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1. Introduction

Let Y be a compact, n-dimensional (n even), locally symmetric Riemannian manifold with negative sectional curvature
given by Y = I'\G/K = I'\ X, where G is a connected semisimple Lie group of real rank one, K is a maximal compact
subgroup of G and I' is a discrete co-compact torsion free subgroup of G.

We require G to be linear in order to have complexification available.

In [3], Bunke and Olbrich studied the zeta functions of Selberg and Ruelle associated with a locally homogeneous vector
bundle of the unit sphere bundle of Y. It is well known that the classical Selberg zeta function is an entire function of order
two (see, [6]). The main purpose of this paper is to give an analogous result for the zeta functions considered in [3].

2. Preliminaries

In the sequel we follow the notation of [3].

Let g =t @ p be the Cartan decomposition of the Lie algebra g of G, a a maximal abelian subspace of p and M the
centralizer of a in K with Lie algebra m. We normalize the Ad (G)-invariant inner product (.,.) on g to restrict to the metric
on p. Let SX = G/M be the unit sphere bundle of X. Hence SY = I'\G/M.

Let ®(g, a) be the root system and W = W (g, a) = Z, its Weyl group. Fix a system of positive roots @ (g, a) C @ (g, a).
Let

n= Z Ny

aedt(g,a)
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be the sum of the root spaces corresponding to elements of @ (g, a). The decomposition g =£® p @ n corresponds to the
Iwasawa decomposition of the group G = KAN. Define p € af, by

1
=3 Z dim(ng)cr.
aedt(g,a)

The positive Weyl chamber a* is the half line in a on which the positive roots take positive values. Let AT =exp(a™) C A.

The symmetric space X has a compact dual space X3 = G4/K, where G4 is the analytic subgroup of GL(n, C) correspond-
ing to gg =€ @ pg, pg = ip. We normalize the metric on Xy in such a way that the multiplication by i induces an isometry
between p and pg.

Let i* : R(K) — R(M) be the restriction map induced by the embedding i : M — K, where R(K) and R(M) are the
representation rings over Z of K and M, respectively.

Since n is even, every o € M is invariant under the action of the Weyl group W (see, [3, p. 27]). Let 0 € M. We choose
y € R(K) such that i*(y) = o and represent it by Xa;y;, a; € Z, y; € K. Set

|ai
+ _
vi= X X Vm
sign (a;)=+1 m=1
where V,, is the representation space of y;. Define V(y)* =G xg V)% and V4(y)* = Gg xg V)f. To y we associate

Zy-graded homogeneous vector bundles V(y) = V(y)T @ V(y)~ and V4(y) = Vy(¥)T @ Vy(y)~ on X and Xg, respec-
tively. Let

Vyx () =T\(Vy @ V(y))
be a Z;-graded vector bundle on Y, where (), V) is a finite-dimensional unitary representation of I'".

Reasoning as in the beginning of Subsection 1.1.2 in [3], we choose a Cartan subalgebra t of m and a system of positive
roots @1 (mc, t). Then, pn, € it*, where

me% Z a.

aedt(me,t)

Let s € it* be the highest weight of o. Set

@) =1pP* +1pml* = 1o + Pml?,

where the norms are induced by the complex bilinear extension to gc of the inner product (.,.). Finally, we introduce the
operators (see, [3, p. 28])

Ad(y,0)* =2 +¢c(0): C®(Xg, Va(y)) = C®(Xq, Va(¥)),

Ay (7, 0)2==02 —c(0): C(Y, Vy x (1)) = C(Y, Vy (),

£2 being the Casimir element of the complex universal enveloping algebra ¢/ (g) of g.

Let my (s, y.0) =TrEa,  (y,0) (s}, ma(s,y.0) =TrEp,y,0) (s, where E4(.) denotes the family of spectral projections
of a normal operator A.

Now, we choose a maximal abelian subalgebra t of m. Then, h = tc @ ac is a Cartan subalgebra of g¢. Let @' (gc, h) be
a positive root system having the property that, for « € @ (gc, h), ojq € @ (g, a) implies & € T (gc, b). Let

8:% Z o.

