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Abstract

In this paper we are concerned on the semilinear elliptic problem
{
−∆u = −λ|u|q−2u + au + b(u+)p−1 in Ω,
u = 0 on ∂Ω,

where Ω ⊆ RN is a bounded domain with regular boundary ∂Ω, 1 < q <
2 < p ≤ 2∗. If a is between two eigenvalues, we get the existence of three
nontrivial solutions for the problem above.

Key words. positive solution, indefinite sublinear nonlinearity, concave-convex
nonlinearity, critical growth.
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1 Introduction

We consider the semilinear elliptic problem

(P )

{
−∆u = −λ|u|q−2u + au + b(u+)p−1 in Ω,
u = 0 on ∂Ω,

where Ω ⊆ RN is a bounded domain with regular boundary ∂Ω, N ≥ 3, 1 < q <
2 < p ≤ 2∗, a ∈ IR, b > 0, λ is a positive parameter and u+ = max {u, 0}.

∗Partially supported by CAPES and FAPESP.
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The weak solutions of the problem (P ) correspond to critical points of the C1

functional Iλ, defined on H1
0 :≡ H1

0 (Ω) by

(1) Iλ(u) =
1

2

∫
|∇u|2 +

λ

q

∫
|u|q − a

2

∫
u2 − b

p

∫
(u+)p, u ∈ H1

0 .

After the appearance of [1], there has been an increasing concern about multiple
solutions of semilinear elliptic problem of the type:

(2) −∆u = µ|u|q−2u + g(u) in Ω.

When g is asymmetric and asymptotically linear this problem was considered in
[8, 10, 13, 20]. Here asymmetric means that g satisfies an Ambrosetti-Prodi type
condition (i.e. g− := limt→−∞ g(t)/t < λk < g+ := limt→+∞ g(t)/t). When g
is asymmetric and superlinear at +∞, g+ = ∞, this problem was approached in
[8, 13, 17]. In [8] a Neumann problem was considered and in [17] the authors
studied a problem involving the p-Laplace operator. In [13], one was assumed that
g(t)/t crosses an eigenvalue of the Laplacian when the t varies from 0 to −∞ (i.e.
g′(0) < λk < g−). Similar hypotheses also appears in [20]. Assumptions involving
the first eigenvalue, as g′(0), g− ≤ λ1, were considered in [8, 10, 17]. It is known
that crossing eigenvalues, in particular the first one, is related to existence and
multiplicity for such problems. Notice that the nonlinearity g(t) = at + b(t+)p−1,
with a > λ1, is not included in the cases count on the previous works. Moreover,
similar problems with µ = 0 were studied in [16] for Dirichlet problems, and in
[2, 19] for Neumann problems.

Our problem is also closely related to the class of superlinear Ambrosetti-Prodi
problem:

(3) −∆u = au + (u+)p + f(x) in Ω,

with f ∈ L2. For instance, this problem have a solution if ||f ||L2 is small enough
(see [12]). Further results and references for the above problem can be found in
[5, 6, 11, 18, 21, 22].

For the critical case, our main motivation to (P ) is the Brezis-Nirenberg pioneer-
ing work [4], where the following critical problem was considered

{
−∆u = au + |u|2∗−2u in Ω,
u = 0 on ∂Ω,

where a < λ1. They noticed that the problem had a breaking of compactness at
the value SN/2

N
, so that they constructed minimax levels for the energy functional

associated below this value. Such ideas have been permeating many later works as
well as ours. One of them, it was the Capozzi, Fortunato and Palmieri work [7].
They basically studied the problem above with a between two eigenvalues. They
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showed that the problem above has a nontrivial solution for all a > 0 when N ≥ 5
and for a different from eigenvalues when N = 4.

