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1. Introduction

Let Y be a compact, n-dimensional (n even), locally symmetric Riemannian manifold with negative sectional curvature
given by Y = Γ \G/K = Γ \X , where G is a connected semisimple Lie group of real rank one, K is a maximal compact
subgroup of G and Γ is a discrete co-compact torsion free subgroup of G .

We require G to be linear in order to have complexification available.
In [3], Bunke and Olbrich studied the zeta functions of Selberg and Ruelle associated with a locally homogeneous vector

bundle of the unit sphere bundle of Y . It is well known that the classical Selberg zeta function is an entire function of order
two (see, [6]). The main purpose of this paper is to give an analogous result for the zeta functions considered in [3].

2. Preliminaries

In the sequel we follow the notation of [3].
Let g = k ⊕ p be the Cartan decomposition of the Lie algebra g of G , a a maximal abelian subspace of p and M the

centralizer of a in K with Lie algebra m. We normalize the Ad (G)-invariant inner product (.,.) on g to restrict to the metric
on p. Let S X = G/M be the unit sphere bundle of X . Hence SY = Γ \G/M .

Let Φ(g,a) be the root system and W = W (g,a) ∼= Z2 its Weyl group. Fix a system of positive roots Φ+(g,a) ⊂ Φ(g,a).
Let

n =
∑

α∈Φ+(g,a)

nα
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be the sum of the root spaces corresponding to elements of Φ+(g,a). The decomposition g = k⊕ p⊕ n corresponds to the
Iwasawa decomposition of the group G = K AN . Define ρ ∈ a∗

C
by

ρ = 1

2

∑
α∈Φ+(g,a)

dim(nα)α.

The positive Weyl chamber a+ is the half line in a on which the positive roots take positive values. Let A+ = exp(a+) ⊂ A.
The symmetric space X has a compact dual space Xd = Gd/K , where Gd is the analytic subgroup of GL(n,C) correspond-

ing to gd = k⊕ pd , pd = ip. We normalize the metric on Xd in such a way that the multiplication by i induces an isometry
between p and pd .

Let i∗ : R(K ) → R(M) be the restriction map induced by the embedding i : M ↪→ K , where R(K ) and R(M) are the
representation rings over Z of K and M , respectively.

Since n is even, every σ ∈ M̂ is invariant under the action of the Weyl group W (see, [3, p. 27]). Let σ ∈ M̂ . We choose
γ ∈ R(K ) such that i∗(γ ) = σ and represent it by Σaiγi , ai ∈ Z, γi ∈ K̂ . Set

V ±
γ =

∑
sign (ai)=±1

|ai |∑
m=1

Vγi ,

where Vγi is the representation space of γi . Define V (γ )± = G ×K V ±
γ and Vd(γ )± = Gd ×K V ±

γ . To γ we associate
Z2-graded homogeneous vector bundles V (γ ) = V (γ )+ ⊕ V (γ )− and Vd(γ ) = Vd(γ )+ ⊕ Vd(γ )− on X and Xd , respec-
tively. Let

V Y ,χ (γ ) = Γ \(Vχ ⊗ V (γ )
)

be a Z2-graded vector bundle on Y , where (χ, Vχ ) is a finite-dimensional unitary representation of Γ .
Reasoning as in the beginning of Subsection 1.1.2 in [3], we choose a Cartan subalgebra t of m and a system of positive

roots Φ+(mC, t). Then, ρm ∈ it∗ , where

ρm = 1

2

∑
α∈Φ+(mC,t)

α.