P+ (gc.h)
We set pm, =8 — p. Define the root vector Hy € a for o € @1 (g, a) by
(*, )
A(Hg) = ,
(o, @)

where A € a*.
For oo € @7 (g, a), introduce &4 (o) € {0, 3} by

e27ri5a(cr) =O_(e27!iHa) c {:t]}
According to [3, p. 47], the root system @ T (g, a) is of the form ®* (g, a) = {a} or ®¥ (g, a) = {%,a} for the long root «. Let
« be the long root in @7 (g, a). We set T = |«/|. For o € M, €5 € {0, %} is given by

€ = % + €4 (0) mod Z.

We define the lattice L(o) CR=a* by L(0) = T (€5 + Z). Finally, for A € af, = C we set
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A+ o + Pm, B)
[] ——————.

Py (3) =
) 6.8

Bt (gc.h)
Since n is even, there exists a o-admissible y € R(K) for every o € M (see, [3, p. 49, Lemma 1.18]). Here, y € R(K) is
called o-admissible if i*(y) = o and my(s, y,0) = Ps(s) for all 0 < s € L(0).

3. Zeta functions and the geodesic flow

Since I" C G is co-compact and torsion free, there are only two types of conjugacy classes — the class of the identity
1 e I' and classes of hyperbolic elements.

Let g € G be hyperbolic. Then there is an Iwasawa decomposition G = NAK such that g =am € AT™M. Following |3,
p. 59], we define

I(g) = |log(a)|.

Let I, resp. PIy, denote the set of the I'-conjugacy classes of hyperbolic resp. primitive hyperbolic elements in I".
Let @ be the geodesic flow on SY determined by the metric of Y. In the representation SY = I'\G/M it is given by

@ :RxSY>(, I'gM)— I'exp(—tH)M € SY,
where H is the unit vector in a*. If Vy(0)=T\(G xy Vs ® Vy) is the vector bundle corresponding to finite-dimensional
unitary representations (o, V) of M and (), Vy) of I", then we define a lift ¢, » of ¢ to V(o) by (see, [3, p. 95])

Pyo :Rx Vy(0)>(t,[g,vR®W]) > [gexp(—tH),v® w] € V, (0).
For Re (s) > 2p, the Ruelle zeta function for the flow ¢ , is the infinite product

_ -1 n—1

Zpy(s,0) = l_[ det(1 — (o(m) ® x (yo))e Sl”"’))( e

Yo€PI}

The Selberg zeta function for the flow ¢y  is given by

+00
Zsy(s,0)= ] []det(1— (o(m)® x(v0) ® S*(Ad (ma)z))e” +711)),
y0€PFh k=0

for Re (s) > p, where S* denotes the k-th symmetric power of an endomorphism, i = 6n is the sum of negative root spaces
of a as usual, and @ is the Cartan involution of g.
Let nc be the complexification of n. For A € C = af, let C; denote the one-dimensional representation of A given by

A>a— a*. Let p > 0. There exist sets
Ip={(,»)|teM reR)}
such that APn¢ (as a representation of MA) decomposes with respect to MA as
APne= )" V. ®C,,
(t,Melp

where V; is the space of the representation t. Bunke and Olbrich proved that the Ruelle zeta function Zg 4 (s, o) has the
following representation (see, [3, p. 99, Prop. 3.4])

n—1
Zryso) =[] I ZsxGs+p-rt00) " (3.1)
p=0 (T, )elp

Let dy = —(—1)%. The following theorem holds true (see, [3, p. 113, Th. 3.15]).

Theorem A. The Selberg zeta function Zs y (s, o) has a meromorphic continuation to all of C. If y is o -admissible, then the singular-
ities (zeros and poles) of Zs y (s, o) are the following ones:

(1) at +is of order my (s, y, 0) if s # 0 is an eigenvalue of Ay » (v, 0),
(2) ats =0 of order 2m, (0, y, 0) if 0 is an eigenvalue of Ay y (y,0),
(3) at—s,se T(N—¢€,) oforder2m%)gd")°mmd(s, y,0).