We are denoting by 0 < λ1 < λ2 ≤ · · · ≤ λj ≤ · · · the eigenvalues of (−∆, H1
0 (Ω))

and by ϕj the correspondents eigenfunctions. The H1
0 (Ω) norm and Lp(Ω) norm are

represented by ‖·‖ and | · |p and we denote these spaces by H1
0 and Lp, for simplicity,

respectively.
In the sequel, we set up precisely the results obtained

Theorem 1. Let N ≥ 3 and λk < a < λk+1. If 2 < p < 2∗, then, for λ small
enough, (P ) has at least three nontrivial solutions.

Theorem 2. Let N ≥ 4 and λk < a < λk+1. If f then, for λ small enough, (P ) has
at least three nontrivial solutions.

The major arguments of the proofs of our theorems are based on variational
methods. As it is well-known, we have to show some geometric conditions and
prove a compactness condition. Provided us with these tools, we obtain a negative
and a positive solution and the third one cames from linking theorem. In order to
do that, we follows some tricks used in [6, 14]. In the next section, we show the
(PS) condition for the energy functional. In the third section, we present the proofs
of theorems above.

2 The (PS) condition

We begin by showing the (PS) condition for Iλ.

Lemma 1. Let λ1 < a, 2 < p ≤ 2∗ and λ > 0. Then every (PS) sequence of Iλ is
bounded.

Proof. Let (un) be a (PS) sequence for Iλ, i.e., it satisfies

∣∣∣1
2

∫
|∇un|+ λ

q

∫
|un|q − a

2

∫
un

2 − b
p

∫
(u+

n )p
∣∣∣ ≤ C,(4)

∣∣∫ ∇un∇h + λ
∫
|un|q−2unh− a

∫
unh− b

∫
(u+

n )p−1h
∣∣ ≤ ǫn‖h‖, ∀ h ∈ H1

0 ,(5)

where ǫn → 0 as n →∞. By (4) and (5) we have

C + ǫn‖un‖ ≥
∣∣∣∣Iλ(un)−

1

2
〈I ′λ(un), un〉

∣∣∣∣

=

∣∣∣∣
(

λ

q
− λ

2

) ∫
|un|q +

(
b

2
− b

p

)∫
(u+

n )p

∣∣∣∣

≥
(

b

2
− b

p

) ∫
(u+

n )p.
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Since p > 2 we get

(6)

∫
(u+

n )p ≤ C + ǫn‖un‖.

We also have by (5),

(7) |〈I ′λ(un), u−n 〉| =
∣∣‖u−n ‖2 + λ|u−n |qq − a|u−n |22

∣∣ ≤ ǫn‖u−n ‖,

with u− = max {−u, 0}. It follows from (4), (6) and (7) that

(8)

1

2
‖u+

n ‖2 ≤
(

λ

2
− λ

q

) ∫
|un|q +

a

2

∫
(u+

n )2 +
b

p

∫
(u+

n )p +
1

2
|〈I ′λ(un), u

−
n 〉|+ C

≤ C

∫
(u+

n )p + ǫn‖u−n ‖+ C ≤ ǫn‖un‖+ ǫn‖u−n ‖+ C.

Suppose by contradiction that ‖un‖ → ∞. We first show that (u+
n ) is bounded in

H1
0 , so that assume also that ‖u+

n ‖ → ∞. By (8), (u−n ) is also unbounded. Let
vn = un/‖un‖. Since (vn) is bounded in H1

0 , there exists v ∈ H1
0 such that

vn ⇀ v in H1
0 , vn → v in Lr, ∀ 1 ≤ r < 2∗ and vn → v a.e. in Ω.

Again by (8) there exists δ > 0 satisfying

(9) ‖u−n ‖ ≥ δ‖u+
n ‖2

whenever n is large. Since

v+
n =

u+
n

‖un‖
=

u+
n

(‖u+
n ‖2 + ‖u−n ‖2)1/2

≤ u+
n

(‖u+
n ‖2 + δ2‖u+

n ‖4)1/2
,

we deduce that v ≤ 0. Moreover, by

v−n =
u−n
‖un‖

=
u−n

(‖u+
n ‖2 + ‖u−n ‖2)1/2

=
u−n
‖u−n ‖

· ‖u−n ‖
(‖u+

n ‖2 + ‖u−n ‖2)1/2
,

and (9), we have ‖v−n ‖ → 1. Thus, by (7),

(10) −λ
|u−n |qq
‖u−n ‖2

+ a
|u−n |22
‖u−n ‖2

→ 1.