Let μσ ∈ it∗ be the highest weight of σ . Set

c(σ ) = |ρ|2 + |ρm|2 − |μσ + ρm|2,
where the norms are induced by the complex bilinear extension to gC of the inner product (., .). Finally, we introduce the
operators (see, [3, p. 28])

Ad(γ ,σ )2 = Ω + c(σ ) : C∞(
Xd, Vd(γ )

) → C∞(
Xd, Vd(γ )

)
,

AY ,χ (γ ,σ )2 = −Ω − c(σ ) : C∞(
Y , V Y ,χ (γ )

) → C∞(
Y , V Y ,χ (γ )

)
,

Ω being the Casimir element of the complex universal enveloping algebra U(g) of g.
Let mχ (s, γ ,σ ) = Tr E AY ,χ (γ ,σ )({s}), md(s, γ ,σ ) = Tr E Ad(γ ,σ )({s}), where E A(.) denotes the family of spectral projections

of a normal operator A.
Now, we choose a maximal abelian subalgebra t of m. Then, h = tC ⊕ aC is a Cartan subalgebra of gC . Let Φ+(gC,h) be

a positive root system having the property that, for α ∈ Φ(gC,h), α|a ∈ Φ+(g,a) implies α ∈ Φ+(gC,h). Let

δ = 1

2

∑
Φ+(gC,h)

α.

We set ρm = δ − ρ . Define the root vector Hα ∈ a for α ∈ Φ+(g,a) by

λ(Hα) = (λ,α)

(α,α)
,

where λ ∈ a∗ .
For α ∈ Φ+(g,a), introduce εα(σ ) ∈ {0, 1

2 } by

e2π iεα(σ ) = σ
(
e2π iHα

) ∈ {±1}.
According to [3, p. 47], the root system Φ+(g,a) is of the form Φ+(g,a) = {α} or Φ+(g,a) = {α

2 ,α} for the long root α. Let

α be the long root in Φ+(g,a). We set T = |α|. For σ ∈ M̂ , εσ ∈ {0, 1
2 } is given by

εσ ≡ |ρ|
T

+ εα(σ ) mod Z.

We define the lattice L(σ ) ⊂ R∼= a∗ by L(σ ) = T (εσ +Z). Finally, for λ ∈ a∗ ∼= C we set

C
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Pσ (λ) =
∏

β∈Φ+(gC,h)

(λ + μσ + ρm, β)

(δ,β)
.

Since n is even, there exists a σ -admissible γ ∈ R(K ) for every σ ∈ M̂ (see, [3, p. 49, Lemma 1.18]). Here, γ ∈ R(K ) is
called σ -admissible if i∗(γ ) = σ and md(s, γ ,σ ) = Pσ (s) for all 0 � s ∈ L(σ ).

3. Zeta functions and the geodesic flow

Since Γ ⊂ G is co-compact and torsion free, there are only two types of conjugacy classes – the class of the identity
1 ∈ Γ and classes of hyperbolic elements.

Let g ∈ G be hyperbolic. Then there is an Iwasawa decomposition G = N AK such that g = am ∈ A+M . Following [3,
p. 59], we define

l(g) = ∣∣log(a)
∣∣.

Let Γh, resp. PΓh denote the set of the Γ -conjugacy classes of hyperbolic resp. primitive hyperbolic elements in Γ .
Let ϕ be the geodesic flow on SY determined by the metric of Y . In the representation SY = Γ \G/M it is given by

ϕ : R× SY � (t,Γ gM) → Γ exp(−t H)M ∈ SY ,

where H is the unit vector in a+ . If Vχ (σ ) = Γ \(G ×M Vσ ⊗ Vχ ) is the vector bundle corresponding to finite-dimensional
unitary representations (σ , Vσ ) of M and (χ, Vχ ) of Γ , then we define a lift ϕχ,σ of ϕ to Vχ (σ ) by (see, [3, p. 95])

ϕχ,σ : R× Vχ (σ ) � (
t, [g, v ⊗ w]) → [

g exp(−t H), v ⊗ w
] ∈ Vχ (σ ).

For Re (s) > 2ρ , the Ruelle zeta function for the flow ϕχ,σ is the infinite product

Z R,χ (s,σ ) =
∏

γ0∈PΓh

det
(
1 − (

σ(m) ⊗ χ(γ0)
)
e−sl(γ0)

)(−1)n−1

.

The Selberg zeta function for the flow ϕχ,σ is given by

Z S,χ (s,σ ) =
∏

γ0∈PΓh

+∞∏
k=0

det
(
1 − (

σ(m) ⊗ χ(γ0) ⊗ Sk(Ad (ma)n̄
))

e−(s+ρ)l(γ0)
)
,

for Re (s) > ρ , where Sk denotes the k-th symmetric power of an endomorphism, n̄ = θn is the sum of negative root spaces
of a as usual, and θ is the Cartan involution of g.