Then s > 0 is an eigenvalue of A4(y, o).

If two such points coincide, then the orders add up.
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4. Main result

The main result of this paper is the following theorem.

Theorem 4.1. If y is o -admissible, then
(@) |Zs. 4 (5,0)|=0(""), @ > 0,5 oo,
(b) there exist entire functions Z }(s), Z ?(s) of order at most n such that

Z(s)
7 — s
s,.x(s,0) Zg(S)’

where the zeros of Z}(s) correspond to the zeros of Zs 4 (s, o) and the zeros of Z§ (s) correspond to the poles of Zs y (s, o). The orders
of the zeros of Z g (s) resp. Z %(s) equal the orders of the corresponding zeros resp. poles of Zs y (s, o).

Proof. (a) By [3, p. 118, Th. 3.19], Zs 4 (s, 0) has the representation

_2dim()x(Y)

Zs 4 (s,0) =det(Ay,y (v, 0)? +5%) det(Aq(y., o) +s)  *%0

. ) 1 2m—1
dimQOx(Y) § s2m A
Xp| ———— Com— - =2 (4.1)
(Emaox s e W (2123 )
where the coefficients ¢, are defined by the asymptotic expansion

o0
_ 2150
Tre tAay,0)” X Z itk

__n
k=—3

Furthermore (see, [3, pp. 120-123]),

k 2k
logdet(Ay 4 (y,0)* +5?) Ze k(log (Z%>>(_1)ksk_, +eolog(s?) +o(1), (4.2)
k=1 r=1 ’
k k
logdet(Ad(y U)+S _:' Z d_ k(log(s) (Z%))(—l)ki—'jtdolog(s)+o(1), (4.3)
k=n, even r=1 :

where ey resp. dj, are defined by

00
_ 2 t—0
Tre tAY.x(V,O') ~ Z ektk

__n
k=—73

resp.

o0
_ t—0
Tre tAd(y.0) " Z dit®.

k=—n

Substituting (4.2) and (4.3) into (4.1) we obtain

1
exp( Z El(k) log(sz)SZk)

_n
k=5

|Zs y(s,0)| =

1
exp( Z Ez(k)52k>

_n
k=3

[exp(eoog(s2)[[exp o)

1
exp( Z Dl(k)log(s)sk>

k=n, even

lexp(D3log(s))]|[exp(o(1))]

1
~exp< Z Dz(k)sk>

k=n, even

= |E1||E2||E3||E4||D1]|D2||D3||D4l|C1], (4.4)

%
. exp( Z C! (m)szm>

m=1
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as s — oo, where

(—Dk Dk (&1
E'(k)=e_y o Ez(l<)=—e_kT<§;),
_ i _1\k
Dy = Z2dmOOX ), DY
X (Xa) k!
2dimOOx(¥), (= 1)" 1
D?(k) = B 2
= (;r>
p3 - —2dimCOx () |
X (Xa)

and

b dimOOX (V) com (S 11_ =1
CM=T &0 m (Z ?

Let I €N, a, z € C. Noting that
|exp(az'log(2%))| = exp(0 (I2T*)), « >0,
expla)] = exp(0(21).
lexp(alog(z?))| = exp(0(|z|*)). « >0,
|exp(o(l))| =exp(0(1)),
|exp(az'log(2))| = exp(0 (Iz'T%)), >0
and

lexp(alog(2))| = exp(0(|z|*)), « >0,
one easily concludes that |E1]| is exp(O (|s|*t%)), @ > 0, |E2|, |D2| and |Cy]| are exp(O(|s|™)), |E3| is exp(O(|s|*)), a > 0, |E4]
and |D4| are exp(0(1)) and |D3| is exp(O(|s|%*)), o > 0. Substituting these estimates into (4.4) we obtain the assertion.
(b) Let N1(r) =#{s e specAy »(y,0) | Is| <r}. By the Weyl asymptotic law (see, [3, p. 66])

Ny(r) ~ Cqr", (4.5)

as r — +oo.