We also note that by (9) and ‖v−n ‖ → 1 in H1
0 ,

u−n
‖u−n ‖

− u−n
‖un‖

=
u−n
‖un‖

( ‖un‖
‖u−n ‖

− 1

)
→ 0 in H1

0 .
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Hence we may exchange ‖u−n ‖ for ‖un‖ in (10). Recalling that q < 2, we obtain
|v−n |2 → 1/

√
a, then v 6= 0. We then take h = ϕ1 in (5) to obtain

∫
∇vn∇ϕ1 +

λ

‖un‖

∫
|un|q−2unϕ1 − a

∫
vnϕ1 −

b

‖un‖

∫
(u+

n )p−1ϕ1 → 0,

that is

(λ1 − a)

∫
vnϕ1 +

λ

‖un‖2−q

∫
|vn|q−2vnϕ1 −

b

‖un‖

∫
(u+

n )p−1ϕ1 → 0.

The second and third terms above go to zero, consequently,

(λ1 − a)

∫
vϕ1 = 0,

which is a contradiction, because v ≤ 0, v 6= 0 and λ1 < a, so that (u+
n ) is bounded.

Finally, suppose that ‖un‖ → ∞ and ‖u+
n ‖ ≤ C for all n ∈ N. Since p ≤ 2∗,

1

‖un‖

∫

Ω

(u+
n )p → 0.

On the other hand, by taking h = vn in (5) we obtain

a|vn|22 → 1,

so that vn → v in L2 with v 6= 0. Then by (5) we get
∫

Ω

∇v∇h− a

∫

Ω

vh = 0 for all h ∈ H1
0 ,

with v 6= 0 and v ≤ 0, which is a contradiction, because a is not the first eigenvalue.
Therefore, we conclude that (un) must be bounded in H1

0 .

In the subcritical case, 1 ≤ p < 2∗, it is well-known that the lemma above implies
that Iλ satisfies the (PS) condition at every level.

Lemma 2. Let λ1 < a and p = 2∗. For every λ > 0, Iλ satisfies the (PS) condition

at level c with c < b
2−N

2 S
N
2

N
.

Proof. Let (un) ⊂ H1
0 be a sequence satisfying

(11) Iλ(un) → c and |〈I ′λ(un), h〉| ≤ ǫn‖h‖, ∀h ∈ H1
0 ,

with ǫn → 0 as n → ∞. By Lemma 1 we have that (un) is bounded. Hence, by
passing to a subsequence, we may suppose that

(12)
un ⇀ u in H1

0 , un → u in L2,

un → u in Lq, un → u a.e. in Ω.
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Since (u+
n ) is bounded in H1

0 , from Gagliardo-Nirenberg Inequality it follows that
(u+

n ) is also bounded in L2∗ . By passing to a subsequence again, we have u+
n ⇀ u+

in L2∗ . Thus, u solves

(13)

{
−∆u = −λ|u|q−2u + au + b(u+)2∗−1 in Ω,

u = 0 on ∂Ω.

Note that by (13) we obtain

(14) Iλ(u) =

(
λ

q
− λ

2

)
|u|qq +

(
b

2
− b

2∗

)
|u+|2∗2∗ ≥ 0.

We denote vn = un − u. By the Brezis-Lieb’s Lemma

lim
n→∞

(|u+
n |pp − |v+

n |pp) = |u+|pp for all 1 ≤ p ≤ 2∗.

