, ∥F∥q = ∥F(·, ·, ·)∥Lq((0, T )×R3

x×R3
x )
,

∥E(t)∥q = ∥E(t, ·)∥Lq(R3
x )
, ∥E∥q = ∥E(·, ·)∥Lq((0, T )×R3

x )
,

∥B(t)∥q = ∥B(t, ·)∥Lq(R3
x )
, ∥B∥q = ∥B(·, ·)∥Lq((0, T )×R3

x )
,

where, e.g., f (t, x, ξ) ∈ L∞((0, T ); Lp(R3
x × R3

ξ )) (1 ≤ p ≤ ∞), F(t, x, ξ) ∈ Lq((0, T ) × R3
x × R3

ξ ) and E(t, x), B(t, x) ∈

Lq((0, T )× R3
x) (1 ≤ q ≤ ∞).

Our first result concerns a smooth force field and a smooth Lorentz field, namely F(t, x, ξ) ∈ C([0, T ]; C1
b (R

3
x × R3

ξ ))

and E(t, x), B(t, x) ∈ C([0, T ]; C1
b (R

3)), which is a generalization of Lemma 3.1 in Ref. [3] in the sense that we assume that
the initial datum only has finite velocity moment of order one, rather than order two. This result is not only meaningful in
itself but also the cornerstone of our next two theorems.

Theorem 2.1. Let the initial microscopic density f0(x, ξ) ≥ 0 verify

f0 ∈ L1 ∩ Lp(R3
× R3) (p > 1),


R3×R3

|ξ |f0dxdξ < ∞. (2.1)

(1) If F(t, x, ξ) ∈ C([0, T ]; C1
b (R

3
x × R3

ξ )) and ∇ξ · F(t, x, ξ) = 0, then there exists a nonnegative weak solution f (t, x, ξ) to
the Cauchy problem (1.1) such that

∥f (t)∥1 = ∥f0∥1, ∥f (t)∥p ≤ ∥f0∥p, 0 ≤ t ≤ T . (2.2)

Furthermore, if Kx ⊂⊂ R3
x , then there is a positive constant C depending continuously upon the parameters diamKx, ∥f0∥1,

∥|ξ |f0∥1, T and ∥F∥∞ such that T

0
dt

Kx×R3

|ξ |2fdxdξ ≤ C . (2.3)

(2) If E(t, x) ∈ C([0, T ]; C1
b (R

3)) and B(t, x) ∈ C([0, T ]; C1
b (R

3)), then there exists a nonnegative weak solution f (t, x, ξ) to
the Cauchy problem (1.2) such that

∥f (t)∥1 = ∥f0∥1, ∥f (t)∥p ≤ ∥f0∥p, 0 ≤ t ≤ T . (2.4)

Further, for any Kx ⊂⊂ R3
x , there is a positive constant C depending continuously upon the parameters diamKx, ∥f0∥1,

∥|ξ |f0∥1, T , ∥E∥ and ∥B∥∞ such that T

0
dt

Kx×R3

|ξ |2fdxdξ ≤ C . (2.5)

Remark 2.1. (1) By the proofs given in the following sections, it is clear that the assumption ∇ξ · F = 0 in conclusion (1)
is not necessary for the existence of a nonnegative solution to (1.1). If we remove this assumption, the estimate (2.2) of
the solution f should be replaced by

∥f (t)∥1 ≤ ∥f0∥1 · exp
 t

0
∥∇ξ · F(τ )∥∞dτ


, 0 ≤ t ≤ T ,



X. Zhang, X. Yin / J. Math. Anal. Appl. 405 (2013) 574–594 577

and

∥f (t)∥p ≤ ∥f0∥p · exp

1
p

 t

0
∥∇ξ · F(τ )∥∞dτ


, 0 ≤ t ≤ T .

(2) On the other hand, if we further assume


R3×R3 |x|f0(x, ξ)dxdξ < ∞, then we can show that
R3×R3

|x|f (t, x, ξ)dxdξ ≤ C̃, 0 ≤ t ≤ T ,

where the constant C̃ depends only upon ∥f0∥1, ∥|ξ |f0∥1, ∥|x|f0∥1, T and ∥F∥∞, ∥∇ξ ·F∥∞ (or ∥E∥∞, ∥B∥∞). For details,
see Remark 3.3.

The second result solves the global existence problem involving critical integrability exponents, namely, f0 ∈ Lp, F ∈ Lq
with 1

p +
1
q = 1. Again, we only assume that the initial density just has finite velocity moment of order one. Thus, it is a

substantial improvement of Theorem 3.2 in Ref. [3]. We describe it as the following theorem.

Theorem 2.2. Assume that the initial microscopic density f0(x, ξ) ≥ 0 verifies

f0 ∈ L1 ∩ Lp(R3
× R3) (1 < p ≤ ∞),


R3×R3

|ξ |f0dxdξ < ∞. (2.6)

Assume further that F(t, x, ξ) ∈ Lp
′

((0, T )×R3
×R3) such that ∇ξ ·F = 0 in distributional sense. Then there exists a nonnegative

weak solution f (t, x, ξ) to the Cauchy problem (1.1) such that

∥f (t)∥1 = ∥f0∥1, ∥f (t)∥p ≤ ∥f0∥p, 0 ≤ t ≤ T . (2.7)

Moreover, for any given Kx ⊂⊂ R3, there is a positive constant C depending only upon T , ∥|ξ |f0∥1, ∥f0∥p, ∥F∥p′ and diamKx
such that T

0
dt

Kx×R3

|ξ |2fdxdξ ≤ C . (2.8)

Next, we deal with force fields that are not integrable at infinity. We suppose that the force field can be decomposed into
two parts: the first part has the same integrability as the force field in Theorem 2.2, the second part is linearly growing at
infinity. To be specific, we establish the following theorem.

Theorem 2.3. Assume that the initial microscopic density f0(x, ξ) ≥ 0 verifies

f0 ∈ L1 ∩ Lp(R3
× R3) (1 < p < ∞),


R3×R3

(|x| + |ξ |)f0dxdξ < ∞. (2.9)

Let ∇ξ · F(t, x, ξ) = 0 in distributional sense and let F(t, x, ξ) = F1 + F2, where F1 ∈ Lp
′

((0, T ) × R3
× R3),

F2
1+|x|+|ξ |

=

M(t, x, ξ) ∈ L∞((0, T ); L∞(R3
×R3)). Then there exists a nonnegativeweak solution f (t, x, ξ) to the Cauchy problem (1.1) such

that

∥f (t)∥1 = ∥f0∥1, ∥f (t)∥p ≤ ∥f0∥p, 0 ≤ t ≤ T . (2.10)

Moreover, for any given Kx ⊂⊂ R3, there is a positive constant C depending only upon T , f0, F1, M and diamKx such that T

0
dt

Kx×R3

|ξ |2fdxdξ ≤ C . (2.11)

Notice that in Theorem2.3we assume that the initial density not only has finite velocitymoment of order one but also has
finite space moment of the same order. From Theorem 2.3, we can deduce a global existence result of the Cauchy problem
(1.2) with a Lorentz field.

Corollary 2.4. Suppose that the initial microscopic density f0(x, ξ) ≥ 0 verifies

f0 ∈ L1 ∩ Lp(R3
× R3) (p > 1),


R3×R3

(|x| + |ξ |)f0dxdξ < ∞.

Suppose also that E(t,x)
1+|x| ∈ L∞((0, T ); L∞(R3)), B(t, x) ∈ L∞((0, T ); L∞(R3)). Then there exists a nonnegative weak solution

f (t, x, ξ) to the Cauchy problem (1.2) such that

∥f (t)∥1 = ∥f0∥1, ∥f (t)∥p ≤ ∥f0∥p, 0 ≤ t ≤ T .



578 X. Zhang, X. Yin / J. Math. Anal. Appl. 405 (2013) 574–594

Conclusions in Corollary 2.4 are the same as those obtained by Theorem 3.3 in Ref. [3] where the authors assumed
that the initial density f0 has finite second order velocity moment and that the magnetic and electric intensities satisfy
B(t, x) ∈ Lp

′

([0, T ] × R3) and E(t, x) ∈ Lq([0, T ] × R3) for q > 3 + p′ respectively. Here, we assume that f0 has finite first
order moment both in velocity variable and in space variable and that the electric intensity E(t, x) can be linearly growing
at infinity. Therefore, Corollary 2.4 can be served as a counterpart of Theorem 3.3 in Ref. [3].

Proof of Corollary 2.4. It is sufficient to take F1(t, x, ξ) ≡ 0, F2(t, x, ξ) = E(t, x)+ ξ × B(t, x). Then

|F2(t, x, ξ)|
1 + |x| + |ξ |

≤
|E(t, x)| + |ξ × B(t, x)|

1 + |x| + |ξ |

≤
|E(t, x)|
1 + |x|

+ |B(t, x)| ∈ L∞([0, T ]; L∞(R3)).