Let nC be the complexification of n. For λ ∈ C ∼= a∗
C

let Cλ denote the one-dimensional representation of A given by
A � a → aλ . Let p � 0. There exist sets

I p = {
(τ ,λ)

∣∣ τ ∈ M̂, λ ∈R
}

such that ΛpnC (as a representation of M A) decomposes with respect to M A as

ΛpnC =
∑

(τ ,λ)∈I p

Vτ ⊗Cλ,

where Vτ is the space of the representation τ . Bunke and Olbrich proved that the Ruelle zeta function Z R,χ (s, σ ) has the
following representation (see, [3, p. 99, Prop. 3.4])

Z R,χ (s,σ ) =
n−1∏
p=0

∏
(τ ,λ)∈I p

Z S,χ (s + ρ − λ, τ ⊗ σ)(−1)p
. (3.1)

Let dY = −(−1)
n
2 . The following theorem holds true (see, [3, p. 113, Th. 3.15]).

Theorem A. The Selberg zeta function Z S,χ (s, σ ) has a meromorphic continuation to all of C. If γ is σ -admissible, then the singular-
ities (zeros and poles) of Z S,χ (s, σ ) are the following ones:

(1) at ±is of order mχ (s, γ ,σ ) if s �= 0 is an eigenvalue of AY ,χ (γ ,σ ),
(2) at s = 0 of order 2mχ (0, γ ,σ ) if 0 is an eigenvalue of AY ,χ (γ ,σ ),

(3) at −s, s ∈ T (N− εσ ) of order 2 dY dim(χ) vol(Y )
vol(Xd)

md(s, γ ,σ ).
Then s > 0 is an eigenvalue of Ad(γ ,σ ).

If two such points coincide, then the orders add up.
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4. Main result

The main result of this paper is the following theorem.

Theorem 4.1. If γ is σ -admissible, then

(a) |Z S,χ (s, σ )| = O (e|s|n+α
), α > 0, s → ∞,

(b) there exist entire functions Z 1
S(s), Z 2

S (s) of order at most n such that

Z S,χ (s,σ ) = Z 1
S(s)

Z 2
S(s)

,

where the zeros of Z 1
S (s) correspond to the zeros of Z S,χ (s, σ ) and the zeros of Z 2

S(s) correspond to the poles of Z S,χ (s, σ ). The orders
of the zeros of Z 1

S (s) resp. Z 2
S(s) equal the orders of the corresponding zeros resp. poles of Z S,χ (s, σ ).

Proof. (a) By [3, p. 118, Th. 3.19], Z S,χ (s, σ ) has the representation

Z S,χ (s,σ ) = det
(

AY ,χ (γ ,σ )2 + s2)det
(

Ad(γ ,σ ) + s
)− 2 dim(χ)χ(Y )

χ(Xd)

· exp

(
dim(χ)χ(Y )

χ(Xd)

n
2∑

m=1

c−m
s2m

m!

(
m−1∑
r=1

1

r
− 2

2m−1∑
r=1

1

r

))
, (4.1)

where the coefficients ck are defined by the asymptotic expansion

Tr e−t Ad(γ ,σ )2 t→0∼
∞∑

k=− n
2

cktk.

Furthermore (see, [3, pp. 120–123]),

log det
(

AY ,χ (γ ,σ )2 + s2) s→∞∼
1∑

k= n
2

e−k

(
log

(
s2) −

(
k∑

r=1

1

r

))
(−1)k s2k

k! + e0 log
(
s2) + o(1), (4.2)

log det
(

Ad(γ ,σ ) + s
) s→∞∼

1∑
k=n, even

d−k

(
log(s) −

(
k∑

r=1

1

r

))
(−1)k sk

k! + d0 log(s) + o(1), (4.3)

where ek resp. dk are defined by

Tr e−t AY ,χ (γ ,σ )2 t→0∼
∞∑

k=− n
2

ektk

resp.

Tr e−t Ad(γ ,σ ) t→0∼
∞∑

k=−n

dktk.