Moreover, by (12) we have vn → 0 in Lq and L2, so that

(15)

lim
n→∞

[Iλ(u) + Iλ(vn)] = lim
n→∞

[
‖u‖2 −

∫

Ω
∇un∇u +

1
2
‖un‖2 +

λ

q
(|u|qq + |vn|qq)

− a

2
(|u|22 + |vn|22)−

b

2∗
(|u+|2∗ + |v+

n |2
∗
)
]

= lim
n→∞

[
1
2
‖un‖2 +

λ

q
|un|qq −

a

2
|un|22 −

b

2∗
|u+

n |2
∗
]

= c.

On the other hand, by (11) and again Brezis-Lieb’s Lemma,

(16)

lim
n→∞

[
‖vn‖2 + λ|vn|qq − a|vn|22 − b|v+

n |2
∗

2∗
]

= lim
n→∞

[
〈I ′λ(un), un〉 − 2

∫

Ω

∇un∇u + 2‖u‖2 − 〈I ′λ(u), u〉
]

= 0.

Since vn → 0 in Lq and L2, we may suppose that

‖vn‖2 → d and b|v+
n |2

∗
2∗ → d.

By Sobolev’s Inequality, ‖vn‖2 ≥ S|v+
n |22∗ , consequently, d ≥ S(d/b)2/2∗ . If d = 0

the proof is concluded. Otherwise, d ≥ S
N
2 b

2−N
2 . Then by (14), (15) and (16) we

conclude
S

N
2 b

2−N
2

N
≤

(
1

2
− 1

2∗

)
d ≤ c <

b
2−N

2 S
N
2

N
,

which is a contradiction.
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3 Proof of Theorems

3.1 Existence of the nonnegative solution

Consider the functional I+
λ : H1

0 → R given by

(17) I+
λ (u) =

1

2

∫

Ω

|∇u|2 +
λ

q

∫

Ω

(u+)q − 1

2

∫

Ω

(u+)2 − 1

p

∫

Ω

(u+)p, u ∈ H1
0 .

It follows that I+
λ ∈ C1 and the critical points u+ of I+

λ satisfy u+ ≥ 0 and so are
critical points of Iλ as well, actually, (I+

λ )′(u+)[(u+)−] = −
∫
Ω
|∇(u+)−|2 = 0.

We will show that I+
λ satisfies the assumptions of the mountain pass theorem.

In a similar argument to proofs of Lemmas 1 and 2, we show the (PS) condition for
I+
λ .

Lemma 3. Let 2 < p ≤ 2∗. For all λ > 0, I+
λ satisfies the (PS) condition at level

c with c < b
2−N

2 S
N
2

N
.

Lemma 4. The trivial solution u ≡ 0 is a local minimizer for I+
λ , for all λ > 0.

Proof. It suffices to show that 0 is a local minimizer of I+
λ in the C1 topology (see

[3]). Then, for u ∈ C1
0(Ω) we have

I+
λ (u) =

1

2

∫

Ω

|∇u|2 +
λ

q

∫

Ω

(u+)q − a

2

∫

Ω

(u+)2 − b

p

∫

Ω

(u+)p

≥ λ

q

∫

Ω

|u|q − a

2

∫

Ω

u2 − b

p

∫

Ω

|u|p

≥
(λ

q
− a

2
|u|2−q

C0 − b

p
|u|p−q

C0

)∫

Ω

|u|q ≥ 0

whenever a
2
|u|2−q

C1
0

+ b
p
|u|p−q

C1
0
≤ λ

q
.

Lemma 5. There exists t0 > 0 such that I+
λ (t0ϕ1) ≤ 0, for all λ in a bounded set.