Consequently, F1 ∈ Lp
′

((0, T )× R3
× R3),

F2
1+|x|+|ξ |

∈ L∞((0, T ); L∞(R3
× R3)). �

3. Preliminary results

3.1. About the collision operator and the velocity averaging lemma

First, we summarizemain properties of the collision operator Quf (f ). Define the linear collision operator Qu(f ) for a given
u ∈ R3 as follows: for any function f (ξ) ∈ L1(R3),

Qu(f )(ξ) = Pu(f )(ξ)− f (ξ), Pu(f )(ξ) =
1
4π


S2

f (u + |ξ − u|ω)dω.

Then, we have (for details, see, e.g., [3,4,7,5,6,14])

Lemma 3.1. Let f (ξ), g(ξ) ∈ L1(R3) be nonnegative functions and ψ be a measurable function on (0, ∞), all of which are
assumed to be regular enough to ensure the existence of the following integrals. Then

(1) Pu(f ) is a projector: P2
u (f ) = Pu(f ).

(2) Qu(f ) is symmetric:


R3 Qu(f )gdξ =


R3 Qu(g)fdξ = −


R3 Qu(f )Qu(g)dξ .
(3) Collision invariants:


R3 ξQu(f )(ξ)dξ =


R3 ψ(|ξ − u|)Qu(f )(ξ)dξ = 0.

(4) Qu(f ) = 0 if and only if there exist u ∈ R3 and a function F defined on [0, ∞) such that f (ξ) = F(|ξ − u|2).
(5) H-theorem:


R3 Qu(f )fdξ = −


R3 Qu(f )Qu(f )dξ ≤ 0.

Lemma 3.2. (1) Let u(t, x), un(t, x) : (0, T ) × R3
→ R3 be locally integrable functions such that limn→∞ un = u in

L1loc((0, T )× R3), and let f (t, x, ξ) ∈ Lq((0, T ); Lp(R3
× R3)). Then, we have for 1 ≤ p, q ≤ ∞,

∥Pu(f )∥Lq((0, T ); Lp(R3×R3)) ≤ ∥f ∥Lq((0, T ); Lp(R3×R3)),

and for 1 ≤ p, q < ∞,

lim
n→∞

∥Pun(f )− Pu(f )∥Lq((0, T ); Lp(R3×R3)) = 0.

(2) Given r ∈ [1, ∞) and a nonnegative function f such that (1+ |ξ |r)f ∈ L1(R3), then there exists a positive constant Cr such
that

ρf |uf |
r
≤


R3

|ξ |r fdξ,


R3
|ξ |rPuf (f )dξ ≤ Cr


R3

|ξ |r fdξ .

Second, we discuss a very useful tool called velocity averaging lemma (see, e.g., [18,17,6,8–11,20,3,4]). We directly cite
the following one which was recently proved in [3].

Lemma 3.3. Let the sequence {Fn(t, x, ξ) : n = 1, 2, . . .} ⊂ C([0, T ]; C1
b (R

3
x × R3

ξ )) be bounded in Lqloc((0, T ) × R3
× R3)

for a fixed q > 1 and satisfy ∇ξ · Fn = 0(n = 1, 2, . . .). Suppose that the sequences {fn : n = 1, 2, . . .} is weakly compact in
L1((0, T )× R3

× R3) and {gn : n = 1, 2, . . .} is weakly compact in L1loc((0, T )× R3
× R3) such that

∂t fn + ξ · ∇xfn + Fn(t, x, ξ) · ∇ξ fn = gn (3.1)

in distributional sense. Then for any bounded sequence {ψn(t, x, ξ) : n = 1, 2, . . .} ⊂ L∞((0, T ) × R3
× R3) that converges

almost everywhere to ψ(t, x, ξ), the sequence
R3

fn(t, x, ξ)ψn(t, x, ξ)dξ, n = 1, 2, . . .
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is relatively compact in L1((0, T ) × R3). Furthermore, if fn(t, x, ξ) → f (t, x, ξ) (n → ∞) weakly in L1((0, T ) × R3
× R3),

then up to a subsequence if necessary
R3

fn(t, x, ξ)ψn(t, x, ξ)dξ →


R3

f (t, x, ξ)ψ(t, x, ξ)dξ, n → ∞

strongly in L1((0, T )× R3).

3.2. A linear Cauchy problem

In order to construct suitably approximate solutions for the Cauchy problems (1.1) and (1.2), we begin with a discussion
of the following linear Cauchy problems.

∂t f + ξ · ∇xf + F(t, x, ξ) · ∇ξ f = Qu(f ),
f (0, x, ξ) = f0(x, ξ)

(3.2)

and 
∂t f + ξ · ∇xf + [E(t, x)+ ξ × B(t, x)] · ∇ξ f = Qu(f ),
f (0, x, ξ) = f0(x, ξ),

(3.3)

where u ∈ L∞((0, T )× R3
x) is a given velocity field. The existence and uniqueness of a solution to (3.2) or (3.3) is a conse-

quence of the Banach’s fixed point theorem, just as the procedure given in Ref. [6]. Here, the major difficulty is to obtain a
suitable uniform bound of the second order velocity moment. To this end, we improve the duality method (see, e.g., [16])
through selecting specific test functions.

Lemma 3.4. Suppose that T is a fixed positive constant and that the initial microscopic density f0(x, ξ) ≥ 0 verifies

f0 ∈ L1 ∩ Lp(R3
× R3) (p > 1),


R3×R3

|ξ |f0dxdξ < ∞ (3.4)

and there exist constants a, b > 0 such that

f0(x, ξ) ≥ a exp(−b(x2 + ξ 2)), x, ξ ∈ R3. (3.5)

Furthermore, let u ∈ L∞((0, T )× R3
x) and denote J = ∥u∥L∞((0, T )×R3

x )
.

(1) If F(t, x, ξ) ∈ C([0, T ]; C1
b (R

3
x × R3

ξ )) and ∇ξ · F(t, x, ξ) = 0, then (3.2) possesses a unique nonnegative weak solution
f ∈ L∞((0, T ); L1 ∩ Lp(R3

× R3)) such that

∥f (t)∥1 = ∥f0∥1, ∥f (t)∥p ≤ ∥f0∥p, 0 ≤ t ≤ T . (3.6)

Moreover, for any Kx ⊂⊂ R3, there is a positive constant C depending continuously upon the parameters diamKx, ∥f0∥1,
∥|ξ |f0∥1, T , ∥F∥∞ and J such that T

0
dt

Kx×R3

|ξ |2fdxdξ ≤ C, uf ∈ L∞([0, T ]; L1loc(R
3)). (3.7)

(2) If E(t, x), B(t, x) ∈ C([0, T ]; C1
b (R

3)), then the Cauchy problem (3.3) possesses a unique nonnegative weak solution
f ∈ L∞((0, T ); L1 ∩ Lp(R3

× R3)) such that

∥f (t)∥1 = ∥f0∥1, ∥f (t)∥p ≤ ∥f0∥p, 0 ≤ t ≤ T . (3.8)

Moreover, for any fixed Kx ⊂⊂ R3, there is a positive constant C depending continuously upon the parametersdiamKx, ∥f0∥1,
∥|ξ |f0∥1, T , J, ∥E∥∞ and ∥B∥∞ such that T

0
dt

Kx×R3

|ξ |2fdxdξ ≤ C, uf ∈ L∞([0, T ]; L1loc(R
3)). (3.9)

Proof. We give a detail proof of conclusion (1) and a sketchy proof of conclusion (2).
Step 1. Existence and uniqueness. For any given (t, x, ξ) ∈ [0, T ]×R3

×R3, it follows from F(t, x, ξ) ∈ C([0, T ]; C1
b (R

3
x×R3

ξ ))

and the theory of ordinary differential equations (see, e.g., [1]) that for any fixed (t, x, ξ) ∈ [0, T ]×R3
x×R3

ξ , the characteristic
equation

Ẋ(s) = Ξ(s), X(t) = x;
Ξ̇(s) = F(s, X(s),Ξ(s)), Ξ(t) = ξ,
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corresponding (3.2) has a unique solution Z(s, t, x, ξ) = (X(s), Ξ(s)) = (X(s, t), Ξ(s, t)) = (X(s, t, x, ξ), Ξ(s, t, x, ξ))
defined on [0, T ]. The characteristic flow verifies that for any fixed s, t ∈ [0, T ], Z(s, t, x, ξ) belongs to C1([0, T ]×[0, T ]×

R3
× R3

; R3
× R3) and is a measure preserving and homeomorphic mapping from R3

× R3 onto itself (see, e.g., [1,19]).
Hence, we can write f (t, x, ξ) as follows

f (t, x, ξ) = exp(−t)f0(X(0), Ξ(0))+

 t

0
exp(s − t)Pu(f )(s, X(s), Ξ(s))ds, (3.10)

or equivalently

f (t, x, ξ) = f0(X(0), Ξ(0))+

 t

0
Qu(f )(s, X(s), Ξ(s))ds.

In the following, we denote

Y = {f ∈ L∞((0, T ); L1 ∩ Lp(R3
× R3)) : f (t, x, ξ) ≥ 0, ∥f (t)∥1 = ∥f0∥1, ∥f (t)∥p ≤ ∥f0∥p, ∀t ∈ [0, T ]}.

