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In this paper the Wiener–Hopf (or Riemann–Hilbert) factorization of a class of symbols
important in applications is studied. The symbols in this class involve outer functions
that appear in applications such as diffraction by strip gratings and infinite-dimensional
integrable systems. The method proposed is based on the reduction of a vector Riemann–
Hilbert to a scalar problem on an appropriate Riemann surface. Two examples are given
leading to the Riemann sphere and to an elliptic curve.
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1. Introduction

Riemann–Hilbert problems appear in many applications, in particular, in diffraction theory and integrable systems – both
continuous and discrete [2–5,9,11,12,15]. The solution of these problems involves the Wiener–Hopf (or Riemann–Hilbert)
factorization of matrix-valued functions [6,7]. Contrary to the case for the factorization of scalar-valued functions no general
method exists in the matrix case, even for 2 × 2 matrix-valued functions. A large class of 2 × 2 matrix-valued functions
was studied in [6], where it is shown that the matrix factorization problem for this class is equivalent in some sense to
a scalar Riemann–Hilbert problem in an appropriate Riemann surface. The factorization problem that arises in the study
of finite-dimensional integrable systems can be solved through this theory [4,8]. However, for infinite-dimensional systems,
both continuous and discrete, and in diffraction theory for strip gratings [2,3], the corresponding symbols (matrix functions)
do not belong to the class treated in [6].

The class of symbols we consider in this paper appears in the study of the KdV equation [10,14] and in the study
of discrete integrable systems such as the Toda lattice [9] and also in the solution of some diffraction problems [2,3]. In
both cases the explicit solution of the factorization problem leads to obtaining a family of solutions to the corresponding
integrable systems [10,14], which is the main objective of many papers on the subject.

This paper is organized as follows. In Section 2 we outline the method showing how the scalar Riemann–Hilbert problem
on an appropriate Riemann surface appears. In Section 3 we consider an example where the Riemann surface involved is
the Riemann sphere. In Section 4 we study an example in which the Riemann surface is an elliptic curve and where several
aspects of complex analysis on Riemann surfaces come into play. Both in Sections 3 and 4 the explicit factors of the symbol’s
factorization are given.

2. Outline of the method

To begin with we define the class of symbols whose factorization will be studied in this and the following sections.
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Notation 2.1. By Cα (0 < α < 1) we denote the space of Hölder continuous functions on the circle S1 = ∂D, where D ⊂ C

is an open disk centered at the origin. As is known this space possesses the direct sum decomposition Cα = C+
α ⊕ C−

α ,
where C+

α denotes the subspace of functions admitting a holomorphic extension to D and C−
α denotes the subspace of

functions with holomorphic extension to C \D vanishing at infinity.

Definition 2.2. Let ρ = √
pn where pn is a polynomial of even degree with no zeros outside an open disk D ⊂ C centered

at the origin and let E denote a function such that E and E−1 belong to C+
α (0 < α < 1 and S1 = ∂D). We denote by Cα

the class of matrix-valued functions of the form

G =
[

1 ρE
−ρ−1 E−1 1

]
, (2.1)

with ρ , E defined as above.

Remark 2.3. The condition that E and E−1 belong to C+
α implies that E is an outer function [13, Chapter 17].

Remark 2.4. The condition that pn has even degree is necessary to guarantee that we can choose a continuous branch of√
pn on S1 = ∂D. The function ρ denotes one of the two possible such choices.

Definition 2.5. A matrix G ∈ C2×2
α is said to possess a bounded Wiener–Hopf (or Riemann–Hilbert) factorization if it has

a representation of the form

G = G−DG+ (2.2)

with [G±]±1 ∈ [C±
α ]2×2 and D = diag(zk1 , zk2 ), ki ∈ Z with k1 � k2. The factorization is said to be canonical if D = I2

(identity in C
2×2).