Proof. Denoting by ϕ1 the positive eigenfunction associated to λ1, we have, for t > 0,

I+
λ (tϕ1) =

t2

2

∫

Ω

|∇ϕ1|2 +
tqλ

q

∫

Ω

ϕq
1 −

at2

2

∫

Ω

ϕ2
1 −

tp

p

∫

Ω

ϕp
1

=
1

2
t2(λ1 − a)

∫

Ω

ϕ2
1 +

tqλ

q

∫

Ω

ϕq
1 −

tp

p

∫

Ω

ϕp
1

and, since λk < a < λk+1 and q < 2 < p, there exists a choice of t0 > 0 which proves
the lemma.
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Finally, define
c+
λ = inf

γ∈Γ+
sup

t∈[0,1]

I+
λ (γ(t)),

where
Γ+ = {γ ∈ C([0, 1], H1

0 ); γ(0) = 0, γ(1) = t0ϕ1}.
On the other hand, by the proof of the previous lemma we obtain

I+
λ (tϕ1) ≤

tqλ

q

∫

Ω

ϕq
1.

Then, if λ is small enough, c+
λ < b

2−N
2 S

N
2

N
, consequently, by the Mountain Pass

Theorem c+
λ is a critical value of I+

λ .

3.2 Existence of the nonpositive solution

In order to get the negative solution, consider the following functional
I−λ : H1

0 → R given by

(18) I−λ (u) =
1

2

∫

Ω

|∇u|2 +
λ

q

∫

Ω

(u−)q − a

2

∫

Ω

(u−)2.

Again, I−λ ∈ C1 and the critical points u− of I−λ satisfy u− ≤ 0 and so are critical
points of Iλ as well. We will apply once again the mountain pass theorem to obtain
a critical point of I−λ .

Lemma 6. The trivial solution u ≡ 0 is a local minimizer for I−λ , for all λ > 0.

Proof. It suffices to show that 0 is a local minimizer of I−λ in the C1 topology. Then,
for u ∈ C1

0 (Ω) we have

I−λ (u) =
1

2

∫

Ω

|∇u|2 +
λ

q

∫

Ω

(u−)q − a

2

∫

Ω

(u−)2 ≥ λ

q

∫

Ω

(u−)q − a

2

∫

Ω

(u−)2

≥
(λ

q
− a

2
|u−|2−q

C0

)∫

Ω

(u−)q ≥
(λ

q
− a

2
|u|2−q

C0

)∫

Ω

(u−)q ≥ 0,

whenever a
2
|u|2−q

C1
0
≤ λ

q
.

Lemma 7. There exists t0 > 0 such that I−λ (−t0ϕ1) ≤ 0, for all λ in a limited set.

Proof. We have, for t > 0,

I−λ (−tϕ1) =
t2

2

∫

Ω

|∇ϕ1|2dx +
tqλ

q

∫

Ω

ϕq
1dx− at2

2

∫

Ω

ϕ2
1 dx

=
1

2
t2(λ1 − a)

∫

Ω

ϕ2
1dx +

tqλ

q

∫

Ω

ϕq
1dx

and, since λk < a < λk+1 and q < 2, there exists a choice of t0 > 0 which proves the
lemma.
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As in the nonnegative solution case, we obtain a critical value

c−λ = inf
γ∈Γ−

sup
t∈[0,1]

I−λ (γ(t)),

where
Γ− = {γ ∈ C([0, 1]); γ(0) = 0, γ(1) = −t0ϕ1}.

In view of the proof of Lemma 7, we get the estimate

c−λ ≤ max
s∈[0,1]

I−λ (−st0ϕ1) ≤
tq0λ

q

∫

Ω

ϕq
1.

Then, if λ is small enough, c−λ < b
2−N

2 S
N
2

N
, consequently, by the Mountain Pass

Theorem, c−λ is a critical value of I−λ .

3.3 Existence of the third solution

Denote Vk = 〈ϕ1, · · · , ϕk〉 and Wk = V ⊥
k . Consider the functions introduced in

[14],

ζm =





0 if x ∈ B1/m,

m|x| − 1 if x ∈ Am = B2/m \B1/m,

1 if x ∈ Ω \B2/m,

where we may suppose without loss of generality that 0 ∈ Ω. Let ϕm
i = ζmϕi,

V m
k = 〈ζmϕ1, · · · , ζmϕk〉

and W m
k = (V m

k )⊥. For each m ∈ N, take a positive cut-off function η ∈ C∞c (B1/m)
and define

ϕm
k+1 = ηϕk+1.