Then, Y is a closed subset of the Banach space L∞([0, T ]; L1 ∩ Lp(R3
× R3)). Define the operator G on Y as follows

G(f ) = exp(−t)f0(X(0), Ξ(0))+

 t

0
exp(s − t)Pu(f )(s, X(s), Ξ(s))ds.

Then, Lemma 3.1 implies that


R3 Pu(f )dξ =


R3 fdξ , so ∥Pu(f )∥1 = ∥f ∥1. Integrating the above equation against x, ξ , due
to the measure preserving of the characteristic flow we obtain through integration by substitution

∥G(f )(t)∥1 = exp(−t)∥f0∥1 +

 t

0
exp(τ − t)∥Pu(f )(τ )∥1dτ

= exp(−t)∥f0∥1 +

 t

0
exp(τ − t)∥f0∥1dτ = ∥f0∥1.

On the other hand, it follows from Lemma 3.2 that ∥Pu(f )∥p ≤ ∥f0∥p. Consequently, we obtain by the same reason that

∥G(f )(t)∥p = exp(−t)∥f0∥p +

 t

0
exp(τ − t)∥Pu(f )(τ )∥pdτ

≤ exp(−t)∥f0∥p +

 t

0
exp(τ − t)∥f ∥pdτ

≤ exp(−t)∥f0∥p + [1 − exp(−t)]∥f0∥p = ∥f0∥p.

Hence, G is a mapping from Y into itself.
Let f1, f2 ∈ Y , similarly we get (notice that ∥Pu(f )∥1 = ∥f0∥1, ∥Pu(f )∥p ≤ ∥f0∥p)

∥G(f1)− G(f2)∥L∞([0, T ]; L1(R3×R3)) ≤ sup
0<t<T

 t

0
exp(τ − t)∥Pu(f1 − f2)(τ )∥1dτ

≤ (1 − exp(−T ))∥f1 − f2∥L∞([0, T ]; L1(R3×R3))

and

∥G(f1)− G(f2)∥L∞([0, T ]; Lp(R3×R3)) ≤ sup
0<t<T

 t

0
exp(τ − t)∥Pu(f1 − f2)(τ )∥pdτ

≤ (1 − exp(−T ))∥f1 − f2∥L∞([0, T ]; Lp(R3×R3)).

It follows from (1− exp(−T )) < 1 that G is a contraction. So, G has a unique fixed point f in Y , namely f = G(f ). Obviously,
f is the unique solution to (3.2) and verifies (3.6).

Step 2. Proof of the first inequality in (3.7). Multiplying both sides of (3.2) by |ξ | and then integrating against x and ξ , we have ddt


R3×R3
|ξ |fdxdξ

 ≤


R3×R3

|ξ |Qu(f )dxdξ
+ 

R3×R3
|ξ |F · ∇ξ fdxdξ

 .
By Lemma 3.1 (2), we get

R3×R3
|ξ |Qu(f )dxdξ

 =


R3×R3

f · Qu(|ξ |)dxdξ
 =


R3×R3

f · (Pu(|ξ |)− |ξ |)dxdξ
 .
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Since

Pu(|ξ |) =
1
4π


S2

|u + |ξ − u|ω| dω ≤
1
4π


S2
(|u| + |ξ − u|)dω

≤
1
4π


S2
(|ξ | + 2|u|)dω = |ξ | + 2|u|,

we obtain
R3×R3

|ξ |Qu(f )dxdξ
 ≤


R3×R3

f · (|ξ | + 2|u| + |ξ |)dxdξ


= 2


R3×R3
f |u|dxdξ + 2


R3×R3

f |ξ |dxdξ

≤ 2∥u∥∞


R3×R3

fdxdξ + 2


R3×R3
f |ξ |dxdξ

≤ 2J∥f0∥1 + 2


R3×R3
f |ξ |dxdξ .

On the other hand,
R3×R3

|ξ |F · ∇ξ fdxdξ
 =


R3×R3

ξ

|ξ |
· Ffdxdξ

 ≤ ∥F∥∞∥f0∥1.

Hence, ddt


R3×R3
|ξ |fdxdξ

 ≤ (2J + ∥F∥∞)∥f0∥1 + 2


R3×R3
f |ξ |dxdξ .

By Gronwall’s inequality, we get
R3×R3

|ξ |fdxdξ ≤ exp(2t)


R3×R3
|ξ |f0dxdξ +


J +

∥F∥∞

2


∥f0∥1(exp(2t)− 1) ≤ CT , 0 ≤ t ≤ T ,

namely,


R3×R3 |ξ |fdxdξ is uniformly bounded.
Next, we are going to improve the order of the velocity moment by duality (see, e.g., [16]). Multiplying both sides of (3.2)

by φ(x, ξ) =
(x−x0)·ξ

(1+|x−x0|2)
1
2
, where x0 ∈ R3 is given, and then integrating against x and ξ , we obtain

d
dt


R3×R3

φ(x, ξ)fdxdξ =


R3×R3

φ(x, ξ)Qu(f )dxdξ −


R3×R3

φ(x, ξ)ξ · ∇xfdxdξ −


R3×R3

φ(x, ξ)F · ∇ξ fdxdξ .

For the sake of simplicity, we denote the above equation by I1 = I4 − I2 − I3. We estimate each term in this equation
separately as follows.

Estimate of I1: T

0
I1dt

 =

 T

0


d
dt


R3×R3

φ(x, ξ)fdxdξ

dt


≤


R3×R3

|ξ |(f (T , x, ξ)+ f0(x, ξ))dxdξ ≤ 2CT .

Estimate of I4: T

0
I4dt

 =

 T

0
dt


R3×R3
φ(x, ξ)Qu(f )dxdξ


≤

 T

0
dt


R3×R3
|ξ ||Qu(f )|dxdξ

≤ 2J∥f0∥1T + 2
 T

0


R3×R3

f |ξ |dtdxdξ ≤ 2J∥f0∥1T + 2TCT .
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Estimate of I3: T

0
I3dt

 =

 T

0
dt


R3×R3
φ(x, ξ) · ∇ξ Ffdxdξ


=


 T

0
dt


R3×R3
∇ξ


(x − x0) · ξ

(1 + |x − x0|2)
1
2


· Ffdxdξ

 ≤ T∥F∥∞∥f0∥1.

Estimate of I2: For any Kx ⊂ R3, if x0 ∈ Kx then

|I2| =


R3×R3

φ(x, ξ)ξ · ∇xfdxdξ


=




R3×R3
∇x


(x − x0) · ξ

(1 + |x − x0|2)
1
2


· ξ fdxdξ


=




R3×R3


ξ

(1 + |x − x0|2)
1
2

−
1
2

·
(x − x0) · ξ

(1 + |x − x0|2)
3
2
2(x − x0)


· ξ fdxdξ


≥


Kx×R3

|ξ |2

(1 + |x − x0|2)
3
2
fdxdξ ≥

1

(1 + (diamKx)2)
3
2


Kx×R3

|ξ |2fdxdξ .

It follows that T

0
I2dt

 ≥
1

(1 + (diamKx)2)
3
2

 T

0
dt

Kx×R3

|ξ |2fdxdξ .

Combine the above estimates, we get T

0
dt

Kx×R3

|ξ |2fdxdξ ≤ (1 + (diamKx)
2)

3
2 (2CT + 2J∥f0∥1T + 2TCT + T∥F∥∞∥f0∥1)

≤ C(diamKx, f0, T , ∥F∥∞, J).

Step 3. Proof of the integrability of uf . First, we demonstrate that uf is well defined by establishing a positive lower bound of
ρf . In fact, by (3.10) we obtain

f (t, x, ξ) ≥ exp(−t)f0(X(0), Ξ(0)) ≥ a exp(−b(|X(0)|2 + |Ξ(0)|2)) exp(−t),

on the other hand, it follows from [21] that

|X(0)| ≤ |x| + T |ξ | + T 2
∥F∥∞, |Ξ(0)| ≤ |ξ | + T∥F∥∞.

So,

f (t, x, ξ) ≥ A exp(−B(|x|2 + |ξ |2)),

where A, B are positive constants depending on a, b, T and ∥F∥∞. Integrating the above inequality against ξ , we have

ρf =


R3

f (t, x, ξ)dξ ≥ A′ exp(−B|x|2) > 0, A′
= A


R3

exp(−B|ξ |2)dξ > 0.