In what follows we concentrate on the calculation of the factors of a canonical factorization although a condition on its
existence will appear in the analysis. Keeping in mind the relation GG−1+ = G− we see that the factors in (2.2) for D = I2
can be calculated by solving the vector Riemann–Hilbert problem

Gφ+ = φ− (2.3)

which yields the columns in the factors G−1+ and G− for appropriate normalization conditions (cf. Remark 2.6 at the end of
this section).

The vector Riemann–Hilbert problem (2.3) can be written for G of the class Cα as

φ+
1 + ρEφ+

2 = φ−
1 ,

φ+
1 − ρEφ+

2 = −ρEφ−
2 . (2.4)

Consider now the hyperelliptic Riemann surface Σ obtained from the plane algebraic curve given by the equation

w2 = pn(ξ) (2.5)

by adding two “points at infinity” (for general reference on Riemann surfaces see e.g. [16]).
This surface comes equipped with its hyperelliptic involution σ given by (ξ, w) �→ (ξ,−w) and two meromorphic func-

tions (ξ, w) �→ ξ and (ξ, w) �→ w – denoted by π1 and π2, respectively. Often we abuse notation and denote these functions
by ξ and w , respectively.

Also, for a meromorphic function f defined on a region U ⊂ C we identify it with the meromorphic function π∗
1 f :=

f ◦ π1 on π−1
1 (U ). Under this identification we can write any meromorphic function g on π−1

1 (U ) uniquely as

g = gev + wgodd, (2.6)

with gev and godd meromorphic on U : we have π∗
1 gev = (g + σ ∗ g)/2 and π∗

1 godd = (g − σ ∗ g)/2w .
Bearing in mind the condition on the zeros of pn it follows that the open set obtained by adding the points at infinity

to π−1
1 (C \D) is the union of two disjoint regions Ω−

1 , Ω−
2 . We choose the labeling so that, for ξ ∈ S1, we have (ξ,ρ(ξ)) ∈

∂Ω−
1 . Also, we write ∞i for the point at infinity belonging to Ωi .
From this and (2.4) it follows that the Riemann–Hilbert problem (2.3) on S1 is transformed to a Riemann–Hilbert prob-

lem on the contour Γ = π−1
1 (S1), which we write in the form

φ+
1 + w Eφ+

2 = hψ−, (2.7)

with
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ψ− =
{

φ−
1 on Ω−

1 ,

φ−
2 on Ω−

2 ,
h =

{
1 on Γ1,

−ρE on Γ2.
(2.8)

Here Γi = ∂Ω−
i , i = 1,2, so that Γ is the composite contour Γ1 + Γ2.

Remark 2.6. In Section 4 we will need to consider an orientation on Γ = Γ1 + Γ2. The orientation on Γi we will consider
there is not the one induced from Ω−

i . As an oriented contour, we define Γ = ∂Ω+ , where Ω+ = Σ \ Ω−
1 ∪ Ω−

2 .

Notation 2.7. We denote by C±
α (Γ ), 0 < α < 1, the space of Hölder continuous functions on Γ with holomorphic extensions

to Ω+ and Ω−
1 ∪ Ω−

2 .

We may now state the following result.

Proposition 2.8. Let φ = (φ+
1 , φ+

2 ) be a solution to the Riemann–Hilbert problem (2.4) on S1 . Then the function ψ+ := φ+
1 + w Eφ+

2
is a solution of the scalar Riemann–Hilbert on Γ ⊂ Σ

ψ+ = hψ− (
ψ± ∈ C±

α (Γ )
)

where h is given in (2.8).

Proof. It is a consequence of the above argument. �
Next we state a converse to Proposition 2.8.

Proposition 2.9. Let ψ = (ψ+,ψ−) be a solution to the Riemann–Hilbert problem

ψ+ = hψ− (
ψ± ∈ C±

α (Γ )
)

on the contour Γ = Γ1 + Γ2 on Σ with

h =
{

1 on Γ1,

−ρ(ξ)E(ξ) on Γ2.

