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1. Introduction

In this paper, we study n-dimensional Alexandrov spaces (X, d) whose Hausdorff measure Hn satisfies
a condition giving the metric measure space (X, d,Hn) a notion of having nonnegative Ricci curvature. In
particular, we examine the influence of large volume growth (as defined using the Hausdorff measure) on
these spaces and generalize some classical results from Riemannian geometry.

Alexandrov spaces arise as the Gromov–Hausdorff limits of n-dimensional, compact Riemannian mani-
folds with sectional curvature ≥ k and diameter ≤ D. By now the study of Alexandrov spaces has become
an interesting subject on its own [4,37,5,42]. In addition, in light of Gromov’s Precompactness Theorem [11]
and Perelman’s Stability Theorem (see Theorem 2.3), understanding the topology of Alexandrov spaces is
also important for studying the curvature and topology of Riemannian manifolds. Already many well-known
results from Riemannian geometry have been generalized to the more broad class of Alexandrov spaces (e.g.
[13,15,14,16,17,19,20,22,24] among others) and many of the necessary tools used for smooth Riemannian
manifolds have been adapted to these general metric spaces as well.

While Alexandrov spaces capture the notion of lower sectional bounds for metric spaces, there are also
several notions which aim to generalize the notion lower Ricci curvature bounds to metric measure spaces.
In this direction, Sturm [43,44] and Lott–Villani [27] independently introduced a curvature-dimension con-
dition CD(K,n), with n ∈ (1,∞] and K ∈ R, defining metric measure spaces with Ric ≥ (n − 1)K and
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dimension ≤ n. Their definition requires the convexity of specific entropy functionals when measured along
geodesics in the L2-Wasserstein space (see also [3]). Related to their definitions, Ohta [29] introduced the
measure contraction property MCP(K,n) which is closely related to the definitions of Sturm–Lott–Villani.
In short, the condition MCP(K,n) is an infinitesimal version of the Bishop–Gromov volume comparison
theorem which is a well-known consequence of n-dimensional Riemannian manifolds with Ricci curvature
≥ (n − 1)K. Very recently, Ambrosio–Gigli–Savaré [2] added the additional assumption of infinitesimally
Hilbertian to the CD condition of Sturm–Lott–Villani which also ensures linearity of the Laplacian on the
metric measure space to define the Ricci curvature dimension condition, denoted RCD(K,n).

In this paper, we are concerned with Alexandrov spaces. In this setting, Zhang–Zhu [47] have introduced
a new definition of lower bounds of Ricci curvature, denoted RC, which is based on the behavior of the
second variation formula of arc length known for Riemannian manifolds. Also, in the setting of Alexandrov
spaces, is the Bishop–Gromov condition BG(K,n) introduced by Kuwae–Shioya. This definition can be seen
as a special case of Ohta’s MCP condition applied to Dirac masses and the Hausdorff measure on (X, d).

Clearly, viewing (X, d,Hn) as a metric measure space, each of the previous definitions described above
also make sense for Alexandrov spaces. In fact, by work of Burago–Gromov–Perelman [4], Alexandrov spaces
are necessarily infinitesimally Hilbertian. So, for an n-dimensional Alexandrov space with Hausdorff measure
Hn we have:

RC ≥ (n− 1)K =⇒ RCD
(
(n− 1)K,n

)
⇐⇒ CD

(
(n− 1)K,n

)
=⇒ MCP

(
(n− 1)K,n

)
⇐⇒ BG

(
(n− 1)K,n

)
In the same way that classical results for Riemannian manifolds with lower sectional curvature bounds

have been generalized to Alexandrov spaces, there has been a strong effort to generalize the well-known
theorems of the comparison geometry of Ricci curvature to metric measure spaces satisfying some weak
Ricci curvature bound condition described above (e.g. see [22,24,10,46] for various generalizations of the
well-known Cheeger–Gromoll Splitting Theorem). To a large extent, this paper contributes to that goal. We
consider Alexandrov spaces whose measure satisfies the BG(0, n) condition (see Section 2.2.1 for complete
definition) which is the weakest of all the notions described above. We prove

Theorem 1.1. For an integer n ≥ 2, let (X, d) be an n-dimensional, complete, noncompact Alexandrov space
with nonempty boundary and whose Hausdorff measure satisfies the BG(0, n) condition. There exists an
ε(n, κ) > 0 such that if

Hn
(
B(p, r)

)
≥ (1 − ε)ωnr

n, for all r > 0, and some p ∈ X,

then (X, d) has finite topological type.

When phrased in this way we assume that (X, d) has some arbitrary lower bound on its Alexandrov
curvature (see Section 2.1 for complete definition). With this in mind, Theorem 1.1 provides an ideal metric
geometry generalization of a classical type of theorem for Riemannian manifolds with a lower Ricci curvature
bound and whose sectional curvature ≥ −κ2 (e.g. [1,6,9,30,35,41,45] among others). We expect that each of
these results would also admit similar generalization as well.