Consequently, by the uniform bound of


R3×R3 |ξ |fdxdξ proved above we know that

|uf | =
|mf |

ρf
≤

1
A′

exp(B|x|2)|mf | ∈ L∞([0, T ]; L1loc(R
3)),

wheremf (t, x) = ρf uf (t, x) =


R3×R3 ξ f (t, x, ξ)dxdξ is the momentum density of the system.
Step 4. Sketch of the proof of conclusion (2). The characteristic equation

Ẋ(s) = Ξ(s), X(t) = x;
Ξ̇(s) = E(s, X(s))+ ξ × B(s, X(s)), Ξ(t) = ξ,

of the Cauchy problem (3.3) has a unique solution (X(s), Ξ(s)). Similar to the first step and the third step of the proof of
conclusion (1), we can show that the Cauchy problem (3.3) has a unique positive solution

f ∈ L∞((0, T ); L1(R3
× R3) ∩ Lp(R3

× R3))
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verifying

∥f (t)∥1 = ∥f0∥1, ∥f (t)∥p ≤ ∥f0∥p, 0 ≤ t ≤ T .

Furthermore,

|X(0)| ≤ |x| + T |ξ | + T 2(∥E∥∞ + |ξ |∥B∥∞),

|Ξ(0)| ≤ |ξ | + T (∥E∥∞ + |ξ |∥B∥∞),

it follows that uf ∈ L∞([0, T ]; L1loc(R
3)).

In order to finish the proof of conclusion (2), it is sufficient to show the first inequality in (3.9). Multiplying both sides of
(3.3) by |ξ | and then integrating against x and ξ , it follows that ddt


R3×R3

|ξ |fdxdξ
 ≤


R3×R3

|ξ |E · ∇ξ fdxdξ
+ 

R3×R3
|ξ |(ξ × B) · ∇ξ fdxdξ

+ 
R3×R3

|ξ |Qu(f )dxdξ


≤ ∥E∥∞∥f0∥1 +


R3×R3

|(ξ × B)|fdxdξ +


R3×R3

|ξ |Qu(f )dxdξ

≤ ∥E∥∞∥f0∥1 +


R3×R3

|ξ∥B|fdxdξ + 2J∥f0||1 + 2


R3×R3
f |ξ |dxdξ

≤ ∥E∥∞∥f0∥1 + ∥B∥∞


R3×R3

|ξ |fdxdξ + 2J∥f0∥1 + 2


R3×R3
f |ξ |dxdξ

≤ (∥E∥∞ + 2J)∥f0∥1 + (∥B∥∞ + 2)


R3×R3
|ξ |fdxdξ,

then Gronwall’s lemma implies that
R3×R3

|ξ |fdxdξ ≤ exp((∥B∥∞ + 2)t)


R3×R3
|ξ |f0dxdξ +


J +

∥E∥∞

2


∥f0∥1(exp((∥B∥∞ + 2)t)− 1)

≤ CT , 0 ≤ t ≤ T .

Multiplying both sides of (3.3) by φ(x, ξ) =
(x−x0)·ξ

(1+|x−x0|2)
1
2
and then integrating against x and ξ , we obtain

d
dt


R3×R3

φ(x, ξ)fdxdξ =


R3×R3

φ(x, ξ)Qu(f )dxdξ

−


R3×R3

φ(x, ξ)ξ · ∇xfdxdξ −


R3×R3

φ(x, ξ)(E + ξ × B) · ∇ξ fdxdξ .

Similarly, we denote the above equation by I1 = I4 − I2 − I3. We only need to estimate I3 since estimates of the other terms
are just similar to above.

|I3| =


R3×R3

φ(x, ξ)(E + ξ × B) · ∇ξ fdxdξ


≤


R3×R3

φ(x, ξ)E · ∇ξ fdxdξ
+ 

R3×R3
φ(x, ξ)(ξ × B) · ∇ξ fdxdξ


≤ ∥E∥∞∥f0∥1 +


R3×R3

φ(x, ξ)(ξ × B) · ∇ξ fdxdξ


≤ ∥E∥∞∥f0∥1 +


R3×R3

|ξ ||B|fdxdξ

≤ ∥E∥∞∥f0∥1 + ∥B∥∞


R3×R3

|ξ |fdxdξ

≤ ∥E∥∞∥f0∥1 + ∥B∥∞CT .

Consequently, T

0
dt

Kx×R3

|ξ |2fdxdξ ≤ (1 + (diamKx)
2)

3
2 (2CT + 2J∥f0∥1T + 2TCT + T∥E∥∞∥f0∥1 + T∥B∥∞CT )

≤ C(diamKx, f0, T , ∥E∥∞, ∥B∥∞, J).

This completes the proof. �
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Remark 3.1. The assumption ∇ξ · F(t, x, ξ) = 0 is not necessary for the existence of a nonnegative solution to (3.2), it only
ensures (3.6), i.e., mass conservation of the system and non-increasing of the Lp norm of the solution. Specifically, if we drop
this condition, the existence of a nonnegative solution f (t, x, ξ) to (3.2) is also valid. Nevertheless, the estimate (3.6) should
be modified as follows:

∥f (t)∥1 ≤ exp
 t

0
∥∇ξ · F(τ )∥∞dτ


∥f0∥1, 0 ≤ t ≤ T

and

∥f (t)∥p ≤ exp

1
p

 t

0
∥∇ξ · F(τ )∥∞dτ


∥f0∥p, 0 ≤ t ≤ T .

Furthermore, the constant C in the estimate (3.7) also depends continuously on ∥∇ξ · F∥∞. In fact, it follows from Liouville’s
theorem (see, e.g., [1]) that for any fixed s, t ∈ [0, T ], the Jacobian of the transformation Z(s, t, ·, ·) : R3

× R3
→ R3

× R3

verifies

det

∂Z(s, t, x, ξ)
∂(x, ξ)


= exp

 s

t
∇ξ · F(τ , Z(τ , t, x, ξ))dτ


.

Hence, for any integrable function g(t, x, ξ), we have
R3×R3

|g(s, Z(s, t, x, ξ))|dxdξ =


R3×R3

|g(s, x, ξ)| exp
 t

s
∇ξ · F(τ , Z(τ , s, x, ξ))dτ


dxdξ

≤ exp
 t

s
∥∇ξ · F(τ )∥∞dτ


R3×R3

|g(s, x, ξ)|dxdξ .

Due to this estimate, we can obtain the above results by a little modification of the previous proof. On the other hand, that
the constant C depends continuously upon ∥∇ξ · F∥∞ results obviously from estimates of

R3×R3
|ξ |F · ∇ξ fdxdξ


and I3.

Remark 3.2. If we assume further


R3×R3 |x|f0(x, ξ)dxdξ < ∞, then there is a positive constant C̃ depending continuously
upon ∥f0∥1, ∥|ξ |f0∥1, ∥|x|f0∥1, T , J and ∥F∥∞, ∥∇ξ · F∥∞ (or ∥E∥∞, ∥B∥∞) such that

R3×R3
|x|f (t, x, ξ)dxdξ ≤ C̃, 0 ≤ t ≤ T .

Actually, multiplying both sides of (3.2) by |x| and integrating against x, ξ , we obtain by a direct calculation that (notice that
for (3.3), the last term of the following inequality disappears) ddt


R3×R3

|x|f (t, x, ξ)dxdξ
 ≤


R3×R3

|ξ |f (t, x, ξ)dxdξ + ∥∇ξ · F∥∞


R3×R3

|x|f (t, x, ξ)dxdξ .

Then, the desired result is obtained by the Gronwall’s trick and the estimate of
R3×R3

|ξ |f (t, x, ξ)dxdξ .

3.3. On approximate solutions

Now, we are in a position to construct approximate solutions to the Cauchy problem (1.1) and the Cauchy problem (1.2).
Following the method used in [6,14], for any given velocity field u(t, x) and any n ∈ N, we define the cutoff velocity field
ϕn(u)(t, x) as follows

ϕn(u)(t, x) =


u(t, x), |x| < n, |u(t, x)| ≤ n,

n
u(t, x)
|u(t, x)|

, |x| < n, |u(t, x)| > n,

0, |x| > n.