It follows from definitions above that

(19) suppu ∩ suppϕm
k+1 = ∅

whenever u ∈ V m
k . We use the following lemma from [14].

Lemma 8. As m →∞ we have

ϕm
i → ϕi in H1

0 , and max
{u∈V m

k ;
∫

u2=1}
‖u‖2 ≤ λk + ckm

2−N .

An easy consequence of this result is the following decompostion of H1
0 ,

Corollary 1. For m large enough

V m
k ⊕Wk = H1

0 .

9



Lemma 9. There exist α > 0 and ρ > 0 such that

Iλ(u) ≥ α

whenever u ∈ Wk and ‖u‖ = ρ.

Proof. Note that, if u ∈ Wk we have

Iλ(u) =
1

2

∫
|∇u|2 +

λ

q

∫
|u|q − a

2

∫
|u|2 − b

p

∫
(u+)p

≥
(

1

2
− a

2λk+1

)
‖u‖2 − b

q
|u|pp

≥ ‖u‖2(A−B‖u‖p−2),

with A, B > 0. Then it suffices to take ρ < (A/B)
1

p−2 .

Lemma 10. Given λ0 > 0, there exist m0 ∈ N and R > ρ such that

Iλ(u) ≤ λ

q

∫
|u|q,

whenever u ∈ ∂Qm, where Qm = (BR ∩ V m
k ) ⊕ [0, Rϕm

k+1], m ≥ m0 and λ ≤ λ0.
Henceforth ∂ means the boundary relative to subspace V m

k .

Proof. Let m large enough and ak < a be such that

(20) λk + ckm
2−N ≤ ak < a.

Initially, let u ∈ V m
k , by Lemma 8 and (20) we have

(21)

Iλ(u) =
1

2

∫
|∇u|2 +

λ

q

∫
|u|q − a

2

∫
u2 − b

p

∫
(u+)p

≤
(

1

2
− a

2ak

) ∫
|∇u|2 +

λ

q

∫
|u|q − b

p

∫
(u+)p

≤ λ

q

∫
|u|q.

Also,

(22)
Iλ(rϕm

k+1) =
r2

2

∫
|∇ϕm

k+1|2 +
λrq

q

∫
|ϕm

k+1|q −
ar2

2

∫
(ϕm

k+1)
2 − rpbp

p

∫
(ϕm

k+1
+)p

≤ r2

2

∫
|∇ϕm

k+1|2 +
λ0r

q

q

∫
|ϕm

k+1|q −
rpbp

p

∫
(ϕm

k+1
+)p.

Since ϕm
k+1 → ϕk+1 in H1

0 as m →∞ and ϕk+1 changes of signal, there exist m0 ∈ N
and R > 0 such that

(23) Iλ(Rϕm
k+1) ≤ 0 for all m ≥ m0.

10



Then, by (19), (21) and (23) we obtain

(24) Iλ(u) ≤ λ

q

∫
|u|q,

whenever u ∈ V m
k ∪ (V m

k ⊕Rϕm
k+1). By (22), there exists β > 0 satisfying

(25) Iλ(rϕ
m
k+1) ≤ β

for all m ≥ m0 and r ≥ 0. Since a > λk, we may take R > 0 such that

(26) Iλ(u) ≤
(

1

2
− a

2λk

)
‖u‖2 +

λ

q

∫
|u| ≤ −β +

λ

q

∫
|u|q.

Thus, by (19), (25) and (26) we get

(27) Iλ(u + rϕm
k+1) = Iλ(u) + Iλ(rϕ

m
k+1) ≤

λ

q

∫
|u|q

for all m ≥ m0 and u ∈ ∂(BR ∩ V m
k ). Therefore, by (24) and (27) we conclude the

proof.