The proof of our main theorem relies on an application of the excess estimate for Alexandrov spaces which
we prove in this paper. Originally, the excess estimate was proven by Abresch–Gromoll [1] for Riemannian
manifolds with only a lower Ricci curvature bound (i.e. no bound on sectional curvature). Here, we use
a generalized version of the excess estimate for Alexandrov spaces whose Hausdorff measure satisfies an
infinitesimal Bishop–Gromov condition so that we say (X, d,Hn) has nonnegative Ricci curvature. Our
method of proof follows the original proof of Abresch–Gromoll [1].
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In fact, an even more general version of the excess estimate was recently generalized by Gigli–Mosconi [10]
to metric measure spaces satisfying a curvature dimension condition CD(K,n) and which are infinitesimally
Hilbertian. Note that this version of Gigli–Mosconi holds for any infinitesimally Hilbertian metric measure
space (not necessarily Alexandrov) and thus contains ours. We include a sketch of the proof of the excess
estimate in the Appendix of this paper and highlight the main ideas of the argument there.

In Section 2 we define Alexandrov spaces and mention some of their basic analytic features which will
be useful in the sequel. We also define the Bishop–Gromov condition of Kuwae–Shioya which we mentioned
briefly above. In Section 3, we prove Theorem 1.1. Our proof relies on a typical application of the excess
estimate which we verify holds for Alexandrov spaces with the BG(0, n) condition in the Appendix.

2. Preliminaries

2.1. Alexandrov spaces

In this subsection, we recall some of the basic information of Alexandrov spaces (see also [5,31,4,37,38],
in particular equivalent definitions in Chapter 4 of [5]).

A finite-dimensional Alexandrov space is a complete, locally compact, connected length space which
satisfies a lower curvature bound in an angle-comparison sense described below. Recall that a length space
(or geodesic space) is a metric space (X, d) such that any two points p, q ∈ X can be joined by a rectifiable
curve whose length is equal to d(p, q). We call such a distance realizing curve a minimal geodesic and use
pq to denote a (not necessarily unique) minimal geodesic joining p and q.

To describe the lower curvature bound, fix a number k ∈ R. For any triple of points p, q, r ∈ X (usually
thought of as a triangle Δpqr), let Δ̃pqr denote the triangle Δp̃q̃r̃ of points in the k-plane such that
|p̃q̃| = d(p, q), |q̃r̃| = d(q, r) and |p̃r̃| = d(p, r).

Definition 2.1. (X, d) has curvature ≥ k in an open set U ⊂ X if, for each quadruple of points (p; a, b, c)
in U ,

∠̃kapb + ∠̃kbpc + ∠̃kcpa ≤ 2π,

where ∠̃kapb is the comparison angle at p̃ of a triangle Δ̃apc in the k-plane (define ∠̃kbpc, ∠̃kcpa similarly).

In [4] (cf. [5]), the authors show that in fact this local condition implies the same is true globally for any
quadruple of points in X.

We will denote the class of n-dimensional Alexandrov spaces of curvature ≥ k by Alexn[k]. Certain care
must be taken when assuming k > 0 to ensure these quantities are well-defined; however, in this paper we
focus on the case when k is some arbitrary negative lower bound k = −κ2 > −∞. Also, we assume that X

has no boundary. Note that by property of being Alexandrov, it follows that (X, d) is a non-branching metric
space. Thus, using the terminology of Ambrosio–Gigli–Savaré [2], and Alexandrov space is infinitesimally
Hilbertian thus RCD(K,∞) ⇐⇒ CD(K,∞) as we saw above.

For p ∈ X, denote by ΣpX the space of directions at p. Note that ΣpX ∈ Alexn−1[1] and is compact.
The metric cone over ΣpX equipped with the cone metric is called the tangent cone at p and is denoted
CpX; furthermore, CpX ∈ Alexn[0]. Note, for smooth Riemannian manifold (M, g) viewed as a metric
space (M,dg) whose distance metric dg is induced from g, that CpM and ΣpM are precisely the tangent
space TpM and the unit tangent sphere SpM (resp.) of M at p.

Definition 2.2 (Singularities of Alexandrov spaces). A point p is called a singular point of X if ΣpX is not
isometric to the unit sphere Sn−1. For some δ > 0, a point is called δ-singular if Hn−1(ΣpX) ≤ vol(Sn−1)−δ.
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Let SX and Sδ denote the set of singular points of X and the set of δ-singular points of X (respectively).
Note SX =

⋃
δ>0 Sδ. We say that a point p is topologically singular if ΣpX is not homeomorphic to a sphere.

Every finite-dimensional Alexandrov space can be stratified into topological manifolds. In particular, if
an Alexandrov space has no boundary, then the codimension of the set of topologically singular points is a
least three.

We state now some additional properties of the local structure of X that will be useful in the sequel.
Most notably, we have

Theorem 2.3 (Perelman’s Stability Theorem). (Cf. [18].) Let X ∈ Alexn[k] be compact. Then there exists
some ε := ε(X) > 0 such that any Y ∈ Alexn[k] with dGH(X,Y ) < ε is homeomorphic to X. Here dGH

denotes the Gromov–Hausdorff distance on metric spaces.