Then the functions

φ+
1 = ψ+

ev, φ−
1 = ψ−∣∣

Ω−
1
,

φ+
2 = E−1ψ+

odd, φ−
2 = ψ−∣∣

Ω−
2

(cf. (2.6)) satisfy the Riemann–Hilbert problem (2.4).

Proof. We have

2φ+
1 = 2ψ+

ev = hψ− + σ ∗(hψ−)
= φ−

1 − ρEφ−
2 ,

2φ+
2 = 2E−1ψ+

odd = ρ−1 E−1(hψ− − σ ∗(hψ−))
= ρ−1 E−1(φ−

1 + ρEφ−
2

)
.

From the above relations it follows that

φ+
1 + ρEφ+

2 = φ−
1 ,

φ+
1 − ρEφ+

2 = −ρEφ−
2 ,

as stated. �
Remark 2.10. Although in the following analysis we concentrate on calculating the factors of a canonical factorization it
should be noted that the method to be developed actually applies to the study of the solvability and calculation of explicit
solutions to Eq. (2.3). In particular, since ind(G) = 0 the existence of nontrivial solutions to (2.3) subject to the condition
φ−

i (∞) = 0, i = 1,2, implies that the factorization is noncanonical. The dimension of the space of solutions gives, then, the
partial indices of the factorization.



188 A.F. dos Santos, P.F. dos Santos / J. Math. Anal. Appl. 413 (2014) 185–194
Fig. 1. The w plane.

3. Example 1 (Riemann sphere)

In this section we study the factorization problem for the symbol (2.1), where we take

E(ξ) = exp(ξ), ρ(ξ) =
(

ξ − α

ξ + α

) 1
2

, |α| < 1 (3.1)

on the unit circle S1. Here ρ is the square root of a rational function instead of a polynomial for the sake of simplicity of
the computations that follow.2

In this case the Riemann surface considered in the previous section is isomorphic to the Riemann sphere. Thus taking

w =
√

ξ − α

ξ + α
, Re w > 0 (3.2)

the Riemann sphere is realized as the closure of the two half-planes Re w > 0 and Re w < 0. We will denote by Ω1 and Ω2

the components of π−1
1 C \D in the half-planes Re w > 0 and Re w < 0, respectively. The general picture is represented in

Fig. 1 (we keep the notation of Section 2).
Thus we have to solve the scalar Riemann–Hilbert problem on Γ = Γ1 + Γ2 (see (2.7))

φ+
1 + w Eφ+

2 = hψ− (3.3)

where

ψ−(w) =
{

φ−
1 (ξ), w ∈ Ω−

1 ,

φ−
2 (ξ), w ∈ Ω−

2 ,
(3.4)

h(w) =
{

1, w ∈ Γ1,

−w E(w), w ∈ Γ2,
(3.5)

and, as in Section 2, we identify the functions φ+
i and E in the complex plane with the “even” functions π∗

1 φ+
1 , π∗E they

determine on Σ (see (2.6)). For example, noting that ξ = −α w2+1
w2−1

by (3.2), we set

E(w) = exp

(
−α

w2 + 1

w2 − 1

)
.

To solve (3.3) our first task is to find a factorization for h relative to the contour Γ .
This is easily obtained by noting that

E(w) = e−α exp

(
− α

w − 1

)
exp

(
− α

w + 1

)
.

Then for w ∈ Γ2 we have

h(w) = h−(w)h+(w),

where

2 The choice of a branch of the square root in the definition of ρ will be given in the computations below.
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h−(w) = −we−α exp

(
− α

w − 1

)
,

h+(w) = exp

(
α

w + 1

)
.

For w ∈ Γ1 we write

h(w) = 1 = h̃−(w)h+(w),

which yields

h̃−(w) = exp

(
− α

w + 1

)
.

We summarize these results in the proposition that follows.

Proposition 3.1. The function h defined in (3.5) has the following factorization relative to the contour Γ

h(w) = h−(w)h+(w)

where

h+(w) = exp

(
α

w + 1

)
, w ∈ Ω+,

h−(w) =
{

exp( α
w+1 ), w ∈ Ω−

1 ,

−we−α exp(− α
w−1 ), w ∈ Ω−

2 .