(3.11)

Then, the approximate equations for Eqs. (1.1) and (1.2) are respectively defined by
∂t f n + ξ · ∇xf n + F(t, x, ξ) · ∇ξ f n = Qϕn(uf n )(f

n),

f n(0, x, ξ) = f0(x, ξ)
(3.12)
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and 
∂t f n + ξ · ∇xf n + [E(t, x)+ ξ × B(t, x)] · ∇ξ f n = Qϕn(uf n )(f

n),

f n(0, x, ξ) = f0(x, ξ).
(3.13)

Concerning approximate equation (3.12), we are going to prove the following

Proposition 3.5. Suppose that the initial microscopic density f0(x, ξ) ≥ 0 verifies

f0 ∈ L1 ∩ Lp(R3
× R3) (p > 1),


R3×R3

|ξ |f0dxdξ < ∞ (3.14)

and there exist constants a, b > 0 such that

f0(x, ξ) ≥ a exp(−b(x2 + ξ 2)), x, ξ ∈ R3. (3.15)

If F(t, x, ξ) ∈ C([0, T ]; C1
b (R

3
x × R3

ξ )) and ∇ξ · F(t, x, ξ) = 0, then for any n ∈ N there exists a nonnegative weak solution
f n ∈ L∞((0, T ); L1 ∩ Lp(R3

× R3)) to the Cauchy problem (3.12) such that

∥f n(t)∥1 = ∥f0∥1, ∥f n(t)∥p ≤ ∥f0∥p, 0 ≤ t ≤ T . (3.16)

Moreover, for any Kx ⊂⊂ R3, there is a positive constant C = C(diamKx, f0, T , ∥F∥∞) independent of n and continuously
depending upon the parameters diamKx, ∥f0∥1, ∥|ξ |f0∥1, T and ∥F∥∞ such that T

0
dt

Kx×R3

|ξ |2f ndxdξ ≤ C, uf n ∈ L∞([0, T ]; L1loc(R
3)). (3.17)

Proof. First, we show that for any given n ∈ N there exists a nonnegative solution f n to Eq. (3.12). Inspired by the method
used in [6,14], let Bn = {x ∈ R3

: |x| < n} and

Sn = {u ∈ L1((0, T )× R3)3 : |u(t, x)| ≤ n for almost all (t, x) ∈ (0, T )× Bn

and u(t, x) = 0 for almost all (t, x) ∈ (0, T )× (R3
\ Bn)},

then Sn is a bounded and closed convex subset of L1((0, T ) × R3)3. By the definition of ϕn(u), we know that ϕn maps
L1((0, T ) × R3)3 onto Sn. Define the operator T1 : Sn → L1((0, T ) × R3)3 as follows: for any u ∈ Sn, let f be the unique
nonnegative solution to Eq. (3.2) corresponding to the fixed velocity field u (see Lemma 3.4), we set T1(u) = χ(0,T )×Bn · uf ,
hereafterχA is designated for the characteristic function of the setA. Further, let T : Sn → Sn; T (u) = ϕn(T1(u)). Obviously, a
fixed point u of the operator T determines a nonnegative solution to Eq. (3.12) (denoted by f n) and it follows from Lemma 3.4
that the solution f n satisfies (3.16) and (3.17) (notice that for the time being the constant C in (3.17) is not claimed to be
independent of n). Since ϕn : L1((0, T )× R3)3 → Sn is continuous, the continuity and compactness of T1 would imply that
the operator T has a fixed point in Sn due to Schauder’s theorem. Consequently, to prove the existence of a nonnegative
solution to Eq. (3.12), it is sufficient to show the compactness and continuity of T1.

Proof of the compactness of T1. For any given u ∈ Sn, let f be the unique nonnegative solution to Eq. (3.2) corresponding
to the velocity field u, then it verifies (3.6) and (3.7). Suppose that φ(x) is any C∞

c function such that φ|Bn ≡ 1, let
f̃ = φf , g̃ = φQu(f )+ (ξ · ∇xφ)f . Then

∂t f̃ + ξ · ∇x f̃ + F(t, x, ξ) · ∇ξ f̃ = g̃

in distributional sense. It follows from (3.6) and (3.7), Dunford–Pettis theorem and boundedness of the linear operator Qu

that {f̃ : u ∈ Sn} and {g̃ : u ∈ Sn} are relatively compact in theweak topology of L1((0, T )×R3
×R3) and L1loc((0, T )×R3

×R3)

respectively. Then, Lemma 3.3 implies that for anyψ ∈ L∞(R3
ξ )with support contained in Kξ = {ξ ∈ R3

: |ξ | ≤ R} (R > 0),
the subset

Kξ
ψ(ξ)f̃ (t, x, ξ)dξ, u ∈ Sn



is relatively compact in the strong topology of L1((0, T )× R3). Letting φ(x) → χBn(x), we obtain that
Kξ
ψ(ξ)f (t, x, ξ)dξ, u ∈ Sn


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is relatively compact in the strong topology of L1((0, T )×R3). On the other hand, by Lemma 3.4 (especially inequality (3.7))
we know that

 T
0 dt


Bn×R3 |ξ |2fdxdξ is uniformly bounded, it follows that for any fixed 0 ≤ r < 2

sup
u∈Sn


(0,T )×Bn


R3

|ξ |r f (t, x, ξ)dξ −


Kξ

|ξ |r f (t, x, ξ)dξ


dtdx = sup

u∈Sn


(0,T )×Bn


K c
ξ

|ξ |r f (t, x, ξ)dξ


dtdx

≤
1

R2−r
sup
u∈Sn


(0,T )×Bn


K c
ξ

|ξ |2f (t, x, ξ)dξ


dtdx → 0, R → ∞.

Hence, for any given ε > 0, if R > 0 is large enough, then


Kξ
|ξ |r f (t, x, ξ)dξ : u ∈ Sn


is a sequentially compact ε-net of

R3 |ξ |r f (t, x, ξ)dξ : u ∈ Sn


⊂ L1((0, T )× Bn). This implies that for any fixed 0 ≤ r < 2,


R3 |ξ |r f (t, x, ξ)dξ : u ∈ Sn

,

and therefore ρf andmf are relatively compact in the strong topology of L1((0, T )× Bn). Since ρf ≥ A′ exp(−B|x|2) > 0 for
any (t, x) ∈ (0, T )× Bn, we know that

T1Sn =


χ(0,T )×Bn · uf = χ(0,T )×Bn ·

mf

ρf
: u ∈ Sn


is relatively compact in the strong topology of L1((0, T )× Bn). Hence, T1 is compact.
Proof of the continuity of T1. Let uk ∈ Sn and uk → u ∈ Sn (k → ∞), and denote by fk and f the unique nonnegative
solution to Eq. (3.2) corresponding to the velocity field uk and u, respectively. Then, Lemma 3.4 (especially inequality (3.6))
implies that there is a subsequence of fk (still denoted by fk for the sake of simplicity) that converges to some f̃ in the weak
topology of Lp((0, T )× R3

× R3). By Lemma 3.2 (1), we can pass to the limit k → ∞ in the sense of distributions in Eq. (3.2)
corresponding to the velocity field uk and thus obtain that

∂t f̃ + ξ · ∇x f̃ + F(t, x, ξ) · ∇ξ f̃ = Qu(f̃ ),
f̃ (0, x, ξ) = f0(x, ξ).

So, the uniqueness of the linear problem (3.2) gives f̃ = f . This implies that the full sequence fk is also convergence.
Again, using velocity averaging lemma we get that ρfk → ρf , mfk → mf in the strong topology of L1((0, T ) × Bn).
Furthermore, by the lower bound estimates for ρfk obtained above we have ufk → uf (k → ∞). Hence, we have proved that
if uk → u (k → ∞), then χ(0,T )×Bn · ufk → χ(0,T )×Bn · uf (k → ∞), i.e., T1 is a continuous operator.

To finish the proof, we have to show that the constant C in (3.17) is independent of n ∈ N. First, we notice

|Qϕn(uf n )(|ξ |)| = |Pϕn(uf n )(|ξ |)− |ξ ||

=

 1
4π


S2
(|ϕn(uf n)+ |ξ − ϕn(uf n)|ω|)dω − |ξ |


≤ 2|ϕn(uf n)| + 2|ξ | ≤ 2|uf n | + 2|ξ |,

which implies
R3×R3

|ξ |Qϕn(uf n )(f
n)dxdξ

 =


R3×R3

f nQϕn(uf n )(|ξ |)dxdξ


≤


R3×R3

f n[2|uf n | + 2|ξ |]dxdξ

≤ 2


R3
ρf n · |uf n |dx + 2


R3×R3

|ξ |f ndxdξ

= 4


R3×R3
|ξ |f ndxdξ .

Multiplying both sides of (3.12) by |ξ | and then integrating against x and ξ , by the above estimate of the collision operator
and similar to the proof of Lemma 3.4 we obtain ddt


R3×R3

|ξ |f ndxdξ
 ≤ ∥F∥∞∥f0∥1 + 4


R3×R3

|ξ |f ndxdξ .

By Gronwall’s inequality, we get
R3×R3

|ξ |f ndxdξ ≤ exp(4t)


R3×R3
|ξ |f0dxdξ +

1
4
∥F∥∞∥f0∥1(exp(4t)− 1)

≤ exp(4T )


R3×R3
|ξ |f0dxdξ +

1
4
∥F∥∞∥f0∥1(exp(4T )− 1) =: CT , 0 ≤ t ≤ T .
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Multiplying both sides of (3.12) by φ(x, ξ) =
(x−x0)·ξ

(1+|x−x0|2)
1
2
and then integrating against x and ξ , we obtain

d
dt


R3×R3

φ(x, ξ)f ndxdξ =


R3×R3

φ(x, ξ)Qϕn(uf n )(f
n)dxdξ

−


R3×R3

φ(x, ξ)ξ · ∇xf ndxdξ −


R3×R3

φ(x, ξ)F · ∇ξ f ndxdξ .