It follows from this that every point p of a finite-dimensional Alexandrov space has a small metric
neighborhood which is pointed homeomorphic to the tangent cone CpX. In [31], Otsu–Shioya prove a number
of important structural results describing the Riemannian structure of Alexandrov spaces. In particular, they
show that for (X, d) as above there exists a δn > 0 such that there is a canonical C∞ structure on X \ Sδn

which is compatible with the DC-structure constructed by Perelman in [36].
In addition, they construct a unique C0-Riemannian metric g on X \SX such that the distance function

induced from g coincides with the original distance metric d on X. This metric g is of locally bounded
variation and the volume measure on X \ Sδn induced from g is

d volg(x) =
√

|g| dHn(x).

It should be noted that the non-singular set X \ SX is not a manifold as it is possible that the set SX of
singular points can be quite ‘bad’, (e.g. Example 2 in [31] where SX is dense in X). However, if the size of
the singular set is controlled in some way (e.g. if SX 	= X) then many of the classical techniques of smooth
Riemannian manifolds admit direct generalizations to Alexandrov spaces. Note that Petrunin has shown

Lemma 2.4. (Cf. [39].) Let p, q ∈ X and let pq be a minimal geodesic joining them. Then for all points
x ∈ pq \ {p, q} the space of directions ΣxX are isometric.

Which, in particular, guarantees that any minimal geodesic joining two non-singular points p, q /∈ SX is
also non-singular for any x ∈ pq.

2.1.1. Gradient curves of Alexandrov spaces (cf. [38])
In the smooth setting of Riemannian manifolds, the Inverse Function Theorem guarantees that at any

point p ∈ M , the exponential map expp : TpM → M is a diffeomorphism in some neighborhood of the origin
and, furthermore, if the sectional curvature of M is ≥ k then expp is a contraction map.

For Alexandrov spaces, however, the situation is a bit more subtle. The domain of the exponential map on
CpX does not in general contain an open neighborhood of the origin and thus may not be defined. Instead,
one defines the gradient exponential map which are constructed as gradient curves of distance functions
in X. This construction is described in detail in Section 3 of [38] where, for any p ∈ X and ξ ∈ ΣpX,
the authors construct a unique complete distp-gradient curve γ : [0, a) → X with initial velocity vector
γ+(0) = ξ.

A locally Lipshitz function f : U ⊂ X → R is called semiconcave if for every p ∈ X there exits λ ∈ R and
a neighborhood Ux � x such that f |Ux

is λ-concave; i.e. for any unit speed geodesic γ ∈ Ux, f ◦ γ(t) − λ
2 t

2

is concave.
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A semiconcave function is differentiable at almost every point in X and at points q ∈ X where f is
differentiable, we say a vector v ∈ CqX is the gradient of f at q provided df(v) = |v|2 and the function
df(u)/|u|2 on CpX achieves its maximum for u = v. We use the suggestive notation ∇dp(q) to denote v and
say a point q is a cut point of f if ∇f(q) = 0.

Taking now, f(·) = d(p, ·), which is semiconcave on X \ {p}, we define

Definition 2.5. On a neighborhood U ⊂ X where d(p, ·) has no cut points, a locally Lipschitz curve
α : (a, b) → U is called a dp-gradient curve if

dp ◦ α(t) = t and α+(t) = ∇dp(α(t))
|∇dp(α(t))|2 , for all t ∈ (a, b).

Here α+(t) denotes the one-sided derivative

α+(t) = lim
ε→0+

logγ(t) γ(t + ε)
ε

,

where the log function is understood as follows: for two points p, q ∈ X, let →
pq∈ ΣpX denote a direction of

a minimizing geodesic in X from p to q. Define

logp q := d(p, q) · →
pq ∈ CpX.

In [38], using a limiting argument of directions in ΣpX and monotonicity estimates for f -gradient curves,
Perelman–Petrunin show

Proposition 2.6. (See [38].) Let p ∈ X and U ⊂ X a neighborhood without cut points of dp. For any q ∈ U ,
there is a unique complete dp-gradient curve starting at q.

For a dp-gradient curve γ : (0, a) → X, which has arbitrary lower curvature bound ≥ −k2, define ρ(t) so
that

dρ/ρ = dt/t ·
∣∣∇dp

(
γ(t)

)∣∣−2
, ρ/t → 1 as t → 0.

Definition 2.7. Let X be an Alexandrov space, p ∈ X. Given v ∈ CpX, construct a complete dp-gradient
curve γ with γ(0) = p and γ+(0) = v/|v|. Define the gradient exponential map gexpp : CpX → X by

gexpp(v) = γ ◦ ρ−1(|v|).
Note that the gradient-exponential map is non-expanding on CpX. Gvien a direction v ∈ ΣpX, we call

the curve γ : [0,∞) → X given by γ(t) = gexpp(tv) the radial curve starting at p in the direction v.

2.1.2. Critical point theory for Alexandrov spaces
Essential to our arguments is Perelman’s development of Morse theory for Alexandrov spaces [37,32].
Let (X, d) ∈ Alexn[k] and fix a point p ∈ X. A point q ∈ X is called a critical point of d(p, ·) if, for any

x 	= q, the comparison angle at q satisfies ∠̃kxqp ≤ π
2 . If a point is not critical, then it is called a regular

point. This metric notion of critical points of the distance function was first introduced by Grove–Shiohama
and used to proved the Sphere Theorem [12]. One of the main results of [37] is that the Isotopy Lemma of
Grove–Shiohama generalizes to Alexandrov spaces as well.