We are now in a position to obtain a solution to the Riemann–Hilbert problem (3.3).
Using the above factorization of h we write Eq. (3.3) in the form(

w−1φ+
1 + Eφ+

2

)/
h+ = h−w−1ψ−.

Taking into account that the left-hand side has a pole at w = 0 we have(
w−1φ+

1 + Eφ+
2

)/
h+ = h−w−1ψ− = γ0 + γ1 w−1 (3.6)

where γ0, γ1 are constants.
From (3.6) we get

φ+
1 = (

γ0h+w + γ1h+)
ev = γ0h+

oddρ
2 + γ1h+

ev,

φ+
2 = E−1(γ0h+w + γ1h+)

odd = γ0 E−1h+
ev + γ1 E−1h+

odd, (3.7)

φ−
1 = w

(
γ0 + γ1 w−1)/h−∣∣

Ω−
1

= (γ0 w + γ1)exp

(
− α

w + 1

)
,

φ−
2 = w

(
γ0 + γ1 w−1)/h−∣∣

Ω−
2

= −(
γ0 + γ1 w−1)eα exp

(
α

w − 1

)
. (3.8)

To obtain from the above relations two linearly independent solutions to our original Riemann–Hilbert problem,
Gφ+ = φ− , we introduce the normalizations: (i) φ−

1 (∞) = 0; (ii) φ−
2 (∞) = 0.

Noting that ξ = ∞ corresponds to w = 1 if w ∈ Ω−
1 and to w = −1 if w ∈ Ω−

2 , we get

φ−
1 (∞) = 0 ⇒ γ1 = −γ0,

φ−
2 (∞) = 0 ⇒ γ1 = γ0.

We may now state the explicit factorization for the symbol given in (2.2). Note that, apart from the constant γ0, which for
convenience we take to be equal to 2, the factorization is unique (i.e., canonical D = I2 in (2.2)).

Proposition 3.2. The symbol G given in (2.1) has a canonical factorization in Cα (0 < α < 1) with factors given by G−1+ = [φ+
i j ],

G− = [φ−
i j ], where

φ+
1 j = ρ

[
h+(ρ) − h+(−ρ)

] + (−1) j−1[h+(ρ) + h+(−ρ)
]
,

φ+ = E−1[h+(ρ) + h+(−ρ) + (−1) j−1ρ−1(h+(ρ) − h+(−ρ)
)]

.
2 j
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For the minus factor we have

φ−
1 j = (

ρ + (−1) j−1)/h−∣∣
Ω−

1
(ρ) = (

ρ + (−1) j−1)exp

(
α

ρ + 1

)
,

φ−
2 j = (

1 − ρ−1(−1) j−1)/h−∣∣
Ω−

2
(−ρ) = (

1 − ρ−1(−1) j−1)eαρ exp

(
α

ρ − 1

)
.

4. Example 2 (elliptic curve)

In this section we study the factorization of a symbol of the form (2.1) where ρ is given by

ρ(z) =
√(

1 − z2
)(

1 − z2κ2
)
, (4.1)

where 0 < κ < 1 and we choose the branch of the square root that is continuous on C \ {z ∈R | 1 � |z| � 1/κ} and satisfies
ρ(0) = 1.

In this case, the Riemann surface to consider is the elliptic curve defined by

w2 = p(z) = (
1 − z2)(1 − z2κ2), (4.2)

which we denote by Σ . To satisfy the conditions of Definition 2.2 we let D ⊂ C be a disk of radius greater than 1/κ and,
as before, we denote S1 = ∂D.

According to the outline of the method given in Section 2 we have to study a scalar Riemann–Hilbert problem on Γ ⊂ Σ

of the form (2.5), i.e.,

φ+
1 + w Eφ+

2 = hψ−, (4.3)

in which φ+
1 , φ+

2 and E are functions on D ⊂ C and Γ = π−1
1 (S1) = Γ1 + Γ2. As explained in Section 2, the left-hand side

of (4.3) is the general form of a meromorphic function on π−1
1 (D) (see (2.6)).