The points s € T(N — €,) are eigenvalues of Agq(y, o) with multiplicity mg(s, y, o). By [3, p. 109], A4(y, o) may have
more eigenvalues, but the weighted multiplicities of these additional eigenvalues are zero. Since s >0 for se T(N —¢5), we
let N, (r) = #{s € specA4(y,0) | s <r}. Recall that A4(y, o) is elliptic and of second order. Hence, reasoning as in [4, p. 21],
we obtain the estimate

Na(r) ~ Car", (4.6)

as r — +oo.
Let S1, Sz denote respectively the sets consisting of the singularities of Zs , (s, o) appearing in (1) and (3) of Theorem A.
By (4.5), we have

+00 +oo
DoIsIT M = N s T 4 Y s T = 0(1) + / t-‘"+€>dN1<t)=0< / r—<1+€>dt)=om, (47)

seSy NEM NEM 1 1
0<|s|<1 [s|>1

for any € > 0. Similarly, by (4.6), we have

dy di (Y
T s T S P AL le AL PP IR
vol(Xq)
seSy seT(N—ey)
dy dim(y) vol(Y) e
vol(Xy) Z ma(s, v, o)|ls]

seT(N—e4)

+00 +00
= o( / ¢ (+e) sz(t)> = o( / = (1+e) dt) =0(1), (4.8)

T(1-€) T(1-€5)
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for any € > 0. By (4.7) and (4.8) we get
Z |s|—(n+€) — Z |S|—(n+€) + Z |S|—(n+8) < 00, (4.9)
seS\{0} seSt seSy
where S denotes the set of singularities of Zs y (s, o).
Let Ry resp. Ry denote the sets of zeros resp. poles of Zs , (s, o). For simplicity, the point s =0 will be considered
separately. Assume that 0 ¢ R;, i =1, 2. Put mg =2m, (0, y,0).
It follows from (4.9) that
D IsIm ™M < o, (410)

SeR;

for i=1,2 and for any ¢ > 0.
Let p] resp. p; denote the convergence exponent resp. the genus of the set R; for i =1,2 (see, [2, p. 14]). By (4.10),

,0{, pi <n for i =1, 2. Note that (4.10) does not necessarily imply that ,oll = ,012 =n. However, taking into account (4.9) as
well as (4.7) and (4.8), we conclude that (4.10) implies that there is i € {1, 2} such that pi =n and hence p; =n. We may

assume, without a loss of generality, that ,0]1 = p1 =n. Hence, by [2, p. 19, Th. 2.6.5.], (see also, [5, p. 93]), the following
canonical product over R is an entire function of order n over C,

wis) =[] E(in),
zZeRq z

where,
u? uk
E(u,k)=(_1 —u)exp(u—i— > +--+ ?).

Similarly,
S
w = -
2(8) | | E<Z,P2>
Z€Ry

is an entire function of order ,012 over C.

Now, we see that Zs y(s,0)W; ()W, (s)s™™0 is an entire function and has no zeros over C. Hence, by Hadamard’s
factorization theorem there exists a polynomial g(s) such that

Zs x (5, 0)W1(s) " Wa(s)s ™0 =8
for s € C. By taking logarithms of both sides we obtain
g(s) =logZs y(s,0) + log W2 (s) —log W1(s) —mglogs.
Differentiating n 4 1 times and having in mind that the logarithmic derivative of Zs , (s, o) is given by a Dirichlet series
absolutely convergent for Re(s) > 0 (see, [3]), we conclude that
lim g™V (s)=0.
Is]—-+o0
Therefore, the degree of g(s) is at most n. Now, the assertion follows from the representation
o pg(s) W1(5)
Wa(s)
This completes the proof. O

Zs y(s,0)=s

Corollary 4.2. A meromorphic extension over C of the Ruelle zeta function Z y (s, o') can be expressed as

where Z}g(s), Z% (s) are entire functions of order at most n over C.
Proof. An immediate consequence of the formula (3.1) and Theorem 4.1(b). O
Remark 4.3. It is well known that in case of dimensions larger than 3, a meromorphic extension of the Ruelle zeta function

can be used to obtain error terms in the prime geodesic theorem that are not achievable by the Selberg zeta function
approach (see, [1,5]).
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