In fact, we have Perelman’s Fibration Theorem
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Theorem 2.8. (Cf. [37] and Proposition 2.2 of [34].) Let X be an n-dimensional Alexandrov space and
f : U → R

k an admissible function on some domain U ⊂ X. If f has no critical point and is proper in U ,
then its restriction to U is a locally trivial fiber bundle.

In particular, given a fixed point p ∈ X the distance function d(p, ·) is an admissible, proper function on
X (see [37,32] for full definitions of an admissible function). From the Fibration Theorem, it follows

Corollary 2.9. Let p ∈ X and suppose, for r2 > r1 > 0, that B(p, r2) \B(p, r1) contains no critical points of
d(p, ·). Then B(p, r2) \B(p, r1) is homeomorphic to ∂B(p, r1) × [r1, r2].

2.2. Definitions of Ricci curvature for metric measure spaces

As discussed in the Introduction, there are various definitions which generalize Ricci curvature lower
bounds to the setting of metric measure spaces, and Alexandrov spaces in general. The weakest of these is
the Bishop–Gromov condition of Kuwae–Shioya which we define here.

2.2.1. Infinitesimal Bishop–Gromov condition
For a real number κ, set

sκ(r) =

⎧⎪⎨
⎪⎩

sin(
√
κr)/

√
κ if κ > 0

r if κ = 0
sinh(

√
|κ|r)/

√
|κ| if κ < 0

(2.1)

Note that the function sκ is the solution of the Jacobi equation sκ
′′(r)+κsκ

′(r) = 0 with initial conditions
sκ(0) = 0 and sκ

′(0) = 1.
For p ∈ X and 0 < t ≤ 1, we will define a subset Wp,t ⊂ X and a map Φp,t → X. The map Φp,t is called

the radial expansion map. Set Φp,t(p) := p ∈ Wp,t and a point x 	= p belongs to Wp,t if and only if there
exists a point y ∈ X such that x ∈ py and dp(x) : dp(y) = t : 1, where py is a minimal geodesic from p to y.
Alexandrov spaces are necessarily nonbranching, therefore such a point y as defined above is unique and we
set Φp,t(x) := y. Furthermore, by the triangle inequality, one can verify that the map Φp,t : Wp,t → X is
locally Lipschitz.

We can now define the infinitesimal Bishop–Gromov condition with respect to the Hausdorff measure Hn

on (X, d).

Definition 2.10. For real numbers n ≥ 1 and K, we say Hn satisfies the Infinitesimal Bishop–Gromov
condition BG(K,n) if for any p ∈ X and t ∈ (0, 1], we have

d
(
Φp,t∗H

n
)
(x) ≤ tsκ(tdp(x))n−1

sκ(dp(x))n−1 dHn(x) (2.2)

for any x ∈ X such that dp(x) < π√
κ

if κ > 0, where Φp,t∗Hn is the push-forward of Hn by Φp,t.

Remark 1. For the purposes of this paper, we will take κ = 0, thus the condition (2.2) becomes
d(Φp,t∗Hn)(x) ≤ tn−1dHn(x).

Generally speaking, a complete n-dimensional Riemannian manifold (Mn, g) with the natural volume
measure satisfies the BG(K,n) condition if and only if the Ricci curvature of Mn satisfies Ric ≥ (n− 1)K,
for K ∈ R. In [23] the authors show that an n-dimensional Alexandrov space with curvature ≥ κ satisfies
the BG(K,n) condition. Furthermore, Ohta showed that if (X, d, μ) satisfies the BG(K,n) condition above
then the Hausdorff dimension of X is bounded above by n.
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Ultimately we want to disintegrate the Hausdorff measure over the tangent cone as a product metric over
the space of directions at the point. We obtain

Lemma 2.11. Let X be an n-dimensional Alexandrov space whose Hausdorff measure Hn satisfies the
BG(0, n) condition. For any p ∈ X and R > 0,

Hn
(
B(p,R)

)
≤

∫
v∈ΣpX

min(R,cut(v))∫
0

rn−1 dr dHn−1(v).

Proof. Following the notation set in [22], let Ap ⊂ M be the union of images of minimal geodesics emanating
from p and define, for r > 0,

a(r) := Hn−1(Ap ∩ ∂
(
B(p, r)

))
. (2.3)

As in [22], for 0 < r1 ≤ r2 and setting t := r1/r2, note that because of the Alexandrov convexity condition,
the map Φp,t : Ap ∩ ∂(B(p, r)) ∩Wp,t → Ap ∩ ∂(B(p, r2)) is surjective and Lipschitz continuous. Taking t

very close to 1, makes the Lipschitz constant of Φp,t also close to 1. In fact,

a(r1)
a(r2)

≥
(
1 − θ(t− 1|k)

)
,

where k is a lower bound of the curvature on X and the notation θ(x|y) indicates some function of x ∈ R

depending on y such that θ(x|y) → 0 as x → 0. From this it follows that a(r) is integrable and thus, by the
Co-Area formula (cf. Theorem 4.2.1 of [26]), we have

Hn
(
B(p,R)

)
=

R∫
0

a(r)dr.