The function h is given by

h(z, w) =
{

1, (z, w) ∈ Γ1,

w E(z), (z, w) ∈ Γ2.
(4.4)

As in Section 3 we consider the case E(z) := exp(z).
To solve (4.3) we have to study the factorization of h relative to the contour Γ .
A general method to calculate the factorization of h is given in [6]. It involves computing P±

Γ log h where P±
Γ are com-

plementary projections given by (see [6, Theorem 3.4 and Appendix A])

(
P±

Γ φ
)
(z, w) = ± 1

4π i

∫
∂Ω+

w + η

η

φ(ξ,η)

ξ − z
dξ, (z, w) ∈ Ω±,

where Ω− = Ω−
1 ∪ Ω−

2 , Ω+ = Σ \ Ω− so that Γ = ∂Ω+ (with the boundary orientation).
From (4.4) we see that log h = 0 on Γ1, so P±

Γ log h is given by

(
P±

Γ log h
)
(z, w) = ∓ 1

4π i

∫
∂Ω−

2

w + η

η

log h(ξ,η)

ξ − z
dξ, (4.5)

where ∂Ω−
2 has the boundary orientation.

Instead of calculating the value of the above expressions we compute the simpler expressions P±
Γ h̃, where

h̃(z, w) =
{

1, (z, w) ∈ Γ1,

exp(z), (z, w) ∈ Γ2
(4.6)

from which we shall obtain the factorization of h. For P±
Γ log h̃ we get

(
P+

Γ log h̃
)
(z, w) = 1

4π i

∫
∂D

ξ

ξ − z
dξ − w

4π i

∫
∂Ω−

2

ξ

ξ − z

dξ

η

= z

2
, (z, w) ∈ Ω+, (4.7)

where we used the fact that z ∈ D.
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Fig. 2. Image of Ω+ and Ω− under the Abel–Jacobi map.

We now calculate P−
Γ log h̃. We have from (4.5)

(
P−

Γ log h̃
)
(z, w) = 1

4π i

∫
∂Ω−

2

η + w

η

log h̃(ξ,η)

ξ − z
dξ, (z, w) ∈ Ω−

= 1

4π i

∫
∂Ω−

2

η + w

η

ξ

ξ − z

dξ

η

= − 1

4π i

∫
∂D

ξ

ξ − z
dξ + w

4π i

∫
∂Ω−

2

ξ

ξ − z

dξ

η
(4.8)

where the first term is zero since z ∈ C \ D. For the second term we note that the form ξ
(ξ−z)

dξ
η has a pole at pz :=

(z,−χ w) ∈ Ω−
2 , where χ = 1 for (z, w) ∈ Ω−

1 and χ = −1 for (z, w) ∈ Ω−
2 . Using the local parameter ξ at pz , we obtain

w

4π i

∫
∂Ω−

2

ξ

ξ − z

dξ

η
= w

2
Res

(
ξ

ξ − z

dξ

η
;pz

)

= − zχ

2

= − w

2z
+ w − z2χ

2z
. (4.9)

Note that the term [w − z2χ ]/2z in (4.9) is a minus function, i.e., it extends holomorphically to Ω− . Hence we will focus
our attention on the first term.

In Appendix A we give the factorization of exp(− w
2z ). It has the form

g = exp

(
− w

z

)
= g−rg+, (4.10)

where g± are invertible in C±
α (Γ ) and r is a rational function on Σ . We will not need explicit expressions for the fac-

tors g− , g+ right now (but these are given in Appendix A below). The description of the rational factor r requires the
complete elliptic integrals

K :=
1∫

0

dξ√
(1 − ξ2)(1 − κ2ξ2)

, K′ :=
1/κ∫
1

dξ√
(ξ2 − 1)(1 − κ2ξ2)

,

and the Abel–Jacobi map A:Σ →C/(Z+ τ ·Z); p �→ 1
4K

∫ p
01

dz
w (where τ = K′i/2K).