Conclusion of Theorem 1: subcritical case

Let α given by the Lemma 9. Take λ enough small in order that

λ

q

∫
|u|q ≤ µ < α

for all u ∈ ∂Qm. Then by Lemma 10 we have

Iλ(u) ≤ µ < α

whenever u ∈ ∂Qm and m ≥ m0. Applying the Linking Theorem, Iλ possesses a
critical point u at level c, where

cλ = inf
Γ

max
u∈Qm

Iλ(h(u))

and
Γ = {h ∈ C(Qm, H1

0 ); h = Id on ∂Qm}.
Finally, since cλ ≥ α, Iλ(u) ≥ α > 0 and c±λ → 0 as λ → 0. Therefore, if λ is small
enough c±λ < α ≤ cλ, and, consequently, u may to be neither of the critical points
found above for I+

λ and I−λ .

11



Conclusion of Theorem 2: critical case

For the critical case, we consider the family of functions taken from [4]

uǫ(x) =
[N(N − 2)ǫ2]

N−2
4

[ǫ2 + |x|2]N−2
2

, ǫ > 0.

We recall that uǫ satisfies ‖uǫ‖2 = ‖uǫ‖2∗
2∗ = SN/2 for all ǫ > 0. Let um

ǫ = ηuǫ,
where η is given as above, and Qǫ

m = (BR ∩ V m
k )⊕ [0, Rum

ǫ ]. Replacing um
ǫ by ϕm

k+1

in Lemma 10, we obtain

Iλ(u) ≤ λ

q

∫

Ω

|u|q for all u ∈ ∂Qǫ
m

whenever m is large. Therefore, to conclude the proof of Theorem 2, it remains to
show that

sup
u∈Qǫ

m

Iλ(u) <
b

2−N
2 SN/2

N

for ǫ and λ small enough.

Lemma 11. There exist m0 > 0, λ0 > 0 and ǫ0 > 0 such that

sup
u∈Qǫ

m

Iλ(u) <
b

2−N
2 SN/2

N

for all m ≥ m0, λ < λ0 and ǫ < ǫ0.

Proof. We write

Iλ(u) = J(u) +
λ

q
|u|qq, where J(u) :≡ 1

2
‖u‖2 − a

2
|u|22 −

b

2∗
|u+|2∗2∗ .

We note that it is sufficient to prove that there exist m0 > 0 and ǫ0 > 0 such that

sup
u∈Qǫ

m

J(u) <
b

2−N
2 SN/2

N

for all m ≥ m0 and ǫ < ǫ0. Let u = v + tum
ǫ ∈ Qǫ

m. We first observe that

max
t≥0

J(tum
ǫ ) =

b
2−N

2

N

(‖um
ǫ ‖2 − a|um

ǫ |22
|um

ǫ |22∗

)N/2

.

Fixe m0 > 0 such that λk + ckm
2−N
0 ≤ σ < a. For m ≥ m0, we have

J(v) =
1

2
‖v‖2 − a

2
|v|22 −

1

2∗
|v+|2∗2∗ ≤

1

2
‖v‖2 − a

2
|v|22 ≤

σ

2
|v|22 −

a

2
|v|22.

12



Hence
J(u) = J(v) + J(tum

ǫ ) ≤ J(tum
ǫ ).

Therefore, it remains to prove that

‖um
ǫ ‖2 − a|um

ǫ |22
|um

ǫ |22∗
< S

whenever ǫ is small. But this follows from identities

‖um
ǫ ‖2 − a|um

ǫ |22
|um

ǫ |22∗
=

{
S − adǫ2| ln ǫ| + O(ǫN−2) if N = 4,

S − adǫ2 + O(ǫN−2) if N ≥ 5,

for their details see [23, Page 52].
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