Also, from the BG(0, n) condition on X, it follows that (summarizing [22])

a(r1) ≥
rn−1
1
rn−1
2

a(r2),

and thus,

log a(r2) − log a(r1)
r2 − r1

≤ (n− 1) log rn−1
2 − log rn−1

1
r2 − r1

.

Which is equivalent to

log ◦a ′(r) := lim sup
h→0

log(a(r + h)) − log(a(r))
h

≤ n− 1
r

.

It follows that a′(r)
a(r) ≤ n−1

r for any r > 0. Now, comparing this quantity with the model space, we define
the comparable quantities on R

n denoting a0(r) = Hn−1(∂(B0(r))) = vol(Sn−1(r)), we naturally have
a0

′(r)
a0(r) = a0

′(r)
a0(r) = n−1

r . Thus,

a′(r) ≤ a0
′(r)

,

a(r) a0(r)
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and it follows that a(r)
a0(r) is decreasing along radial geodesics γ(t) = gexpp(tv) in X. Note that, within the

cut locus, ∂B(p, r) = {gexp(rv) | v ∈ ΣpX}; and therefore, it follows that a(r) ≤ rn−1Hn−1(ΣpX). Thus,
we have

Hn
(
B(p,R)

)
=

R∫
0

a(r) dr ≤
∫

v∈ΣpX

min(R,cut(v))∫
0

rn−1 dr dHn−1(v). � (2.4)

3. Proof of Theorem 1.1

Throughout the rest of the paper, we assume X ∈ Alexn[−κ2] for κ ∈ R, n ≥ 2 and that assume ∂X = ∅.
One of the key facts that we use is that there is a prevalence of large geodesics in the presence of large
volume growth. Even more, as we will see in Lemma 3.1, given enough volume growth it is possible to place
a large geodesic in an advantageous location.

Lemma 3.1. For natural number n ≥ 2, let X ∈ Alexn[−κ2] whose Hausdorff measure satisfies the BG(0, n)
condition. Given constants ε > 0, C > 1, there exists a constant γ(ε, C, n) > 0 such that if Hn(B(p,R)) ≥
(1 − γ)ωnr

n, then the following property holds:

for any a ∈ B(p, r), r > 0, there exists b ∈ X \B(p, Cr) such that d(a, pb) ≤ εr.

Here ωn denotes the volume of the unit ball in R
n.

Proof. The proof is by contradiction and the argument relies on a similar computation as that found in
Lemma 1.5 of [28], (cf. [33] for compact version). Since the setting is now Alexandrov spaces, we must
account for the metrically singular set SX . Note that if p ∈ SX then vol(SX) < vol(Sn−1) = π and thus
the bounds obtained on the Hn-measure of geodesics balls is strictly smaller and thus gives only a sharper
estimate. To make this clear, and for the ease of the reader, we include the necessary computation here.

Suppose p ∈ SX , then Hn−1(ΣpX) < vol(Sn−1) and set Γ = {v ∈ ΣpX | d(a, gexpp(tv)) ≤ εR, t ≥ 0}.
Assume (by way of contradiction) that for all v ∈ Γ ,

sup
{
t > 0 | gexpp(tv) is minimizing

}
< Cr.

Taking C > C > 1, we have by way of Lemma 2.11

H
(
B(p, Cr)

)
≤

∫
v∈ΣpX

min(Cr,cut(v))∫
0

tn−1 dtHn−1(dv)

≤
∫

v∈Γ

Cr∫
0

tn−1 dtHn−1(dv) +
∫

v∈ΣpX\Γ

Cr∫
0

tn−1 dtHn−1(dv)

≤ Hn−1(Γ )
Cr∫
0

tn−1 dt + Hn−1(ΣpX \ Γ )
Cr∫
0

tn−1 dt

< −Hn−1(Γ )
Cr∫
tn−1 dt + Hn

(
B0(Cr)

)
.

Cr
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In the last inequality we used the fact that Hn−1(ΣpX) < vol(Sn−1). Thus,

(1 − γ)Hn
(
B0(Cr)

)
< −Hn−1(Γ )

Cr∫
Cr

tn−1 dt + Hn
(
B0(Cr)

)
.

Simplifying, we get a lower bound on the size of Γ :

Hn−1(Γ ) < γHn(B0(Cr))∫ Cr

Cr
tn−1 dt

= γnωnC
n

C
n − Cn

.

This upper bound on the size of Γ then allows us to, in turn, bound the Hn-measure of B(a, εr):

Hn
(
B(a, εr)

)
≤ Hn−1(Γ )

Cr∫
0

tn−1 dt ≤ C
n
γωn(Cr)n

C
n − Cn

. (3.1)

By assumption Hn satisfies the BG(0, n) condition so, by Corollary 3.4 in [22], we can obtain a lower
bound for the Hn-measure of B(a, εr). Namely,

Hn
(
B(a, εr)

)
≥ Hn

(
B(a, r + Cr)

) εn

(1 + C)n
(3.2)

≥ Hn
(
B(p, Cr)

) εn

(1 + C)n
≥ (1 − γ)ωn(Cr)n εn

(1 + C)n
. (3.3)

Combining (3.1) and (3.3), and solving for γ, we obtain the bound

γ ≥
[
1 + (1 + C

n)
εn

Cn

C
n − Cn

]−1

.