Substituting (4.2) and (4.3) into (4.1) we obtain

∣∣Z S,χ (s,σ )
∣∣ =

∣∣∣∣∣exp

(
1∑

k= n
2

E1(k) log
(
s2)s2k

)∣∣∣∣∣
∣∣∣∣∣exp

(
1∑

k= n
2

E2(k)s2k

)∣∣∣∣∣
· ∣∣exp

(
e0 log

(
s2))∣∣∣∣exp

(
o(1)

)∣∣
∣∣∣∣∣exp

(
1∑

k=n, even

D1(k) log(s)sk

)∣∣∣∣∣
·
∣∣∣∣∣exp

(
1∑

k=n, even

D2(k)sk

)∣∣∣∣∣
∣∣exp

(
D3 log(s)

)∣∣∣∣exp
(
o(1)

)∣∣

·
∣∣∣∣∣exp

( n
2∑

C1(m)s2m

)∣∣∣∣∣ = |E1||E2||E3||E4||D1||D2||D3||D4||C1|, (4.4)

m=1
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as s → ∞, where

E1(k) = e−k
(−1)k

k! , E2(k) = −e−k
(−1)k

k!

(
k∑

r=1

1

r

)
,

D1(k) = −2 dim(χ)χ(Y )

χ(Xd)
d−k

(−1)k

k! ,

D2(k) = 2 dim(χ)χ(Y )

χ(Xd)
d−k

(−1)k

k!

(
k∑

r=1

1

r

)
,

D3 = −2 dim(χ)χ(Y )

χ(Xd)
d0

and

C1(m) = dim(χ)χ(Y )

χ(Xd)

c−m

m!

(
m−1∑
r=1

1

r
− 2

2m−1∑
r=1

1

r

)
.

Let l ∈N, a, z ∈ C. Noting that∣∣exp
(
azl log

(
z2))∣∣ = exp

(
O

(|z|l+α
))

, α > 0,∣∣exp
(
azl)∣∣ = exp

(
O

(|z|l)),∣∣exp
(
a log

(
z2))∣∣ = exp

(
O

(|z|α))
, α > 0,∣∣exp

(
o(1)

)∣∣ = exp
(

O (1)
)
,∣∣exp

(
azl log(z)

)∣∣ = exp
(

O
(|z|l+α

))
, α > 0

and ∣∣exp
(
a log(z)

)∣∣ = exp
(

O
(|z|α))

, α > 0,

one easily concludes that |E1| is exp(O (|s|n+α)), α > 0, |E2|, |D2| and |C1| are exp(O (|s|n)), |E3| is exp(O (|s|α)), α > 0, |E4|
and |D4| are exp(O (1)) and |D3| is exp(O (|s|α)), α > 0. Substituting these estimates into (4.4) we obtain the assertion.

(b) Let N1(r) = #{s ∈ spec AY ,χ (γ ,σ ) | |s| � r}. By the Weyl asymptotic law (see, [3, p. 66])

N1(r) ∼ C1rn, (4.5)

as r → +∞.
The points s ∈ T (N − εσ ) are eigenvalues of Ad(γ ,σ ) with multiplicity md(s, γ ,σ ). By [3, p. 109], Ad(γ ,σ ) may have

more eigenvalues, but the weighted multiplicities of these additional eigenvalues are zero. Since s > 0 for s ∈ T (N− εσ ), we
let N2(r) = #{s ∈ spec Ad(γ ,σ ) | s � r}. Recall that Ad(γ ,σ ) is elliptic and of second order. Hence, reasoning as in [4, p. 21],
we obtain the estimate

N2(r) ∼ C2rn, (4.6)

as r → +∞.
Let S1, S2 denote respectively the sets consisting of the singularities of Z S,χ (s, σ ) appearing in (1) and (3) of Theorem A.