Similar to the proof of Lemma 3.4, we denote the above equation by I1 = I4− I2− I3. Again, similar to the proof of Lemma 3.4,
we can show T

0
I1dt

 ≤ 2CT ,

 T

0
I3dt

 ≤ T∥F∥∞∥f0∥1,

 T

0
I4dt

 ≤ 4TCT ,

furthermore, for any Kx ⊂⊂ R3 such that x0 ∈ Kx, we have T

0
I2dt

 ≥
1

(1 + (diamKx)2)
3
2

 T

0
dt

Kx×R3

|ξ |2fdxdξ .

Consequently, we obtain T

0
dt

Kx×R3

|ξ |2fdxdξ ≤ (1 + (diamKx)
2)

3
2 [2CT + 4TCT + T∥F∥∞∥f0∥1] .

Taking C = (1+(diamKx)
2)

3
2 [2CT + 4TCT + T∥F∥∞∥f0∥1], obviously C is independent of n and continuously depends upon

the parameters diamKx, ∥f0∥1, ∥|ξ |f0∥1, T and ∥F∥∞. This completes the proof. �

Remark 3.3. Due to Remarks 3.1, 3.2 and the procedure given above, similar results in Proposition 3.5 are still valid when
∇ξ · F(t, x, ξ) ≢ 0. But (3.16) should be replaced by

∥f n(t)∥1 ≤ exp
 t

0
∥∇ξ · F(τ )∥∞dτ


∥f0∥1, 0 ≤ t ≤ T

and

∥f n(t)∥p ≤ exp

1
p

 t

0
∥∇ξ · F(τ )∥∞dτ


∥f0∥p, 0 ≤ t ≤ T .

Notice that in this case, the constant C in (3.17) should also depend upon ∥∇ξ · F∥∞.
Furthermore, if


R3×R3 |x|f0(x, ξ)dxdξ < ∞, then

R3×R3
|x|f n(t, x, ξ)dxdξ ≤ C̃, 0 ≤ t ≤ T ,

where the constant C̃ depends upon ∥f0∥1, ∥|ξ |f0∥1, ∥|x|f0∥1, T , ∥F∥∞ and ∥∇ξ · F∥∞, but not upon n. This estimate also
applies to the following proposition.

Similarly, we can establish the following result for the approximate problem (3.13).

Proposition 3.6. Suppose the initial microscopic density f0(x, ξ) ≥ 0 verifies (3.14) and (3.15). If E(t, x), B(t, x) ∈

C([0, T ]; C1
b (R

3)), then for any n ∈ N there exists a nonnegative solution f n ∈ L∞((0, T ); L1 ∩ Lp(R3
× R3)) to the Cauchy

problem (3.13) such that

∥f n(t)∥1 = ∥f0∥1, ∥f n(t)∥p ≤ ∥f0∥p, 0 ≤ t ≤ T . (3.18)

Further, for any Kx ⊂⊂ R3, there is a positive constant C independent of n and continuously depending upon the parameters
diamKx, ∥f0∥1, ∥|ξ |f0∥1, T , ∥E∥∞ and ∥B∥∞ such that T

0
dt

Kx×R3

|ξ |2f ndxdξ ≤ C, uf n ∈ L∞([0, T ]; L1loc(R
3)). (3.19)

4. Proofs of the main theorems

In this section, we shall finish the proofs of the main results in this paper. First, we give a short proof of Theorem 2.1
based upon Propositions 3.5 and 3.6.
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Proof of Theorem 2.1. Let f n0 (x, ξ) = f0(x, ξ) +
1
n exp(−(|x|2 + |ξ |2)) (n = 1, 2, . . .), then f n0 satisfies (3.14) and (3.15)

since f0 verifies (2.1). It follows from Proposition 3.5 that there is a nonnegative solution f n to (3.12) verifying f n|t=0 = f n0 ,
(3.16) and (3.17). Especially, (3.16) implies

∥f n(t)∥1 = ∥f n0 ∥1 ≤ ∥f0∥1 + π3/n, ∥f n(t)∥p ≤ ∥f n0 ∥p ≤ ∥f0∥p + π3/n, 0 ≤ t ≤ T . (4.1)

It follows that up to a subsequence, for any 1 < q < ∞

f n → f (n → ∞) weakly in Lq((0, T ); Lp(R3
× R3)), (4.2)

where f ∈ L∞((0, T ); L1 ∩ Lp(R3
× R3)) and f ≥ 0. On the other hand, by (4.1), (3.17) and the velocity averaging lemma

(Lemma 3.3), similar to the proof of Proposition 3.5 we can show that


R3 |ξ |r f n(t, x, ξ)dξ : n = 1, 2, . . .

is relatively

compact in L1((0, T ) × Kx) for any 0 ≤ r < 2 and Kx ⊂⊂ R3
x . This obviously implies that {ρf n : n = 1, 2, . . .} and

{ρf nuf n : n = 1, 2, . . .} are relatively compact in L1((0, T ) × Kx) for any Kx ⊂⊂ R3
x . Without loss of generality and in

consideration of (4.2), we may assume that as n → ∞,

ρf n → ρf , ρf nuf n → ρf uf strongly in L1((0, T )× Kx) (4.3)

for any Kx ⊂⊂ R3
x . Due to (4.2), (4.3) and the proof of Theorem 2 in [14], we obtain

Qϕn(uf n )(f
n) → Quf (f ) in D ′((0, T )× R3

× R3), as n → ∞. (4.4)

Since f n is a solution of (3.12) with initial datum f n0 , we have by Definition 1.1 that for any test function φ(t, x, ξ) ∈

C1
c ([0, T )× R3

× R3) T

0
dt


R3×R3
f n

∂tφ + ξ · ∇xφ + F · ∇ξφ


dxdξ +


R3×R3

f n0 φ|t=0dxdξ

= −

 T

0
dt


R3×R3
Qϕn(uf n )(f

n)φdxdξ . (4.5)

Due to (4.2), (4.4) and ∥f n0 − f0∥1 → 0(n → ∞), we can pass to limit n → ∞ in (4.5) and obtain that for any test function
φ(t, x, ξ) ∈ C1

c ([0, T )× R3
× R3) T

0
dt


R3×R3
f

∂tφ + ξ · ∇xφ + F · ∇ξφ


dxdξ +


R3×R3

f0φ|t=0dxdξ = −

 T

0
dt


R3×R3
Quf (f )φdxdξ,

namely f is a nonnegative solution of (1.1). Furthermore, passing to limits n → ∞ in (4.1) and (3.17) we obtain the desired
estimates (2.2) and (2.3). This completes the proof of part (1).

Using almost the same method and starting from Proposition 3.6, we can show the second part of this theorem. �

Proof of Theorem 2.2. Let F ε = F(t, x, ξ)∗ηε(t, x, ξ), where ηε (ε > 0) is the standardmollifier. Then, we have∇ξ ·F ε = 0
and F ε(t, x, ξ) ∈ C([0, T ]; C1

b (R
3
x × R3

ξ )), furthermore,

∥F ε∥Lp′ ([0,T ]×R3
x×R3

ξ )
≤ ∥F∥Lp′ ([0,T ]×R3

x×R3
ξ )

(4.6)

and

F ε → F , in Lp
′

([0, T ] × R3
x × R3

ξ ), as ε → 0. (4.7)

It follows from Theorem 2.1 that for each ε > 0, the Cauchy problem
∂t f ε + ξ · ∇xf ε + F ε · ∇ξ f ε = Quf ε (f

ε),

f ε(0, x, ξ) = f0(x, ξ)
(4.8)

has a nonnegative solution f ε such that

∥f ε(t)∥1 = ∥f0∥1, ∥f ε(t)∥p ≤ ∥f0∥p, 0 ≤ t ≤ T (4.9)

and for any Kx ⊂⊂ R3
x T

0
dt

Kx×R3

|ξ |2f εdxdξ < ∞. (4.10)
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Multiplying both sides of (4.8) by |ξ | and then integrating against x and ξ , we obtain by (4.6), (4.9), Lemma 3.2 (2) and
Hölder’s inequality that

d
dt


R3×R3

|ξ |f εdxdξ =


R3×R3

∇ξ |ξ | · F εf εdxdξ +


R3×R3

|ξ |Quf ε (f
ε)dxdξ

≤


R3×R3

|F ε|f εdxdξ + (C1 + 1)


R3×R3
|ξ |f εdxdξ

≤ ∥f ε(t)∥p∥F∥p′ + (C1 + 1)


R3×R3
|ξ |f εdxdξ

≤ ∥f0∥p∥F∥p′ + (C1 + 1)


R3×R3
|ξ |f εdxdξ,

where C1 is the positive constant from Lemma 3.2 (2). Then, Gronwall’s inequality implies that
R3×R3

|ξ |f εdxdξ ≤ CT , 0 ≤ t ≤ T , ε > 0, (4.11)

where the constant CT is independent of ε, i.e.,


R3×R3 |ξ |f εdxdξ is uniformly bounded.
Again, we use duality method to obtain uniform estimate of the second velocity moment. We have

d
dt


R3×R3

φ(x, ξ)f εdxdξ =


R3×R3

φ(x, ξ)Quf ε (f
ε)dxdξ

−


R3×R3

φ(x, ξ)ξ · ∇xf εdxdξ −


R3×R3

φ(x, ξ)F ε · ∇ξ f εdxdξ,

where φ(x, ξ) =
(x−x0)·ξ

(1+|x−x0|2)
1
2
. For the sake of simplicity, we denote the last equation by I1 = I4 − I2 − I3. On one hand, by

(4.11) we get the estimate of I1 as follows: T

0
I1dt

 =

 T

0


R3×R3

φ(x, ξ)∂t f εdtdxdξ


≤


R3×R3

|ξ |(f ε(T , x, ξ)+ f ε0 (x, ξ))dxdξ ≤ 2CT .