Since C was taken arbitrary we can let C → ∞ and get a lower bound for γ depending only on ε, C and n.
Setting γ(ε, C, n) < [1 + Cn

εn ]−1 we obtain a contradiction and the lemma is proved. �
Adapting techniques familiar from classical Riemannian geometry, we prove

Theorem 3.2. For an integer n ≥ 2, let (X, d) ∈ Alexn[−κ2] be a complete, noncompact Alexandrov space
whose Hausdorff measure satisfies the BG(0, n) condition. There exists an ε(n, κ) > 0 such that if, for p ∈ X

Hn
(
B(p, r)

)
≥ (1 − ε)ωnr

n, for all r > 0,

then (X, d) has finite topological type.

Proof. By Corollary 2.9, it suffices to show that the distance function d(p, ·) has no critical points outside
some large ball. Suppose by contradiction that we can find a sequence of critical points {xi}∞i=1 such that
d(p, xi) → ∞ as i → ∞. Denote Ri = d(xi, p).

Given n and κ as in the statement of the theorem, choose some ε(n, κ) < ( ln(2)
8κ )1−1/n. Following the

proof of Lemma 3.1, since αX ≥ α(n, κ) := 1 − (1 + 2n

εn )−1, it follows that for each xi, there exists some
bi ∈ X \B(p, 2Ri) such that the minimal geodesic pbi connecting p to bi satisfies d(xi, bi) ≤ εRi. Let qi ∈ pbi
such that d(p, qi) = 2Ri.
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For each k, let βi be an arbitrary minimizing path connecting xi to qi. Since xi is a critical point of d(p, ·)
there exists a minimizing path αi connecting xi to p such that cos∠(β′(0), α′(0)) ≤ π/2. Consider now the
geodesic triangle Δ(αi, βi, pqi) formed by these paths joined with pqi.

Note that

h(xi) := d(xi, pqi) ≤ εRi,

and

s(xi) := min
{
d(p, xi), d(xi, qi)

}
= Ri.

Thus, by the excess estimate for Alexandrov spaces (see (4.2) in the Appendix) applied to the triangle
Δpxiqi, we have

ep,qi(xi) ≤ 8
(
h(xi)n

s(xi)

)1/(n−1)

(3.4)

≤ 8
(

(εRi)n

Ri

)1/(n−1)

(3.5)

≤ 8εn/(n−1) <
1
κ

ln(2). (3.6)

Similarly, we can apply the Toponogov Comparison theorem for Alexandrov spaces to Δ(αi, βi, pqi) to
bound the excess from below. Since ∠(pxiqi) ≤ π/2, the hyperbolic law of cosines ensures that

cosh κd(p, qi) = cosh κd(p, xi) coshκd(xi, qi) − sinhκd(p, xi) sinh κd(xi, qi) cos∠(pxiqi)

≤ cosh κd(p, xi) coshκd(xi, qi).

Thus, it follows

eκd(p,qi) ≤ cosh(κRi)eκd(xi,qi)−κRi ,

which further simplifies to give

d(xi, qi) ≥ d(p, qi) −
1
κ

ln
(

1 − e−2κRi

2

)
.

Therefore, since d(p, qi) = 2Ri, d(p, xi) = Ri,

ep,qi(xi) = d(p, xi) + d(qi, xi) − d(p, qi) (3.7)

≥ − 1
κ

ln
(

1 − e−2κRi

2

)
= 1

κ
ln
(

2
1 − e−2κRi

)
. (3.8)

Since 1
κ ln( 2

1−e−2κRi
) ↘ 1

κ ln(2) as Ri → ∞, we arrive at a bound for ep,qi(xi) contradicting (3.6) for some
Ri large. Thus, there are no critical points outside the ball B(p,Ri) and the theorem is proved. �
Remark 2. In [24] the authors prove a Laplacian comparison theorem and topological splitting theorem
for weighted Alexandrov spaces, i.e. Alexandrov spaces equipped with a measure μ (not necessarily the
Hausdorff measure) which satisfies the BG(0, n) condition. One would anticipate that since the Laplacian
comparison plays an integral role in the proof of the excess estimate (as we see in the Appendix) and thus
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the proof above, a comparable theorem should hold for a metric measure space (X, d, μ) where (X, d) ∈
Alexn[−κ2] and μ which satisfies the BG(0, n) condition. We have not worked out the explicit details of
this argument and leave it for the interested reader.

4. Appendix

In this section we sketch proof of the excess estimate in Alexandrov spaces and describe the necessary
ingredients. The original excess estimate was proven by Abresch–Gromoll in [1] for Riemannian manifolds
with Ricci curvature bounded below by (n − 1)H, for H ∈ R. We adapt their argument to generalize the
excess estimate to n-dimensional Alexandrov spaces whose Hausdorff measure satisfies a condition giving
the space the property of non-negative Ricci curvature (see Section 1 for discussion of various notions of
Ricci curvature lower bounds in Alexandrov space and metric measure spaces in general).