The rational factor r is determined by its divisor of zeros and poles as given in Appendix A: (i) r has simple zeros
at ∞1, 01 and simple poles at q+ ∈ Ω+ and q− ∈ Ω−; (ii) A(q+) = −1/4K and A(q−) = 1/4K + τ/2 (see Fig. 2).

Remark 4.1. It is easy to check that A(p) ∈ R
3 iff p = (z, w) with z ∈ [−1,1], hence we always have A−1(−1/4K) ⊂ Ω+ .

But in order to obtain A−1(1/4K + τ/2) ∈ Ω− we need to assume that the radius of D is close enough to 1/κ , which is
always possible since G has no singularities outside the disk of radius 1/κ (see Fig. 2).

3 We will frequently abuse notation by writing expressions such as A(p) = z instead of A(p) ≡ z mod Z+ τ ·Z.
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We may now summarize the above results.

Proposition 4.2. The function h̃ given by (4.6) has the following factorization relative to Γ ⊂ Σ

h̃ = h̃+rh̃−,

where r is a rational function on Σ with simple zeros at ∞1 , 01 and simple poles at points q+ ∈ Ω+ and q− ∈ Ω− such that
A(q+) = −1/4K, A(q−) = 1/4K + τ/2. The factors h̃± are given by

h̃+(z, w) = exp

(
z

2

)
g+,

h̃−(z, w) = exp

[
w − z2χ

z

]
g−,

where g+ , g− are the invertible factors in (4.10) (see Definition A.1 for explicit formulas).

We are now in a position to study the solutions to Eq. (4.3). Note that from (4.4) and Proposition 4.2 we have

w−1h = h0h̃ = h0h̃+rh̃−,

where h0 is a minus function given by

h0(ξ, w) =
{

w−1, (ξ, w) ∈ Γ1,

1, (ξ, w) ∈ Γ2.

Then we have, from (4.3)(
h̃+)−1(

w−1φ+
1 + Eφ+

2

) = rh0h̃−ψ− = R, (4.11)

where R is a rational function on Σ .
To determine R we have to identify its divisor of zeros and poles. From Eq. (4.11) we see that R has:

• 4 simple poles: at (±1,0), (±1/κ,0) ∈ Ω+;
• 1 triple zero at ∞1 coming from the factors h0 and r in (4.11);
• 1 simple pole at q− coming from the factor r in (4.11);
• 1 zero p1 that, by normalization, we can impose in Ω+;
• 1 remaining zero p2 determined by Abel’s relation:

A(p2) ≡ A(−1/κ,0) + A(−1,0) + A(1,0) + A(1/κ,0) + A
(
q−) − 3A(∞1) − A(p1).

From this we conclude that R(p) = R̃(A(p)) where R̃(z) is the following elliptic function:

R̃(z) = ϑ3
1 (z − τ

2 )ϑ1(z − z1)ϑ1(z − z2)

ϑ1(z − 1
4 )ϑ1(z + 1

4 )ϑ1(z − 1
4 − τ

2 )ϑ1(z + 1
4 − τ

2 )ϑ1(z − 1
4K − τ

2 )
;

here ϑ1(z) = ϑ1(z;τ ) is the theta function of characteristic (1,1):

ϑ1(z;τ ) =
∑
n∈Z

exp

(
π i

(
n + 1

2

)2

τ + 2π i

(
n + 1

2

)(
z + 1

2

))
,

z1 = A(p1) is a parameter that we fix, and z2 is obtained imposing equality in Abel’s relation: z2 = 1
4K − z1 (see e.g. [1]).

From (4.11) and Proposition 4.2 we now obtain

w−1φ+
1 + Eφ+

2 = h̃+R = exp

(
z

2

)
g+R ⇒

⎧⎪⎪⎨
⎪⎪⎩

φ+
1 = p(z)exp

(
z

2

)(
g+R

)
odd,

φ+
2 = exp

(
− z

2

)(
g+R

)
ev.