On the other hand, for any t ∈ [0, T ] we obtain due to Lemma 3.2 (2), (4.6), (4.9) and (4.11)

|I4| =


R3×R3

φ(x, ξ)Quf ε (f
ε)dxdξ


≤


R3×R3

|ξ |Quf ε (f
ε)dxdξ

≤ (C1 + 1)


R3×R3
|ξ |f εdxdξ ≤ (C1 + 1) · CT

and

|I3| =


R3×R3

φ(x, ξ) · ∇ξ F εf εdxdξ


=




R3×R3

∇ξ ((x − x0) · ξ)

(1 + |x − x0|2)
1
2

· F εf εdxdξ


≤ ∥F ε(t)∥p′∥f ε(t)∥p ≤ ∥F(t)∥p′∥f0∥p.

Lastly, for Kx ⊂⊂ R3, we choose x0 ∈ Kx, then

|I2| ≥
1

(1 + (diamKx)2)
3
2


Kx×R3

|ξ |2f εdxdξ .

Integrating the equation I1 = I4 − I2 − I3 with respect to t from 0 to T and using the above estimates, we obtain T

0
dt

Kx×R3

|ξ |2f εdxdξ ≤ (1 + (diamKx)
2)

3
2 (2CT + ∥F∥p′∥f0∥p + TCT (C1 + 1)).
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Namely, for any given Kx ⊂⊂ R3, there is a positive constant C depending only upon ∥|ξ |f0∥1, ∥f0∥p, ∥F∥p′ and diamKx such
that  T

0
dt

Kx×R3

|ξ |2f εdxdξ ≤ C . (4.12)

From (4.9), (4.12) and Dunford–Pettis theorem, we know that for any given R > 0, the sequence f ε is relatively compact
in the weak topology of L1((0, T ) × BR × R3

ξ ). It follows from Lemma 3.3 that for any ϕ ∈ C∞
c (R

3), we have (extracting a
subsequence if necessary)

R3
f εϕ(ξ)dξ →


R3

f ϕ(ξ)dξ, as ε → 0 (4.13)

in the strong topology of L1loc([0, T ] × R3), where f ≥ 0 is the weak limit of f ε ∈ L1((0, T )× BR × R3
ξ ) (ε > 0). From (4.12)

and (4.13), we obtain

ρf ε → ρf , ρf εuf ε → ρf uf , as ε → 0

in the strong topology of L1loc([0, T ] × R3).
On the other hand, if 1 < p < ∞, then for any 1 < s ≤ p we have f ε → f (as ε → 0) in the weak topology of

Ls((0, T ) × R3
× R3), if p = ∞ then f ε → f (as ε → 0) in the weak ∗ topology of L∞((0, T ) × R3

× R3). Consequently,
we finally get (see the proof of (4.4)),

Quf ε (f
ε) → Quf (f ) in D ′((0, T )× R3

× R3), as ε → 0.

Furthermore, (4.7) and f ε → f (as ε → 0) in the weak or weak ∗ topology of Lp((0, T )× R3
× R3) implies that

F εf ε → Ff in D ′((0, T )× R3
× R3), as ε → 0.

Due to these results we can pass to limit ε → 0 in the weak form of (4.8), then we obtain that f (t, x, ξ) is a nonnegative
weak solution to the Cauchy problem (1.1). Finally, estimates (2.7) and (2.8) follow from (4.9) and (4.12). �

Proof of Theorem 2.3. Let F ε = (F(t, x, ξ) · χε(t, x, ξ)) ∗ ηε(t, x, ξ), where ηε (0 < ε < 1) is the standard mollifier and
the convolution is in t, x, ξ , and where χε ∈ C∞

c


(ε, T − ε)× B


0, 2

εr


× B


0, 2

εr


is a cutoff function such that χε ≡ 1 on

[2ε, T − 2ε] × B

0, 1

εr


× B


0, 1

εr


, and 0 ≤ χε ≤ 1 on (ε, T − ε)× B


0, 2

εr


× B


0, 2

εr


, Hε (here we set r = 7(p − 1)).

Then, F ε(t, x, ξ) ∈ C([0, T ]; C1
b (R

3
x × R3

ξ )) and

∇ξ · F ε = ∇ξ · [(Fχε) ∗ ηε]

= [∇ξ · (Fχε)] ∗ ηε = (F · ∇ξχε) ∗ ηε

= (F1 · ∇ξχε) ∗ ηε + (F2 · ∇ξχε) ∗ ηε.

Consequently,

∥∇ξ · F ε(t)∥∞ ≤ ∥F1∥p′ · ∥ηε∥p · ∥∇ξχε∥∞ + sup
(t,x,ξ)∈Hε

(1 + |x| + |ξ |)

 |F2|
1 + |x| + |ξ |


∞

∥∇ξχε∥∞

≤


∥F1∥p′∥ηε∥p +


1 +

2
εr

+
2
εr


∥M∥∞


· C · εr

= C

εr∥F1∥p′∥ηε∥p + (4 + εr)∥M∥∞


.

So, we get T

0
∥∇ξ · F ε(t)∥∞dt ≤ C ′


∥F1∥p′ + T∥M∥∞


, (4.14)

where the positive constant C ′ is independent of ε. Hence, ∇ξ · F ε ∈ L1([0, T ]; L∞(R3
× R3)). It follows from Remark 2.1

that the Cauchy problem
∂t f ε + ξ · ∇xf ε + F ε(t, x, ξ) · ∇ξ f ε = Quf ε (f

ε),

f ε(0, x, ξ) = f0(x, ξ)
(4.15)

has a nonnegative solution f ε such that

∥f ε(t)∥1 ≤ ∥f0∥1 · exp
 t

0
∥∇ξ · F ε(τ )∥∞dτ


, 0 ≤ t ≤ T
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and

∥f ε(t)∥p ≤ ∥f0∥p · exp

1
p

 t

0
∥∇ξ · F(ετ)∥∞dτ


, 0 ≤ t ≤ T .

Combining these estimates with (4.14), we get as in the proof of Theorem 2.2

∥f ε(t)∥1 ≤ ∥f0∥1 · exp

C ′

∥F1∥p′ + T∥M∥∞


, 0 ≤ t ≤ T (4.16)

and

∥f ε(t)∥p ≤ ∥f0∥p · exp

C ′

p


∥F1∥p′ + T∥M∥∞


, 0 ≤ t ≤ T . (4.17)

On the other hand, multiplying both sides of the approximate problem (4.15) by ξ and then integrating against x and ξ ,
we get

d
dt


R3×R3

|ξ |f εdxdξ =


R3×R3

f ε∇ξ · (|ξ |F ε)dxdξ +


R3×R3

|ξ |Quf ε (f
ε)dxdξ

≤ ∥∇ξ · F ε(t)∥∞ ·


R3×R3

|ξ |f εdxdξ +


R3×R3

|F ε|f εdxdξ + (C1 + 1)


R3×R3
|ξ |f εdxdξ,

in which the term


R3×R3 |F ε|f εdxdξ can be estimated as follows
R3×R3

|F ε|f εdxdξ ≤


R3×R3

|F ε1 |f εdxdξ +


R3×R3

|F ε2 |f εdxdξ

≤ ∥F ε1 (t)∥p′∥f ε(t)∥p + ∥M(t)∥∞


R3×R3

(1 + |x| + |ξ |)f εdxdξ .

Hence, we obtain

d
dt


R3×R3

|ξ |f εdxdξ ≤ ∥∇ξ · F ε(t)∥∞ ·


R3×R3

|ξ |f εdxdξ + ∥F ε1 (t)∥p′∥f ε(t)∥p

+ ∥M(t)∥∞


R3×R3

(1 + |x| + |ξ |)f εdxdξ + (C1 + 1)


R3×R3
|ξ |f εdxdξ .