Throughout, let (X, d) denote an n-dimensional Alexandrov space with curvature ≥ −κ2 for some κ ∈ R.
Central to our proof of the excess estimate is an analysis of harmonic functions on X. The theory of
(sub/super) harmonic functions on Alexandrov spaces has been developed by Kuwae–Machigashira–Shioya,
Petrunin, Kuwae–Shioya and others [25,40,22,24] in reference to an underlying n-dimensional Hausdorff
measure Hn on the (X, d). As initiated in [24], one could also consider Alexandrov spaces equipped with
a positive Radon measure μ satisfying some generalized weak-Ricci curvature lower bound condition; thus
studying metric measure spaces (X, d, μ) where (X, d) is an Alexandrov space of curvature ≥ −κ2 > −∞
and μ a Radon measure satisfying BG(0, n). We state the necessary principles below for μ a Radon measure
keeping in mind that ultimately we will take μ to be Hn.

4.1. Laplacian comparison and weak maximum principle on Alexandrov spaces

Both the Laplacian comparison and the weak maximum principle are very important tools when studying
Riemannian manifolds with a lower Ricci curvature bound. Following [24], here we collect the tools and
terminology we need to describe the Laplacian comparison on weighted Alexandrov spaces (X, d, μ) as well
as the weak maximum principle. We refer the reader to Section 2.1 for notation.

4.1.1. Maximum principle for μ-subharmonic functions
The original proof of the excess estimate for Riemannian manifolds [1] relies on the maximum principle

for subharmonic functions. However, since the Riemannian metric of (X, d) has low regularity we cannot
simply apply the usual maximum principle in this setting. Instead, we follow work of Kuwae [21] and employ
theory of μ-subharmonic functions and the maximum principle in this setting. Here we describe in more
detail these concepts.

4.1.2. Harmonic functions
Let Ω ⊂ X be a relatively compact open, connected domain and denote Lip(Ω) the set of Lipschitz

functions on Ω. Using the natural C0-Riemannian structure on the set of nonsingular points of X we can
define L2 and W 1,2 functions and their norms. The space of Sobolev functions W 1,2(Ω,μ) is taken to be
the closure of Lip(Ω) in the norm:

‖f‖2
W 1,2(Ω,μ) :=

∫
Ω

(
f2 + |∇f |2

)
dμ,

where ∇f is the maximal rate of growth of f at a point. Let W 1,2
0 (Ω,μ) denote the W 1,2-closure of the set

of W 1,2 functions of compact support in Ω and define a canonical Dirichlet form by
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Eμ(f, g) :=
∫
Ω

〈∇f,∇g〉 dμ, for all f, g ∈ Lip0(Ω).

Note that here 〈·, ·〉 denotes the inner product induced from the Riemannian structure on X outside the
singular set and thus is defined μ-a.e. since locally Lipschitz functions on Ω are differentiable μ-a.e. on Ω.

Now we can define

Definition 4.1. A function f ∈ W 1,2
0,loc(Ω;μ) is said to be μ-subharmonic provided

∫
Ω

〈∇f,∇φ〉dμ ≤ 0

for any nonnegative smooth function φ ∈ Lip0(Ω).

For which we have the following maximum principle of Kuwae–Shioya [24]

Theorem 4.2. Let f ∈ W 1,2
0,loc(Ω;μ) be a continuous μ-subharmonic function and suppose f attains its

maximum on Ω. Then, f is constant on Ω.

4.1.3. Laplacian comparison for the distance function
Now fix a point p ∈ X and denote d(p, ·) : X → R the distance function from p. This map is differen-

tiable outside the singular set and away from Cutp ∪{p} and the gradient field ∇d(p, ·) is continuous at all
differentiable points. Because of the lack of regularity of the Riemannian metric on an arbitrary Alexandrov
space, the standard proof of the Laplacian comparison theorem for Riemannian manifolds with lower Ricci
curvature bounds does not work in our setting. However, up to a set of measure zero we have by [22]

Theorem 4.3. For a positive Radon measure μ on (X, d) with full support and which satisfies the BG(0, n)
condition on Ω, we have

∫
X

〈∇dp,∇φ〉 dμ ≥
∫
X

(
−n− 1

dp

)
φdμ,

for any nonnegative function φ ∈ Lip0(Ω \ {p}).

Note, the Laplacian comparison theorem above can be stated more generally for Radon measures satis-
fying BG(k, n) for k, n ∈ R. We state only the case k = 0 here because it applies directly to our arguments
in Section 3 and to simplify the exposition.

Equipped with the Laplacian comparison theorem and the maximum principle for sub-harmonic functions,
we are now have the ingredients we need to prove the excess estimate. Since the proof follows the original
argument of Abresch–Gromoll [1] we include only a brief sketch here (for the case BG(0, n)) just to convey
the main ideas.

4.2. Excess estimate for Alexandrov spaces

For any metric space (X, d) and points p, q ∈ X, the excess function is given by

ep,q(x) = d(x, p) + d(x, q) − d(p, q), for x ∈ X.
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Note that ep,q is necessarily a Lipschitz function and has Lipschitz constant at most 2. Setting h(x) :=
d(x, pq), the height of the triangle Δpxq, it follows immediately from the triangle inequality that 0 ≤
ep,q(x) ≤ 2h(x), for x ∈ X.

The strength of the excess estimate is that it guarantees a stronger upper bound in the presence of a
lower Ricci curvature bound. And, as we will show, the estimate is particularly useful to long thin triangles.
In this subsection, we use the tools outlined above to sketch the proof of the excess estimate for Alexandrov
spaces with BG(0, n). The argument follows the original proof of Abresch–Gromoll.