Remark 4.3. As noted in Remark 2.10 we can use the above analysis to investigate the existence of noncanonical factoriza-
tions. This is done by examining the space of solutions to (4.11) imposing on R two additional zeros (at ∞1 and ∞2) and
dropping the fourth condition above (R(p1) = 0). It follows that such a rational function must be zero (otherwise its divisor
would not satisfy Abel’s relation), hence the factorization is canonical.
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Fig. 3. Basis of H1(Σ;Z) and the path c from 01 to 1. The dashed line denotes an arc lying on the second sheet.

Remark 4.4. If in the example we replace ρ(ξ) by �(ξ) = (ξ − α)ρ(ξ), α ∈ D, it can be seen that the factorization is
noncanonical. This is a consequence of the fact that � introduces two poles in the left-hand side of (4.11) resulting in
a rational function R that is allowed to have up to seven poles with only five prescribed zeros. From the Riemann–Roch
theorem it follows that the space of such rational functions has dimension 2, hence the factorization is noncanonical.
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Appendix A. Factorization of exp(− w
2z )

In this appendix we describe the main steps needed to compute the factorization of the function exp(− w
2z ). The compu-

tation follows closely that of [6, Appendix B], where more details are given.
As in [6, Appendix B], we consider the basis {a,b} for the homology group H1(Σ;Z) depicted in Fig. 3. In this figure the

solid lines denote paths lying on the first sheet and dashed line denotes an arc on the second sheet.4

Consider also the meromorphic forms

γ+ =
(
κ2z2 − K − E

K

)
dz

w
, γ− =

(
z−2 − K − E

K

)
dz

w

where E is the complete elliptic integral
∫ 1

0

√
(1 − κ2x2)/(1 − z2)dz.

It can easily be checked that γ+ is holomorphic on Ω+ (with poles at ∞1, ∞2) and γ− is holomorphic on Ω− (with
poles at 01, 02). A direct computation gives d( w

z ) = γ+ − γ− and∫
a

γ+ =
∫
a

γ− = 0,

∫
b

γ+ =
∫
b

γ− = π i

K
(A.1)

(see [6, Appendix B]).
We can now introduce the following definition.

Definition A.1. Define

g+(p) = exp

(
−1

2

p∫
1

γ+

)
ϑ1(A(p) − τ

2 − 1
4K )

ϑ1(A(p) − τ
2 )

,

g−(p) = exp

(
1

2

p∫
1

γ−

)
ϑ1(A(p) + 1

4K )

ϑ1(A(p))

where 1 = (1,0) ∈ Σ and the path used to compute A(p) is obtained by composing the path used to compute the integrals
on right-hand sides (the same for g+ and g−) with the path c: t �→ (t,+√

p(t) ) ∈ Σ , t ∈ [0,1], from 01 to 1 (see Fig. 3).

Remark A.2. Using (A.1) and ϑ1(u +n +mτ ) = exp(−2π i( 1
2 m2 +mu))ϑ1(u) it is easily seen that the expressions above yield

well-defined functions g+ , g− , holomorphic on Ω+ and Ω− , respectively.

4 The i-th sheet is the component of Σ \ {(z,±√
p(z) ) | 1 � |z| � 1/κ} ∪ {∞1,∞2} containing Ω−

i \ {∞i}.
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From d( w
z ) = γ+ − γ− it follows that

exp

(
− w

2z

)
= g+rg−

where r is the rational function on Σ given by the following quotient of theta functions

r(p) = ϑ1(A(p) − τ
2 )ϑ1(A(p))

ϑ1(A(p) − τ
2 − 1

4K )ϑ1(A(p) + 1
4K )

.

Denoting by q+ = A−1(−1/4K) ∈ Ω+ , q− = A−1(1/4K + τ/2) ∈ Ω− and noting that A(01) = 0, A(∞1) = τ/2 it follows
that r has simple zeros at ∞1, 01 and simple poles at q± , as stated in Section 3 (see Fig. 2).
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