Similarly, multiplying both sides of the approximate problem by x and then integrating against x and ξ , we have

d
dt


R3×R3

|x|f εdxdξ ≤


R3×R3

|ξ |f εdxdξ + ∥∇ξ · F ε(t)∥∞


R3×R3

|x|f εdxdξ .

Combining the above two differential inequality, we discover

d
dt


R3×R3

(|x| + |ξ |)f εdxdξ ≤ (∥∇ξ · F ε(t)∥∞ + ∥M(t)∥∞ + C1 + 2)


R3×R3
(|x| + |ξ |)f εdxdξ

+ ∥F1(t)∥p′∥f0∥p + ∥M(t)∥∞∥f0∥1.

It follows from (4.14) and Gronwall’s inequality that
R3×R3

(|x| + |ξ |)f ε(t, x, ξ)dxdξ ≤ CT , 0 ≤ t ≤ T , (4.18)

where the positive constant CT is independent of ε.
Similar to the proof of Theorem2.2,multiplying both sides of (4.15) byφ(x, ξ) =

(x−x0)·ξ

(1+|x−x0|2)
1
2
and then integrating against

x and ξ , we obtain
R3×R3

φ(x, ξ)∂t f εdxdξ =


R3×R3

φ(x, ξ)Quf ε (f
ε)dxdξ

−


R3×R3

φ(x, ξ)ξ · ∇xf εdxdξ −


R3×R3

φ(x, ξ)F ε · ∇ξ f εdxdξ,



592 X. Zhang, X. Yin / J. Math. Anal. Appl. 405 (2013) 574–594

which is denoted by I1 = I4 − I2 − I3. The integrals I1, I2 and I4 have been estimated in the proof of Theorem 2.2, and the
integral I3 can be estimated as follows. First, T

0
I3dt

 =

 T

0
dt


R3×R3
φ(x, ξ)F ε · ∇ξ f εdxdξ


≤


 T

0
dt


R3×R3

(x − x0) · ξ

(1 + |x − x0|2)
1
2
(∇ξ · F ε)f εdxdξ

+

 T

0
dt


R3×R3

(x − x0)

(1 + |x − x0|2)
1
2

· F εf εdxdξ


≤

 T

0
dt∥∇ξ · F ε(t)∥∞


R3×R3

|ξ |f εdxdξ +

 T

0
dt


R3×R3
|F ε|f εdxdξ .

Second, by (4.14) and (4.18), we get T

0
dt∥∇ξ · F ε(t)∥∞


R3×R3

|ξ |f εdxdξ ≤ CTC ′

∥F1∥p′ + T∥M∥∞


.

Third, since

|[(1 + |x| + |ξ |)χε] ∗ ηε| ≤ |(1 + |x| + |ξ |) ∗ ηε|

≤ 1 +


∞

−∞

dt


R3×R3
(|x − y| + |ξ − η|) · ηε(t, y, η)dydη

≤ 1 +


∞

−∞

dt


R3×R3
(|x| + |y| + |ξ | + |η|) · ηε(t, y, η)dydη

≤ 1 + |x| + |ξ | +


∞

−∞

dt


R3×R3
(|y| + |η|) · ηε(t, y, η)dydη

≤ 1 + |x| + |ξ | + 2ε,

in consideration of (4.16)–(4.18) we have T

0
dt


R3×R3
|F ε|f εdxdξ =

 T

0
dt


R3×R3
|[(F1 + F2)χε] ∗ ηε|f εdxdξ

=

 T

0
dt


R3×R3
|(F1χε) ∗ ηε|f εdxdξ +

 T

0
dt


R3×R3
|(F2χε) ∗ ηε|f εdxdξ

≤

 T

0
∥F1χε(t)∥p′∥f ε(t)∥pdt +

 T

0
dt


R3×R3
|[M(1 + |x| + |ξ |)χε] ∗ ηε|f εdxdξ

≤

 T

0
∥F1(t)∥p′∥f ε(t)∥pdt + ∥M∥∞

 T

0
dt


R3×R3
|[(1 + |x| + |ξ |)χε] ∗ ηε|f εdxdξ

≤

 T

0
∥F1(t)∥p′∥f ε(t)∥pdt + ∥M∥∞

 T

0
dt


R3×R3
(1 + 2ε + |x| + |ξ |)f εdxdξ

≤ T 1/p
∥F1∥p′∥f0∥p · exp


C ′

p


∥F1∥p′ + T∥M∥∞


+ T


3∥f0∥1 · exp


C ′

∥F1∥p′ + T∥M∥∞


+ CT


∥M∥∞.

To sum up, we obtain T

0
I3dt

 ≤ C ′

T ,

where

C ′

T = CTC ′

∥F1∥p′ + T∥M∥∞


+ T 1/p

∥F1∥p′∥f0∥p · exp

C ′

p


∥F1∥p′ + T∥M∥∞


+ T


3∥f0∥1 · exp


C ′

∥F1∥p′ + T∥M∥∞


+ CT


∥M∥∞.

Using the above estimates for Ik (k = 1, 2, 3, 4), similar to the proof of (4.12) we can show that for any fixed Kx ⊂⊂ R3, T

0
dt

Kx×R3

|ξ |2f εdxdξ ≤ C, (4.19)

where the positive constant C depends continuously on diamKx, f0, T and F , but is independent of ε.
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Again, similar to the proof of Theorem 2.2, we can show by (4.16), (4.17), (4.19) and Lemma 3.3 that for any 1 < s ≤ p
we have f ε → f (as ε → 0) in the weak topology of Ls((0, T ) × R3

× R3), and ρf ε → ρf , ρf εuf ε → ρf uf (as ε → 0) in
the strong topology of L1loc([0, T ] × R3). Here f ≥ 0 is the weak limit of {f ε : ε > 0} in L1loc(R

3
x; L1((0, T ) × R3

ξ )). As a
consequence, we have

Quf ε (f
ε) → Quf (f ) in D ′((0, T )× R3

× R3), as ε → 0. (4.20)

Next, we show that

F εf ε → Ff in D ′((0, T )× R3
× R3), as ε → 0. (4.21)

Actually, by the fact that F1 ∈ Lq([0, T ] × R3
× R3) and the proof of Theorem 2.2 it is obvious that F ε1 f

ε
→ F1f (as ε → 0)

inD ′((0, T )×R3
×R3). So, in order to finish the proof of (4.21)we only need to show F ε2 f

ε
→ F2f (as ε → 0) inD ′((0, T )×

R3
× R3). In fact, the fact that F2

1+|x|+|ξ |
∈ L∞([0, T ]; L∞(R3

× R3)) implies that F2 ∈ L∞([0, T ]; L∞

loc(R
3
× R3)). Hence,

F ε2 → F2 (as ε → 0) strongly in Lp
′

loc([0, T ] × R3
× R3), which and f ε → f (as ε → 0) in the weak topology of

Lp((0, T )× R3
× R3) obviously imply that F ε2 f

ε
→ F2f (as ε → 0) in the sense of distributions.

Combining (4.20), (4.21) and f ε → f weakly as ε → 0, we can pass to limit ε → 0 in (4.15) and obtain that f (t, x, ξ) is
a nonnegative solution to (1.1).

In order to finish the proof, we have to show the estimates claimed by this theorem. Actually, (2.11) is obviously implied
by (4.19) through a limit process, and the mass conservation in (2.11) can be easily proved. Now, we show the second part
in (2.11). Multiplying both sides of (1.1) by pf p−1 and then integrating against x and ξ , we get

d
dt


R3×R3

f pdxdξ +


R3×R3

[ξ · ∇xf p + F · ∇ξ f p]dxdξ = p


R3×R3
f p−1Quf (f )dxdξ .

Since ∇ξ · F = 0, the second term in the right hand side disappears by integration by parts. Consequently,

d
dt


R3×R3

f pdxdξ = p


R3×R3
f p−1Quf (f )dxdξ .

On the other hand, it follows from Lemma 3.2 (1) and Hölder’s inequality that
R3×R3

f p−1Quf (f )dxdξ =


R3×R3

f p−1Puf (f )dxdξ −


R3×R3

f pdxdξ

≤


R3×R3

f pdxdξ
 1

p′


R3×R3
[Puf (f )]

pdxdξ
 1

p

−


R3×R3

f pdxdξ

≤


R3×R3

f pdxdξ
 1

p′


R3×R3
f pdxdξ

 1
p

−


R3×R3

f pdxdξ

= 0.

So, we obtain

d
dt


R3×R3

f pdxdξ ≤ 0, 0 ≤ t ≤ T ,

which obviously implies that ∥f (t)∥p ≤ ∥f0∥p (0 ≤ t ≤ T ). The proof is completed. �
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