As motivated by the argument in [1], define the function ϕn,K : (0, l] × R → [0,∞) by

ϕn,κ(r, l) =
�

r≤t≤τ≤l

(
sκ(τ)
sκ(t)

)n−1

dτdt, (4.1)

where the functions sκ(·) are the Jacobi equations given in (2.1) and when K > 0 we assume Kl ≤ π2.
This ϕn,K(·, ·) is used in proving the general form of the excess estimate of Abresch–Gromoll for Rie-

mannian manifolds with Ric ≥ (n− 1)K. Since we focus here only on the case when K = 0, (4.1) becomes

ϕn,0(r, l) =
�

r≤t≤τ≤l

(
τ

t

)n−1

dτdt = 1
2n

(
r2 − n

n− 2 l
2 + 2

n− 2 l
nr−(n−2)

)
.

Fixing l > 0 and considering ϕ as a function on r ∈ (0, l], the relevant properties of ϕ are that

(a) ϕ(·, l) > 0 and is decreasing on (0, l)
(b) ϕ(l, l) = 0
(c) Δϕ(·, l) = 1

We show

Theorem 4.4. For an integer n ≥ 2 and κ ∈ R, let (X, d) ∈ Alexn[−κ2] and suppose the Hausdorff
measure Hn on X satisfies the BG(0, n) condition of Definition 2.10. Fix p, q ∈ X and let x ∈ X so that
h(x) ≤ 1

2 min{d(p, x), d(q, x)}. Then,

ep,q(x) ≤ 8
(
h(x)n

s(x)

) 1
n−1

, (4.2)

where s(x) = min{d(p, x), d(q, x)}.

In particular, note that as either h(x) ↘ 0 or s(x) ↗ ∞, it follows that ep,q(x) ↘ 0.

Proof. Note that by Theorem 4.3, it follows that

Δep,q(x) ≤ n− 1
d(p, x) + n− 1

d(q, x) ≤ 2(n− 1)
s(x) , in the distributional sense on X.

Let x ∈ X. For some ε > 0, let l̃ = h(x) + ε and consider the function G : B(x, l̃) → [0,∞) defined by

G(·) = 2(n− 1)
s(x) ϕn,0

(
d(x, ·), l̃

)
(4.3)

= 2(n− 1) 1
(
d(x, ·)2 − n

l̃2 + 2
l̃nd(x, ·)−(n−2)

)
. (4.4)
s(x) 2n n− 2 n− 2
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Note that by the properties of ϕ, it follows that

(a) G > 0 on B(x, l̃)
(b) G = 0 on ∂B(p, l̃)
(c) ΔG = 2(n−1)

s(x) in the distributional sense on X

We will show that

ep,q(x) ≤ 2c + G(c), for all c ∈
(
0, h(x)

)
. (4.5)

Suppose not. Then there exists some c ∈ (0, h(x)) such that ep,q(x) > 2c + G(c). Note that, since the
Lipschitz constant of ep,q is at most 2, it follows that for any y ∈ ∂B(x, c) that

ep,q(x) − ep,q(y) ≤ 2d(x, y).

Therefore, for any y ∈ ∂B(x, c)

ep,q(y) ≥ ep,q(x) − 2d(x, y)

= ep,q(x) − 2c, since y ∈ ∂B(x, c)

> 2c + G(c) − 2c = G(c).

Thus,

(G− ep,q)|∂B(x,c) < 0.

Similarly, by property (b) of G above and since ep,q > 0 away from the geodesic pq, we have that

(G− ep,q)|∂B(x,h(x)+ε) < 0.

Lastly, we note that for z ∈ pq such that d(x, z) = h(x), by property (a) of G and since ep,q(z) = 0, it
follows that

G(z) − ep,q(z) < 0.

Therefore, the point z is a local maximum of the function G(·) − ep,q(·). However, by the linearity of the
Laplacian, and property (c) of G above we have

Δ(G− ep,q) = ΔG− Δep,q ≥ 2(n− 1)
s(x) − 2(n− 1)

s(x) = 0.

That is to say, G(·)− ep,q(·) is an Hn-subharmonic function on B(x, h(x)+ ε) \B(x, c). Thus, Theorem 4.2,
taking Ω = B(x, h(x) + ε) \B(x, c), implies that G(·) − ep,q(·) must be constant which is a contradiction.

Taking ε ↘ 0 we arrive at our desired result and (4.5). Further simplifying that upper bound, taking
c = 2hn(x)

s(x) and recalling that h(x) ≤ 1
2s(x), we obtain

ep,q(x) ≤ 2c + G(c) ≤ 8
(
h(x)n

s(x)

) 1
n−1

. �
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Remark 3. See also Proposition 6.2 of [8] (cf. Theorem 9.1 of [7]) which gives a slight generalization (not
assuming a zero of ep,q) of the Abresch–Gromoll excess estimate and has significant applications which are
useful in studying Gromov–Hausdorff limits. In [10] the authors also generalize this Cheeger–Colding version
to infinitesimally Hilbertian CD(K,n) spaces. We expect a similar argument would work in our setting for
Alexandrov spaces as well.
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