By (4.5), we have

∑
s∈S1

|s|−(n+ε) =
∑
s∈S1

0<|s|<1

|s|−(n+ε) +
∑
s∈S1|s|�1

|s|−(n+ε) = O (1) +
+∞∫
1

t−(n+ε) dN1(t) = O

( +∞∫
1

t−(1+ε) dt

)
= O (1), (4.7)

for any ε > 0. Similarly, by (4.6), we have∑
s∈S2

|s|−(n+ε) =
∑

s∈T (N−εσ )

∣∣∣∣2dY dim(χ)vol(Y )

vol(Xd)
md(s, γ ,σ )

∣∣∣∣|s|−(n+ε)

=
∣∣∣∣2dY dim(χ)vol(Y )

vol(Xd)

∣∣∣∣ ∑
s∈T (N−εσ )

∣∣md(s, γ ,σ )
∣∣|s|−(n+ε)

= O

( +∞∫
t−(n+ε) dN2(t)

)
= O

( +∞∫
t−(1+ε) dt

)
= O (1), (4.8)
T (1−εσ ) T (1−εσ )
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for any ε > 0. By (4.7) and (4.8) we get∑
s∈S\{0}

|s|−(n+ε) =
∑
s∈S1

|s|−(n+ε) +
∑
s∈S2

|s|−(n+ε) < ∞, (4.9)

where S denotes the set of singularities of Z S,χ (s, σ ).
Let R1 resp. R2 denote the sets of zeros resp. poles of Z S,χ (s, σ ). For simplicity, the point s = 0 will be considered

separately. Assume that 0 /∈ Ri , i = 1,2. Put m0 = 2mχ (0, γ ,σ ).
It follows from (4.9) that∑

s∈Ri

|s|−(n+ε) < ∞, (4.10)

for i = 1,2 and for any ε > 0.
Let ρ i

1 resp. pi denote the convergence exponent resp. the genus of the set Ri for i = 1,2 (see, [2, p. 14]). By (4.10),
ρ i

1, pi � n for i = 1,2. Note that (4.10) does not necessarily imply that ρ1
1 = ρ2

1 = n. However, taking into account (4.9) as
well as (4.7) and (4.8), we conclude that (4.10) implies that there is i ∈ {1,2} such that ρ i

1 = n and hence pi = n. We may
assume, without a loss of generality, that ρ1

1 = p1 = n. Hence, by [2, p. 19, Th. 2.6.5.], (see also, [5, p. 93]), the following
canonical product over R1 is an entire function of order n over C,

W1(s) =
∏

z∈R1

E

(
s

z
,n

)
,

where,

E(u,k) = (1 − u)exp

(
u + u2

2
+ · · · + uk

k

)
.

Similarly,

W2(s) =
∏

z∈R2

E

(
s

z
, p2

)

is an entire function of order ρ2
1 over C.

Now, we see that Z S,χ (s, σ )W1(s)−1W2(s)s−m0 is an entire function and has no zeros over C. Hence, by Hadamard’s
factorization theorem there exists a polynomial g(s) such that

Z S,χ (s,σ )W1(s)−1W2(s)s−m0 = eg(s)

for s ∈C. By taking logarithms of both sides we obtain

g(s) = log Z S,χ (s,σ ) + log W2(s) − log W1(s) − m0 log s.

Differentiating n + 1 times and having in mind that the logarithmic derivative of Z S,χ (s, σ ) is given by a Dirichlet series
absolutely convergent for Re(s) 
 0 (see, [3]), we conclude that

lim|s|→+∞ g(n+1)(s) = 0.

Therefore, the degree of g(s) is at most n. Now, the assertion follows from the representation

Z S,χ (s,σ ) = sm0 eg(s) W1(s)

W2(s)
.

This completes the proof. �
Corollary 4.2. A meromorphic extension over C of the Ruelle zeta function Z R,χ (s, σ ) can be expressed as

Z R,χ (s,σ ) = Z 1
R(s)

Z 2
R(s)

,

where Z 1
R(s), Z 2

R(s) are entire functions of order at most n over C.

Proof. An immediate consequence of the formula (3.1) and Theorem 4.1(b). �
Remark 4.3. It is well known that in case of dimensions larger than 3, a meromorphic extension of the Ruelle zeta function
can be used to obtain error terms in the prime geodesic theorem that are not achievable by the Selberg zeta function
approach (see, [1,5]).
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